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6He β-decay rate and the suppression of the axial constant in nuclear matter

Sergey Vaintraub* and Nir Barnea†

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Doron Gazit‡

Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA
(Received 5 March 2009; published 29 June 2009)

We present a microscopic calculation of the 6He β-decay into the ground state of 6Li. To this end, we use
chiral perturbation theory at next-to-next-to-next-to-leading order to describe the nuclear weak-currents. The
nuclear wave functions are derived from the J -matrix inverse scattering nucleon-nucleon potential (JISP), and
the Schrödinger equation is solved using the hyperspherical-harmonics expansion. Our calculation brings the
theoretical decay-rate within 3% of the measured one. This success is attributed to the use of chiral perturbation
theory based mesonic currents, whose contribution is qualitatively different compared to the standard nuclear
physics approach, where the use of meson exchange currents worsens the comparison to experiment. The inherent
inconsistency in the use of the JISP potential together with chiral perturbation theory based is argued not to affect
this conclusion, though a more detailed investigation is called for. We conclude that any suppression of the axial
constant in nuclear matter is included in this description of the weak interaction in the nucleus.
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I. INTRODUCTION

β-decay is the everyday reflection of weak interaction in
nuclei. As such, it provides an experimental window to the
properties of the weak interaction at nuclear density.

In particular, theoretical studies of β-decay rates of nuclei
have argued for a suppression of the axial coupling constant
gA, from its vacuum value, as extracted from the lifetime of the
neutron gA = 1.2695 ± 0.0029 [1], to unity, i.e., gA = 1 [2,3].
According to a recent study, this suppression occurs gradually,
as the mass of the nucleus grows, and fully utilized for A ≈ 40
[4].

The ramifications of this suppression are numerous, for
example, to the understanding of astrophysical phenomena,
such as neutron-star cooling and core collapse supernovae,
whose dynamics is controlled by the weak interactions. It is
of no surprise that the source of this suppression has been
the target of many theoretical works, which have associated it
with a partial restoration of chiral symmetry in finite densities,
deficiencies in the inclusion of correlations between nucleons,
loop corrections to the axial current originating in nucleonic
excitations, mesonic currents, or a combination of the three
[5–9].

An important assumption is hidden in these suppression
mechanisms: if a full calculation of the weak interaction inside
nuclei was possible from first principles, then the calculated
decay rates should agree with the experimental ones. That
is, if one could describe correctly the correlations between
nucleons, and the weak interaction of an external probe with
a nucleus, then one should recover the physical value of
the axial constant. In order to do that, pertinent is to solve
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the nuclear problem from first principles. Due to the strong
correlations involved in the problem, a calculation of nuclear
wave functions from the nucleonic degrees of freedom is at
reach only for very light nuclei.

The lightest nucleus that undergoes a β-decay is the triton.
However, the theory cannot be checked in the triton since
its half-life is used to remove some freedom in the weak
interaction of a lepton with a nucleus, as will be explained
explicitly later. The lightest nucleus that can provide a test
to the theory is thus 6He. 6He (Jπ = 0+) is an unstable
nucleus, which undergoes a β decay with a half-life τ1/2 =
806.7 ± 1.5 msec to the ground state of 6Li (Jπ = 1+) [10].

However, a microscopic calculation of 6He from its nu-
cleonic degrees of freedom, failed to reproduce the β-decay
rate. This study, accomplished by Schiavilla and Wiringa [11],
has used the realistic Argonne v18 (AV18) nucleon-nucleon
potential, combined with the Urbana-IX (UIX) three-nucleon
force (3NF), to derive the nuclear wave functions, through
the variational Monte Carlo approach. The model used for
the nuclear weak axial current includes one- and two-body
operators. The two-body currents are phenomenological, with
the strength of the leading two-body term—associated with
�-isobar excitation of the nucleon—adjusted to reproduce
the Gamow-Teller matrix element in tritium β-decay. The
calculated half-life of 6He overpredicts the measured one by
about 9%. An unexpected result of the calculation, was that
two-body currents lead to a 1.7% increase in the value of
the Gamow-Teller matrix element of 6He, thus worsening
the comparison with experiment. The authors of this paper
have presumed that the origin of this discrepancy is either in
the approximate character of the VMC wave functions, or in
the discrepancies of the nuclear model of the weak interaction.
Pervin et al. [12], have used the GFMC approach to evolve the
VMC wave functions ansatz. They showed that this brings the
single nucleon Gamow-Teller matrix element to about 0–3%
deviation from the experimental value. However, the MEC are
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still expected to increase the deviation from the experiment to
about 2–5% from the experimental value, leaving this problem
intact.

In the current paper, we argue that the origin of the
discrepancy is indeed in the model of the weak interaction
inside the nucleus. The foundation of such an argument has to
be in the underlying theory, i.e., quantum chromodynamics
(QCD). Thus, we describe the weak currents within the
nucleus, using an effective theory of QCD, namely chiral
perturbation theory (χPT), applicable at low energies, relevant
to β-decay processes [13–16]. We use the triton β-decay
to calibrate the strength of the contact interaction part of
the meson-exchange currents, thus the calculation is without
any free parameters. The six-body nuclear problem is solved
in a fully ab initio approach, expanded in hyperspherical
harmonics functions, from its nucleonic degrees of freedom
[17–19]. The nuclear wave functions are derived from J -
matrix inverse scattering nucleon-nucleon potential (JISP),
describing two-nucleon scattering data and bound and resonant
states of light nuclei to high accuracy [20–22]. Using this
approach not only brings the calculated β-decay rate to within
3% of the measured data, but also changes qualitatively the
contribution of the two-body meson exchange currents (MEC)
compared to the work of Schiavilla and Wiringa. χPT based
MEC are found to decrease the Gamow-Teller matrix element,
compared with the increase found by Schiavilla and Wiringa.
We argue that this qualitatively different behavior originates
in the use of χPT based MEC, rather than the specific choice
of the potential.

II. THEORETICAL FORMALISM

We start with a brief reminder of the β-decay process,
and the formalism used in the calculation. The decay is
a weak process, in which an unstable nucleus of charge
Z emits an electron and anti-electron-neutrino, leaving
a nucleus of charge Z + 1. The interaction is mediated
through the exchange of heavy W+ boson. As the mo-
mentum transfer in the process is much smaller than the
mass of the W+ boson, the weak interaction Hamiltonian
is given by ĤW = −G|Vud |√

2

∫
d3xĵ−

µ (�x)Ĵ+µ(�x), where G =
1.166371(6) × 10−11 MeV−2 is the Fermi coupling constant
[1], Vud = 0.9738(4) is the CKM matrix element mixing u

and d quarks involved in the process [1], ĵ−
µ (�x) is the lepton

charge lowering current, and Ĵ+µ is the nuclear charge raising
current. The decay rate can be calculated using Fermi’s golden
rule, and it is proportional to the squared matrix element of
this weak Hamiltonian 〈f ‖ĤW‖i〉, where i (f ) is the initial
(final) state. The lepton current is well approximated as a
current of charged Dirac particles, thus results in kinematical
factors to the decay rate. The weak nuclear current can be
written as Ĵ+µ = τ+

2 (Ĵ V µ + Ĵ Aµ), where τ+ is a Pauli matrix.
Ĵ V µ (Ĵ Aµ) has a polar-(axial-)vector symmetry. Here, we
will discuss either a triton decay, or 6He decay, hence the
transitions are constrained by a selection rule on the angular-
momentum change in the transition: �J = 0, 1. Thus, a
multipole decomposition of the nuclear current is helpful. Due

to the small momentum transfer only the lowest multipoles
contribute, i.e., the J = 1 electric multipole of axial-vector
symmetry EA

1 , and in the case of triton also the J = 0 Coulomb
multipole of polar-vector symmetry CV

0 . We explicitly checked
that indeed the contribution of neglected multipoles to the
decay rate of 6He can be bounded by 1% [11,23]. The leading
order contribution to the EA

1 and CV
0 operators are proportional

to the Gamow-Teller and Fermi operators, respectively. Thus,
it is customary, when discussing the experimental rates, to talk
about the empirical Fermi and Gamow-Teller matrix elements,
instead of EA

1 and CV
0 , using the relations

F ≡
√

4π

2Ji + 1

〈
CV

0

〉
(1)

and

GT ≡
√

6π

2Ji + 1

〈
EA

1

〉
gA

. (2)

Here, 〈CV
0 〉 ≡ 〈f ‖CV

0 ‖i〉, and similarly for 〈EA
1 〉, Ji is the

total angular momentum of the initial nucleus, and gA =
1.2695 ± 0.0029 is the axial constant [1].

As discussed by Simpson [24], and later revisited by
Schiavilla et al. [11,25], the “comparative” half-life is related
to the “empirical” GT and F operators through

(f T1/2)t = K/(G2|Vud |2)

|F|2 + fA

fV
g2

A|GT|2 . (3)

Here, K = 2π3 ln 2/m5
e (such that K/(G2|Vud |2) = 6146.6 ±

0.6 sec), and fA/fV = 1.00529 [25] accounts for the small
difference in the statistical rate function between vector and
axial-vector transitions. Putting the measured 6He compar-
ative half-life (f T1/2)t = 812.8 ± 3.7 sec [11], one extracts
|GT(6He)|expt = 2.161 ± 0.005. For the triton, (f T1/2)t =
1129.6 ± 3 sec [26], thus |GT(3H)|expt = 1.6560 ± 0.0026.1

In order to complete a calculation, we have to specify
the detailed structure of the weak current, and to calculate the
nuclear wave functions. These will combine to produce the
theoretical EA

1 , which will be compared to the experimental
ones above.

III. χPT WEAK CURRENTS IN THE NUCLEUS

The main difference between the current work and previous
ones is the physical origin of the currents. The last two
decades of theoretical developments have provided us with
an effective theory of QCD, in the form of χPT [13–16].
The χPT Lagrangian is constructed by integrating out QCD
degrees of freedom of the order of �χ ∼ 1 GeV and higher.
It retains all assumed symmetry principles, particularly the
approximate chiral symmetry of the underlying theory. This
SU(2)A × SU(2)V symmetry is based on the small up- and
down-quarks masses (compared to the QCD breaking scale).
The lack of parity doublets in the QCD scale is interpreted

1For the triton |〈CV
0 〉| = 0.99955(15)/4π [11,23].
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as an indication that this symmetry is spontaneously broken,
with the pions as the Goldstone-Nambu bosons. Their finite,
albeit small, mass is due to the finite quark masses, explicitly
breaking the chiral symmetry.

Furthermore, the chiral Lagrangian can be organized in
terms of a perturbative expansion in positive powers of
Q/�χ where Q is the generic momentum in the nuclear
process, i.e., the β-decay or the pion mass [13–15]. The
chiral symmetry dictates the operator structure of each term of
the effective Lagrangian, however not the coupling constants.
A theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low energy,
and it is not yet feasible to obtain them from lattice calculations
because of computational limitations. Alternatively, these
undetermined constants can be constrained by low-energy
experiments.

As the chiral symmetry is a gauging of the electroweak
interaction, the weak currents are the Nöther currents of this
symmetry. The weak axial current adopted in this work is the
Nöther current derived from the axial symmetry of the chiral
Lagrangian up to N3LO [27,28]. At leading order (LO) this
current consists of the standard single-nucleon part, which, as
mentioned above, at low momentum transfer is proportional
to the Gamow-Teller (GT) operator,

EA
1 |LO = i gA(6π )−1/2

A∑
i=1

σiτ
+
i , (4)

where σi, τ
+
i are spin and isospin-raising operators of the ith

nucleon.
Corrections to the single-nucleon current appear at N2LO

in the form of relativistic terms. It is easily verified [27] that
the single nucleon current achieved in the χPT formalism,
is identical to that achieved in the standard nuclear physics
approach (SNPA).

At N3LO, additional corrections appear in the form of
axial MEC. While the relativistic corrections are negligible
for the half-life the MEC have a substantial influence on this
β-decay rate. This is a reflection of the fact that EA

1 is a
chirally unprotected operator [29]. The MEC, to this order,
include two topologies: a one-(charged)-pion exchange, and a
contact term (that represents, for example, two-pion exchange
or the exchange of heavier mesons). In configuration space the
one-pion exchange part of the axial MEC is given by

−2Mf 2
π

gA

Âi,a
1π (rij )

= Oi,a
P yπ

1�(rij ) + ĉ3
(
T i,a

⊕ − T i,a



)
m2

πyπ
2�(rij )

+ ĉ3

3

(
Oi,a

⊕ − Oi,a



)
m2

πyπ
0�(rij )

−
(

ĉ4 + 1

4

)
m2

π

(
T i,a

⊗ yπ
2�(rij ) + 2

3
Oi,a

⊗ yπ
0�(rij )

)
,

where fπ ≈ 92.4 MeV is the pion-decay constant, M ≈
938.9 MeV is the mass of the nucleon, mπ ≈ 139.57 MeV
is the charged-pion mass [1], and the low-energy constants
ĉ3 = −3.66(8) and ĉ4 = 2.11(9) are calibrated in the π -N

sector [30]. The operators used here are defined as

�Oa
P ≡ −mπ

4
(�τ (1) × �τ (2))a( �P1 �σ (2) · r̂12 + �P2 �σ (1) · r̂12),

Oi,a
� ≡ (�τ (1) � �τ (2))a(�σ (1) � �σ (2))i ,

T i,a
� ≡

(
r̂ i

12r̂
j

12 − δij

3

)
Oi,a

� ,

and � = ×,+,−. In addition, the Yukawa-like functions are

yπ
0�(r) ≡

∫
d3k

(2π )3
ei�k·�rS2

�(�k2)
1

�k2 + m2
π

,

yπ
1�(r) ≡ − ∂

∂r
yπ

0�(r),

yπ
2�(r) ≡ 1

m2
π

r
∂

∂r

1

r

∂

∂r
yπ

0�(r).

S� is a cutoff function, which we take as a Gaussian.
Apart from this, the MEC include a contact term, that has

the form

2Mf 2
π

gA

Âi,a
C (rij ) = d̂rOi,a

⊗ δ
(3)
� (�rij ), (5)

where the “smeared” delta function is

δ
(3)
� (�r) ≡

∫
d3k

(2π )3
ei�k·�rS2

�(�k2). (6)

The LEC d̂r is the only LEC up to N3LO that cannot be
calibrated in the single nucleon sector, as it originates in the
contact interaction π -NN in the chiral Lagrangian. As a result,
in order to determine d̂r , one has to resort to a larger nuclear
system. We will use the triton half-life as an experimental
datum to determine this LEC, Sec. V A.

IV. NUCLEAR WAVE FUNCTIONS

The difference between the one-body contribution to the
6He-6Li GT matrix element and the experimental value is of
the order of a few percent. A result which on the one hand is
very satisfying, but on the other hand implies that numerical
accuracy at a per mil level is required if we to regard the
6He β-decay as a test of the MEC model. In view of this
required level of convergence we use the JISP16 potential [21]
to model the interaction between the nucleons. The JISP16 NN

potential utilizes the J -matrix inverse scattering technique to
construct a soft nuclear potential, formulated in the harmonic
oscillator basis, that by construction reproduces the NN phase
shifts up to pion threshold and the binding energies of the light
nuclei with A � 4.

We use the hyperspherical-harmonics (HH) expansion to
solve the Schrödinger equation. The HH functions constitute a
general basis for expanding the wave functions of an A-body
system [31]. In the HH method, the translational invariant wave
function is written as


 =
∑
n[K]

Cn[K]Rn(ρ)Y[K](�, si, ti), (7)

where ρ is the hyper-radius, and Rn(ρ) are a complete
set of basis functions. The hyperangle, �, is a set of
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3A − 4 angles, and Y[K](�, si, ti) are a complete set of
antisymmetric basis functions in the Hilbert space of spin,
isospin, and hyperangles. The hyper-radius ρ is symmetric
under particle permutations since ρ2 = 1

2A

∑
i,j (ri − rj )2.

The functions Y[K](�, si, ti) are characterized by a set of
quantum numbers [K] [18,19] and possess definite angular
momentum, isospin, and parity quantum numbers. They
are the eigenfunctions of the hyperspherical, or generalized
angular momentum operator K̂2, K̂2Y[K](�, si, ti) = K(K +
3A − 5)Y[K](�, si, ti). The details of our method are explained
thoroughly in Ref. [32].

V. RESULTS

A. The triton β-decay—calibration of d̂r

Our results for the ground state properties of the A = 3
nuclei, 3H and 3He, are presented in Table I. In the table, we
present the energies, matter radii, and the leading order GT
matrix element [see Eq. (4)] as a function of Kmax, the limiting
value of the hyperspherical angular momentum K in the HH
expansion. As we are using the bare interaction our results are
variational.

From the table it is evident that an excellent convergence
is achieved for the A = 3 nuclei. Our results indicate that the
JISP16 potential leads to an underbinding of about 80 keV
for the 3He and 120 keV for the triton. Comparing our results
with the NCSM results of Shirokov et al. [21], we see a nice
agreement with their variational results [21]V but a discrepancy
of about 130 keV with their effective interaction results [21]E .
It should be noted that the GT matrix element converges
much faster then the matter radius. This property can be
probably attributed to the fact that the GT is a medium-range
operator, which is influenced by the asymptotic behavior of the
wave function, described correctly using the hyperspherical
functions. Comparing the JISP16 leading order GT matrix
element with those of other potential models, see Table II,
we observe that the JISP16 potential model leads to an
enhancement of the one-body matrix element and it almost

TABLE I. The JISP16 NN interaction 3He, 3H binding energies,
rms matter radius, and the leading order GT matrix element as a
function of Kmax.

Kmax
3H 3He GT|LO

B.E. radius B.E. radius

4 8.094 1.632 7.364 1.653 1.6656
6 8.233 1.656 7.512 1.680 1.6620
8 8.319 1.677 7.604 1.704 1.6575

10 8.351 1.691 7.641 1.720 1.6547
12 8.360 1.697 7.651 1.727 1.6538
14 8.365 1.701 7.657 1.733 1.6530
16 8.367 1.704 7.660 1.736 1.6526
18 8.367 1.705 7.661 1.738 1.6524
[21]V 8.354 7.648
[21]E 8.496(20) 7.797(17)
Exp. 8.482 7.718

TABLE II. The dependence of the triton β-
decay leading order GT matrix-element on the
potential model.

Potential model GT|LO

AV18+3NF [33] 1.598(2)
Bonn+3NF [34] 1.621(2)
Nijm+3NF [35] 1.605(2)
N3LO+3NF [39] 1.622(2)
UCOM [40] 1.65(1)
JISP16 [this work] 1.6524(2)
Expt. 1.656(3)

coincides with the experimental value. This property is found
also for the UCOM potential, and might be a result of the
minimization of the contribution of 3NF to the binding energy,
which is in the essence of both these potentials. In general, one
observes from the table that nonlocal potentials, such as Bonn
or the N3LO potentials, tend to predict a value for the GT
matrix element which is closer to experiment than the local
potentials.

As explained in Sec. III, we use the triton half-life as an
experimental input to determine the LEC d̂r . That is, we use
the trinuclei wave functions to evaluate the matrix element
|〈3He||EA

1 ||3H〉|, of the EA
1 operator built from the χPT based

weak current, as a function of d̂r , for various high-energy-
cutoff values. Using the experimentally derived value for this
matrix element we get the following calibration for d̂r (�χ ):

d̂r (�χ = 500 MeV) = 0.583(27)t (38)gA
,

d̂r (�χ = 600 MeV) = 0.625(25)t (35)gA
, (8)

d̂r (�χ = 800 MeV) = 0.673(23)t (33)gA
.

The numbers in parentheses denote uncertainties in the last
digits. The first error is due to the uncertainty in the triton
half-life, whereas the second one is due to uncertainty in gA

(the numerical error is negligible).

B. The 6He-6Li Gamow-Teller matrix element

Turning now to the A = 6 case, we present in Table III
our results for the ground state properties of the 6He and 6Li
nuclei. As is evident in the table, at the value Kmax = 14,
which corresponds to about 2–3 × 106 basis states, the binding
energies of the six-body nuclei are obtained with an accuracy
of a few hundred keV.

Taking a closer look at the table, we find that the binding
energies exhibit an exponential convergence. Deploying this
observation we extrapolate our results to the Kmax −→ ∞
limit, using the formula E(Kmax) = E∞ + Ae−αKmax . Fitting
the parameters E∞, A, α to the entries of Table III in the
range Kmax � 6, 8, 10 we find a rather stable value for E∞
with variance of about 50 keV for 6Li and 130 keV for
6He. The resulting binding energies are 28.70 MeV for 6He
and 31.46 MeV for 6Li. While these results are roughly
550 keV below the experimental values, the difference �E =
2.76 MeV between the binding energies of the two nuclei
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TABLE III. The JISP16 NN interaction 6He, 6Li binding
energies, rms matter radii, and the leading order GT matrix element
as a function of Kmax.

Kmax
6He 6Li GT|LO

B.E. radius B.E. radius

4 18.367 1.840 19.392 1.859 2.263
6 24.103 1.902 26.124 1.909 2.247
8 26.392 1.979 28.854 1.984 2.234

10 27.560 2.051 30.156 2.051 2.232
12 28.112 2.112 30.797 2.110 2.229
14 28.424 2.165 31.132 2.160 2.227
∞ 28.70(13) 31.46(5) 2.225(2)
[21] 28.32(28) 31.00(31)

Exp. 29.269 2.18 31.995 2.09 2.161

differs by merely 34 keV from the experimental value, �E =
2.726 MeV. In the last column of Table III we present our
6He-6Li leading order GT transition matrix element, i.e., at the
one-body level. It can be seen that the convergence pattern of
the matrix element is not regular. Extrapolating its value using
the expression GT(Kmax) = GT∞ + Be−βKmax for Kmax � 0,
we get GT∞ = 2.225(2). The fits of the extrapolation formulas
to the calculated values are presented in Fig. 1 for the binding
energies and in Fig. 2 for the GT matrix element.

The value GT = 2.225(2) we obtained for the JISP16
potential is in accordance with the values GT = 2.28 for
AV8’/TM’(99) and GT = 2.30 for AV8’ obtained by Navratil
and Ormand [36], GT = 2.28 for the N3LO NN force of
Navratil and Caurier [37], GT = 2.25 for AV18/UIX of
Schiavilla and Wiringa [11], and GT = 2.16–2.21 for
AV18/IL2 by Pervin et al. [12]. Moreover, it can be seen that
our accuracy in estimating the GT matrix element is at the
level of per mil. Such an accuracy enables us to disentangle
numerics from physics and validates the use of the 6He β-decay
as a testing ground for an axial MEC model.

-34

-32

-30

-28

-26

-24

-22

-20

-18

 4  6  8  10  12  14

E
 [

M
eV

]

Kmax

Exp.

Exp.

6He
6Li

FIG. 1. (Color online) The convergence of the binding energies
of the six-body nuclei, 6Li and 6He. The continuous lines are the fits
E(Kmax) = E∞ + Ae−αKmax . The dashed lines are the extrapolated
values E∞. The experimental values are marked with black arrows.

 2.21

 2.22

 2.23

 2.24

 2.25

 2.26

 2.27

 2.28

 4  6  8  10  12  14

G
T

Kmax

FIG. 2. (Color online) The convergence of the GT matrix element
for the 6He-6Li β-decay. The continuous line is the fit GT(Kmax) =
GT∞ + Be−βKmax , the dashed line is the extrapolated value GT∞.

Incorporating the χPT based contributions to the weak
current we can finally calculate the full 6He-6Li GT matrix
element at the N3LO level. In Table IV, we present the
transition matrix elements as a function of Kmax and the cutoff
�χ . The appropriate values of d̂r are taken from Eq. (8). Two
important observations can be drawn from the table, (i) the
numerical accuracy of the calculated GT matrix element is
few per mil, and (ii) there is only a very weak dependence
on the cutoff �χ , which is of the same order of magnitude.
The second observation implies that there is no need to refine
our calculation, and moreover, the contribution of higher order
χPT corrections to the weak current are negligible.

Summarizing, the predicted GT of 6He is

|GT(6He)|theo = 2.198(1)�(2)N (4)t (5)gA
= 2.198 ± 0.007.

(9)

The first error is the cutoff variation dependence, the second
is numerical, the third is due to uncertainties in the triton half-
life, and the last is due to uncertainties in gA. This should be
compared to the experimental matrix element |GT(6He)|expt =
2.161 ± 0.005. Thus, the theory overpredicts GT by about
1.7%.

TABLE IV. The dependence of the full (one-body+two-body)
6He-6Li GT matrix element on Kmax as a function of the cutoff �χ ,
at the N3LO level.

Kmax �χ = 500 MeV �χ = 600 MeV �χ = 800 MeV

4 2.1870 2.1798 2.1703
6 2.1850 2.1805 2.1746
8 2.1868 2.1850 2.1826

10 2.1937 2.1932 2.1927
12 2.1951 2.1952 2.1955
14 2.1970 2.1975 2.1983
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VI. DISCUSSION

The use of phenomenologically based potential, JISP,
combined with a χPT based MEC, is an inconsistency inherent
to our calculation. Clearly, the chiral Lagrangian can be used to
derive the nuclear forces as well. This inconsistency, however,
allows us to overcome limited computational resources, as
well as theoretical difficulties (the N3LO nuclear potential has
not been fully developed yet), and to accomplish the task of
a microscopic calculation of a six-body problem. The use of
a hybrid approach, sometimes coined EFT∗, has had great
success in the literature [27,28,38]. In all these checks, the
phenomenological nuclear forces included realistic potentials,
the AV18+UIX force model. This potential, though different
than the χPT force models in the short-range character of the
force, has the correct long-range behavior, due to the pion
exchange. The JISP potential, however, is different in this
respect, as it is built in an ab exitu approach, and does not have
an asymptotic long pion behavior, thus not consistent with
chiral symmetry even at long distances. In addition, the JISP
potential does not include a three-body force.

It is hard to estimate the effect of these approximations.
However, in a recent work [39], the triton β-decay process was
calculated using force model and current derived consistently
from the same χPT N3LO Lagrangian. One of the conclusions
of this work has been that the short-range correlations of the
force and the short-range correlations of the weak current
are not correlated, thus the effect of the three-body force is
negligible for GT-type operators. In addition, the JISP potential
successfully reproduces nucleon-nucleon scattering data, and
the binding energies of A < 16 mass nuclei. However, the
most convincing reason to believe the stability of the current
results, is the minimal dependence of the half-life in the cutoff.

We thus believe that even in the current calculation, the
effect of the approximation will not change qualitatively the
results, and the effect of the MEC. The qualitative difference
originates in the different structure of the SNPA and χPT based
MEC.

A careful analysis of the difference between the MEC
originating in χPT and those used in SNPA, has been
accomplished by Park et al. [27]. They have shown that
one-pion exchange term exists in both models. Of particular
importance is the part of this term in the SNPA based MEC
that represents the exchange of a pion due to a delta excitation
of the nucleon, which is found to correspond roughly to the
ĉ3 term in the χPT based MEC. The coupling constant of this
term gπN� has been fixed by Schiavilla and Wiringa [11], so
that the theory would reproduce the triton half-life.

However, differences between the approaches arise in their
short-range character. In the SNPA approach, these correspond
to the exchange of a ρ-meson. Such a term does not exist in
the χPT approach as it arises only at N5LO [27]. Moreover, a
contact interaction of the form of Eq. (6) does not appear in
the SNPA approach. It is this contact interaction that creates
the qualitative difference between the current work and that of
Schiavilla and Wiringa [11].

In order to acknowledge that, we plot in Fig. 3 the
relative contribution of each the terms, i.e., one-body, one-pion
exchange, and full calculation, to the GT matrix element. One
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FIG. 3. (Color online) Relative contributions to the theoretical
GT matrix elements as a function of the EFT cutoff. All the results
are normalized to the empirical values. The blue lines indicated by
A = 3 correspond to the 3H-3He β-decay. The red lines indicated
by A = 6 correspond to the 6He-6Li case. Dashed lines correspond
to the one-body impulse approximation (1B). Dashed-dotted lines
correspond to one-body plus one-pion exchange current (OPEC).
Continuous lines correspond to full calculation (note that in the case
of 3H this is calibrated to give exactly the experimental value).

first recognizes that the one-pion contribution to the matrix
element has a positive sign in both 3H and 6He, and that the
contact interaction has a negative contribution to the matrix
element. In the case of 3H this is only a partial cancellation,
as it is calibrated to increase the one-body matrix element
and to bring the calculation into the experimental value. In
view of the fact that the one-body calculation in the case of
the JISP potential almost exhausts the total GT strength, one
might suggest that the negative sign of the contact interaction,
as well as the partial cancellation is an artifact of the potential.
However, the same partial cancellation is found also in a
consistent N3LO calculation of 3H decay, thus it is not a result
of the use of the JISP potential [39].

In contrast to 3H, when examining the case of 6He, one
observes that the negative contribution of the contact term
is bigger (in absolute value) than the one-pion-exchange
contribution, thus leading to a total negative contribution
of the MEC. This negative contribution is needed as the
single-nucleon GT is bigger than the experimental GT.

Recalling the fact that the SNPA approach does not contain
a contact interaction, we understand the origin of the positive
contribution of the MEC in that approach, which increases the
difference between the calculated and measured decay rates.

VII. SUMMARY AND CONCLUSIONS

In this work we have used the 6He β-decay as a testing
ground for the nuclear weak current derived from χPT. A
precondition for such a task is an accurate evaluation of the
6He-6Li weak transition matrix element at the per mil level. To
this end we have used the soft NN potential JISP16 to describe
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the nuclear dynamics and the HH expansion method to solve
the Schrödinger equation. The weak interaction in the nucleus
is completely determined by fixing the short range behavior
of the scattering operator to reproduce the experimental 3H
half-life, resulting in a parameter-free prediction of the 6He
β-decay rate.

We have found that at the one-body, impulse approximation,
level the 6He-6Li GT matrix element is overpredicted by
roughly 3%. This observation for the JISP16 potential is in
agreement with previous findings for other potential models.
Adding two-body, meson-exchange, currents derived within
χPT, we have found that in contrast with the previous work of
Schiavilla and Wiringa [11], the two-body MEC contribution
to the 6He-6Li transition matrix element is negative. We argue
that this difference originates in the different short-range
character of the MEC derived in the two approaches. We find
that both for 3H and 6He, there is a sign difference between
the positive contribution of the long-range one-pion-exchange
current, and the negative contribution of the contact interaction
in χPT, representing higher degrees of freedom which were
integrated out in the development of the effective theory. In the
case of the six-body transition, however, the contact interaction
has a bigger value than the one-pion exchange contribution.
Thus, it provides the origin to the sign difference between the
MEC contribution in 3H and 6He. This contact interaction does
not exist in the standard nuclear physics approach, adopted by
Schiavilla and Wiringa. Therefore, the reconciliation between

the theoretical and the experimental 6He half-life is due to the
use of the χPT formalism.

Our calculation points to an agreement at the level of
about 1.7% between the measured and calculated GT matrix
elements. This result should be contrasted with the difference
of 5.4% obtained by Schiavilla et al. [11]. More importantly,
it shows that dominant contributions that arise naturally in the
χPT formalism, and do not appear in the standard nuclear
physics approach, are essential to a successful prediction of
this weak observable. In order to pinpoint this argument, a
use of a consistent approach, in which both the weak currents
and the nuclear forces are derived from the same microscopic
theory, is called for.

The agreement between the calculated and measured
decay rates of 6He indicates that there is no signature in
this observable for an additional suppression of the axial
constant. It appears that all the needed suppression originates
in correlations between nucleons in the nucleus, revealing itself
in the form of exchange currents.
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