
PHYSICAL REVIEW C 79, 065203 (2009)

Systematic study of multiquark states: qqq-qq̄ configuration
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Group theoretic method for the systematic study of five-quark states with meson-baryon (qq̄-q3) configuration
is developed. The calculation of matrix elements of many-body Hamiltonian is simplified by transforming the
physical bases (meson-baryon quark cluster bases) to symmetry bases (group chain classified bases), where
the fractional parentage expansion method can be used. Three quark models, the Glashow-Isgur naive model,
the Salamanca chiral quark model, and the quark delocalization color screening model, are used to show the
general applicability of the method and general results of constituent quark models for five-quark states are given.
The method is also useful in the study of the five-quark components effect in baryon structure, the calculation
of meson-baryon scattering, and the meson-baryon open channel coupling effect on baryon resonances. The
physical contents of different model configurations for the same five-quark system can also be compared through
the transformation between different physical bases to the same set of symmetry bases.
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I. INTRODUCTION

After 40 years of quark model study, the idea about baryon
and meson is about to go beyond the naive picture: baryon q3

and meson qq̄. The proton spin puzzle could be explained
by introducing q3qq̄ component in quark models [1]. To
understand baryon spectroscopy better, five-quark component
of baryon was proposed [2]. The baryon resonance is certainly
coupled to meson-baryon-scattering states and should be
studied by coupling q3 with q3-qq̄ scattering channel in
a quark model approach. The recent progresses on meson
spectroscopy called for the qq̄ and qq̄qq̄ coupling [3]. Al-
though the pentaquark states claimed by experimental groups
few years ago might be questionable (LEPS Collaboration
insists on the existence of pentaquark �+ [4]) and multiquark
states might be hard to be identified, the multiquark study
is indispensable for understanding the low-energy quantum
chromodynamics (QCD), because multiquark states can pro-
vide information unavailable for qq̄ meson and q3 baryon,
especially the property of hidden color structure. Generally
a multibody interaction multichannel coupling calculation is
needed in multiquark study. Therefore a powerful method is
necessary.

There are various methods for a few quark problems
available in the literature. Notably, the Gaussian expansion
method, developed by Kamimura and Hiyama, was applied
to study four- and five-quark systems [5]. The stochastic
variational approach, developed many years ago [6], was
applied to the four-quark system by Janc and Rosina [7].
The expansion of the antisymmetric wave function of the
few-body system using a hyperspherical harmonic basis to
facilitate the evaluation of matrix elements has been applied to
four-quark systems by J. Vijande et al. [8]. However, the matrix

elements of the Hamiltonian have to be calculated channel
by channel in these approaches; therefore, a systematic study
of n-quark system is very time-consuming. The resonating-
group method (RGM) [9], widely used to study the nucleus-
nucleus interaction, has been successfully applied to study
baryon-baryon interaction [10]. The combination of RGM and
generator-coordinate method (GCM) paved a way to use the
group theory method to do a systematic quark cluster model
calculation, especially the fractional parentage (fp) expansion
technique, which was developed in 1960s and has been proven
as a powerful method for few-body problems. The quark
cluster model uses the group chain classified wave function
to describe the hadrons. This special feature makes the quark
cluster model calculation a very suitable field to employ the
group theory method.

However, to fully use the power of the group theoretic
method for quark cluster model calculations of a multiquark
system, one needs not only the group chain classified multi-
quark wave function and the fractional parentage expansion
coefficients of these multiquark wave function as usual but
also a relation between various quark cluster model states
(hereafter called physical bases) and the group chain classified
states (hereafter called symmetry bases). Such a method had
been developed and successfully applied in the systematic
study of baryon-baryon (B-B) effective interaction, dibaryon
search [11–13], B-B scattering [14], and a five-quark states
study with Jaffe-Wilczek diquark configuration [15], where
the physical bases were transformed to the symmetry bases
first and then the many-body matrix elements calculation of
Hamiltonian (with two body interaction) on the symmetry
bases was done by means of fractional parentage expansion,
i.e., the many-body matrix elements can be reduced to an
overlap and two-body matrix elements. At last the matrix
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elements on the symmetry bases were transformed back to
the physical bases.

The group chain classified 5q states had been discussed
before [15,16]. The present work is to provide the transfor-
mation coefficients between physical bases and symmetry
bases of five-quark systems to facilitate the calculation of
many-body Hamiltonian matrix elements. The physical bases
discussed in this article are the meson-baryon bases. The
Jaffe-Wilczek (JW) diquark bases have been reported before in
Ref. [15]. Any meson-baryon state, bound or scattering, can be
expanded in terms of these meson-baryon bases. The colorless
meson-baryon states used in the normal hadron degree of
freedom description are part of the Hilbert space of the 5q

systems. The confinement interaction restricts the asymptotic
states to be these colorless meson-baryon states. The genuine
5q bound state will include the hidden color meson-baryon
states. If the energy of these bound states are higher than the
corresponding meson-baryon threshold, these states will decay
into colorless meson-baryon asymptotic states through color
recoupling.

The method is applied to the quark cluster model calculation
of five-quark systems with three quark models: the naive
quark model (NQM), i.e., the Glashow-Isgur model [17],
the Salamanca version of chiral quark model (ChQM) [18],
and the quark delocalization color screening model (QDCSM)
[12–14,19]. The general applicability of this method is verified
through these model calculations. A systematic study of the
general properties of the 5q systems has been done that shows
the power of this method.

Even though the multiquark system might be hard to
identify, the method discussed here is still useful in the

study of the multiquark components effect in hadron, the
meson-baryon scattering and the meson-baryon open channel
coupling effect in baryon resonances in the framework of
quark model. The transformation between physical bases and
symmetry bases is also useful in the study of the physical con-
tents of different model approaches for the same multiquark
system.

In Sec. II, the physical bases and symmetry bases are
introduced and the transformation between them is derived. A
typical set of transformation coefficients is listed in a sample
table and an explanation on how to use the table is described.
The complete set of transformation coefficients are collected
in arXiv:0802.2891 [hep-ph]. Section III explains three quark
models and the corresponding meson and baryon wave
functions we used. How to express a five-quark bound and
scattering state in terms of the physical bases is explained in
detail. The fractional parentage technique applied to calculate
the matrix elements on the symmetry bases had been explained
before [12] and so have not described in detail. The results
of the systematic adiabatic calculation of five-quark system
with GCM and dynamical calculation with RGM in the u, d, s

three-flavor world are given in Sec. IV. The last section gives
the summary.

II. PHYSICAL BASES AND SYMMETRY BASES

The physical bases are constructed as follows. First, the
wave function of each quark cluster (both colorless and
colorful mesons and baryons as shown in Table I below) is
constructed based on the group chain classification

[1n] [ν] [ν̃] [c] [µ] [f ] I Y J

SU36 ⊃ SUx
2 × {

SU18 ⊃ SUc
3 × [

SU6 ⊃ (
SUf

3 ⊃ SUτ
2 × UY

1

)
SUσ

2

]}
, (1)

[the Young diagrams or quantum numbers for each group are
also shown in Eq. (1)], and then the meson and baryon quark
cluster wave functions are coupled to overall color-singlet,
spin, and isospin quantum numbers by Clebsch-Gordan (CG)
coefficients of color SUc

3, spin SUσ
2 , and isospin SUτ

2 group
and, finally, antisymmetrized. For meson-baryon (qq̄-q3)
configuration, the five-quarks are separated into two clusters:
the separation S between the meson and baryon clusters is
the generating coordinate of the meson-baryon cluster wave
function. The physical basis (meson-baryon basis) is defined
as

�αk(q4q̄) = A [ψ3(q1q2q3)ψ2(q4q̄5)][c]IJ
WMI MJ

, (2)

where A is a normalized antisymmetrization operator for
four-quarks. ψ3 and ψ2 are quark cluster wave functions of
baryons and mesons, respectively. The details of the baryon ψ3

and meson ψ2 wave functions used in this study are explained
in Sec. III. The generating coordinate S is included implicitly
through the single quark orbital wave functions, which are the

bases of SUx
2 (see below). [ ] means coupling in terms of the

SUc
3, SUτ

2, SUσ
2 CG coefficients so that it has color symmetry

[c]W , isospin IMI , and spin JMJ . α = (YIJ ), k represents
the quantum numbers ν3, ν2, c3, . . . , J2, which specify the
baryon and meson states. We emphasize that the �αk(q4q̄) is a
function of the generating coordinate S. To relate the physical
bases to the symmetry bases, the four-quark cluster basis is
introduced

�α4k4 (q4) = A[ψ3(q1q2q3)ψ1(q4)][c4]I4J4
Wc4 MI4 MJ4

, (3)

where α4 = (Y4I4J4) and k4 represents the quantum numbers
ν3, ν1, c3, . . . , J1. Coupling the antiquark state to four-quark
basis Eq. (3) in terms of SUc

3, SUτ
2, SUσ

2 CG coefficients gives
the five-quark basis

[
�α4k4 (q4)ψ[c̄]Ī J̄ (q̄5)

][c]IJ

WMI MJ
.
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TABLE I. Indices of baryons and mesons. The subscript 8 means color octet; baryons 1–8 are ordinary baryons; 9–12 with flavor symmetry
[21] and spin 1/2; 13–16 with flavor symmetry [21] and spin 3/2; 17–20 with flavor symmetry [3] and spin symmetry 1/2. �s8 is the flavor
singlet �.

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Baryon N � 	 
 � 	∗ 
∗ � N8 �8 	8 
8 N∗
8 �∗

8 	∗
8 
∗

8 �
1
2
8 	′

8 
′
8 �

1
2
8 �s8

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Meson π K K̄ η η′ ρ K∗ K̄∗ ω ϕ π8 K8 K̄8 η8 η′

8 ρ8 K∗
8 K̄∗

8 ω8 ϕ8

It relates to the physical basis through the SUc
3, SUτ

2, SUσ
2

Racah coefficients,

�αk(q4q̄) = U (c3c1cc1̄; c4c2)U (I3I1II1̄; I4I2)

×U (J3J1JJ1̄; J4J2)

× [
�α4k4 (q4)ψ[c̄]Ī J̄ (q̄5)

][c]IJ

WMI MJ
, (4)

where U ′s are Racah coefficients, defined as

U (c3c1cc1̄; c4c2) =
∑

all W ′s

C
[c4]Wc4
[c3]Wc3 ,[c1]Wc1

C
[c]Wc

[c4]Wc4 ,[c1̄]Wc1̄

C
[c2]Wc2
[c1]Wc1 ,[c1̄]Wc1̄

C
[c]Wc

[c3]Wc3 ,[c2]Wc2
.

The Racah coefficients can be found in Ref. [20].
The symmetry basis of four-quark system can be defined

as,

�α4K4 (q4) =
∣∣∣∣∣ [ν4]Wν4

[c4] Wc4 [µ4] [f4]Y4I4MI4J4MJ4

〉
, (5)

which is the basis vector belonging to the irreducible represen-
tations of group chain Eq. (1) with n = 4. In Eq. (5) K4 stands
for ν4µ4f4. Coupling the antiquark to Eq. (5), the symmetry
bases for five-quark is obtained

�αK (q4q̄) = [
�α4K4 (q4)ψ[c̄]Ī J̄ (q̄5)

][c]IJ

WMI MJ
. (6)

To relate the symmetry basis to physical basis, first we
express the four-quark cluster basis Eq. (3) in terms of the
symmetry basis Eq. (5) [11,12,21],

�α4k4 (q4) =
∑

ν̃4µ4f4

C
[ν̃4][c4][µ4]
[ν̃3][c3][µ3],[ν̃1][c1][µ1]C

[µ4][f4][J4]
[µ3][f3][J3],[µ1][f1][J1]

C
[f4]Y4I4
[f3]Y3I3,[f1]Y1I1

�α4K4 (q4), (7)

C ′s are the isoscalar factors (ISFs) of SUmn ⊃ SUm × SUn,
which can be obtained from Chen’s book [20]. Then the
physical bases and symmetry bases for five-quark can be
transformed to each other by

�αk(q4q̄) =
∑
K

CkK�αK (q4q̄)

=
∑

ν̃4µ4f4

{UUU}Racah{CCC}ISF�αK (q4q̄). (8)

where {UUU}Racah are the Racah coefficients in Eq. (4)
and {CCC}ISF are the isoscalar factors in Eq. (7). All the
transformation coefficients are tabulated in the e-print archive
[22]. Here only one table is given (Table II). As an example,
we also give an expression to show how to read the table. The

TABLE II. Transformation coefficients between physical bases and symmetry bases. The column labels are [ν4], [µ4], [f4], [σJ4 ], [I4]. For
first four labels, 1 stands for the symmetry [4]; 2, [31]; 3, [22]; 4, [211], and, for the last one, 1 stands for isospin 2; 2, 3

2 ; 3, 1; 4, 1
2 ; 5, 0. The

row labels are B (baryon index) and M (meson index), where indices B and M are listed in Table I. The transformation coefficients should
be the square root of the entries, and a negative sign means to take the negative square root.

BM Y = 1 I = 3
2 J = 1

2 Y4 = 4
3

12223 12233 21223 22223 22233 12121 22121 23223 24233 24223 23131

1 1 − 1
12

1
12 − 1

2 − 1
6

1
6 0 0 0 0 0 0

1 6 − 1
36 − 1

4 − 1
6 − 1

18 − 1
2 0 0 0 0 0 0

5 6 − 5
36 0 5

24 − 5
18 0 1

8
1
4 0 0 0 0

5 9 1
12 0 − 1

8
1
6 0 5

24
5
12 0 0 0 0

9 11 1
3

1
12 0 − 1

6 − 1
24 0 0 1

4
1
8 0 0

9 16 1
9 − 1

4 0 − 1
18

1
8 0 0 1

12 − 3
8 0 0

13 16 1
9 0 0 − 1

18 0 0 0 − 1
3 0 − 1

2 0

17 11 − 5
96

5
96 0 5

192 − 5
192 − 3

16
3
32

5
32 − 5

64 − 15
64 − 3

32

17 15 1
32 − 1

32 0 − 1
64

1
64 − 5

16
5
32 − 3

32
3
64

9
64 − 5

32

17 16 − 5
288 − 5

32 0 5
576

5
64 − 1

16
1
32

5
96

15
64 − 5

64
9
32

17 19 1
96

3
32 0 − 1

192 − 3
64 − 5

48
5
96 − 1

32 − 9
64

3
64

15
32
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TABLE III. Model parameters.

QDCSM ChQM NQM

mu,d (MeV) 313 313 313
ms (MeV) 450 450 450
b (fm) 0.518 0.518 0.518
ac (MeV fm−2) 56.75 46.938 56.75
� (fm2) −1.398 −1.348 −1.398
α0 1.916 1.916 1.916
�0 (fm−1) 0.113 0.113 0.113
µ0 36.976 36.976 36.976
g2
ch

4π
0.54 0.54 –

θp(◦) −15 −15
mπ (fm−1) 0.7 0.7 –
mK (fm−1) 2.51 2.51 –
mη (fm−1) 2.77 2.77 –
�π (fm−1) 4.2 4.2 –
�K = �η (fm−1) 5.2 5.2 –
mσ (fm−1) – 3.42 –
�σ (fm−1) – 4.2 –
µ 0.45 – –

first row of Table II reads

[Nπ ]I= 3
2 ,J= 1

2

= −
√

1

12

[∣∣∣∣∣ [4]RRRL

[211]Wc4 [31][31] 4
3 1MI4 1MJ4

〉

×ψ[11] 1
2

1
2
(q̄5)

]I= 3
2 ,J= 1

2

+
√

1

12

[∣∣∣∣∣ [4]RRRL

[211]Wc4 [31][31] 4
3 1MI4 0MJ4

〉

×ψ[11] 1
2

1
2
(q̄5)

]I= 3
2 ,J= 1

2

−
√

1

2

[∣∣∣∣∣ [31]RRRL

[211]Wc4 [4][31] 4
3 1MI4 1MJ4

〉

×ψ[11] 1
2

1
2
(q̄5)

]I= 3
2 ,J= 1

2

−
√

1

6

[∣∣∣∣∣ [31]RRRL

[211]Wc4 [31][31] 4
3 1MI4 1MJ4

〉

×ψ[11] 1
2

1
2
(q̄5)

]I= 3
2 ,J= 1

2

+
√

1

6

[∣∣∣∣∣ [31]RRRL

[211]Wc4 [31][31] 4
3 1MI4 0MJ4

〉

×ψ[11] 1
2

1
2
(q̄5)

]I= 3
2 ,J= 1

2

, (9)

where R(L) means right(left) single-quark orbital wave func-
tion (see below).

TABLE IV. Masses of baryons and mesons (unit: MeV).

QDCSM ChQM NQM

N 939 939 1107
� 1037 1037 1165
	 1122 1122 1200

 1179 1179 1245
� 1204 1204 1252
	∗ 1260 1260 1293

∗ 1316 1316 1339
� 1373 1373 1389

π 501 523 525
K 647 669 653
K̄ 647 669 653
η 645 667 525
η′ 781 803 765
ρ 727 749 719
K∗ 779 801 778
K̄∗ 779 801 778
ω 679 701 719
ϕ 840 862 845

III. QUARK MODELS AND MODEL WAVE FUNCTIONS

The models used in the calculations include the naive
quark model, the Salamanca chiral quark model, and the
quark delocalization color screening model. The Hamiltonian
of these models have been given in the first article of this
series [15]. The model parameters and the calculated masses
of baryons and mesons are shown in Tables III and IV (the
same size parameter b is used for baryon and meson).

There are only two quark clusters q3-qq̄ now instead of
three in the qq-qq-q̄ configuration that we studied before.
Therefore there is only one generating coordinate, S, the
separation between two clusters, that is used. The baryon and
meson quark cluster wave functions ψ3 and ψ2 are frozen as
usual in the quark cluster model approaches: The color, flavor,
and spin part wave function of the meson and baryon are
fixed to be the usual SUcf σ

18 ⊃ SUc
3 × (SUf σ

6 ⊃ SUf

3 × SUσ
2 )

classified wave function. For the naive and chiral quark model
the orbital wave function of baryon and meson are chosen to
be the three-particle product of φR and two-particle product of
φL, respectively,

φR(r) =
(

1

πb2

)3/4

exp

[
−

(
r − 2

5 S
)2

2b2

]
,

(10)

φL(r) =
(

1

πb2

)3/4

exp

[
−

(
r + 3

5 S
)2

2b2

]
.

Here b is a parameter denoting the hadron size and it is fixed
to be 0.518 fm in this study for both baryon and meson, S is
the separation of the reference centers 2

5 S of baryon and − 3
5 S

of meson and is the generating coordinate in our five-quark
cluster wave function. The baryon and meson cluster wave
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functions are thus frozen to be,

ψ3(q1q2q3) = χc(B)ηI1S1 (B)
3∏

α=1

φR(rα), (11)

ψ2(q4q̄5) = χc(M)ηI2S2 (M)
5∏

β=4

φL(rβ), (12)

where χ and η are the SUc
3 and SUf σ

6 ⊃ SUf

3 × SUσ
2 color

and spin-flavor wave function. For QDCSM, the orbital wave
function of baryon and meson are chosen to be the three-
particle product of the delocalized single-particle orbital wave
function ψR and two-particle product ψL given below,

ψR(r) = (φR + ε1φL)/N(ε1),
(13)

ψL(r) = (φL + ε2φR)/N(ε2),

N (ε1) =
√

1 + ε2
1 + 2ε1〈φR|φL〉, (14)

N (ε2) =
√

1 + ε2
2 + 2ε2〈φR|φL〉, (15)

where φL, φR are the left- and right-centered Gaussian function
given in Eq. (10), ε1 denotes the quark in baryon orbit
delocalized into meson orbit, whereas ε2 is from meson to
baryon. They are determined by minimizing the diagonalized
five-quark Hamiltonian with respect to the delocalization
parameters ε1 and ε2 for every generating coordinate S = |S|
and so they are functions of S, which describes the adiabatic
mutual distortion of meson and baryon in the course of
interacting process. The ψ3(q1q2q3) and ψ2(q4q̄5) fixed above
is used in this study to construct the physical bases Eq. (2).

Any bound or scattering state is expanded in terms of these
physical bases. We combine the RGM and GCM to do this
expansion. Based on the cluster representation of the many-
body problem, we choose the RGM wave function to express
the bound or scattering five-quark state,

�(5q) = A[�B�M ][c]IS ⊗ χ (R). (16)

Here A is the normalized antisymmetrization operator and �B

and �M are the three-quark baryon and qq̄ meson internal
wave function. The color-flavor-spin part is the usual SUcf σ

18 ⊃
SUc

3 × (SUf σ

6 ⊃ SUf

3 × SUσ
2 ) wave function. The orbital part

is

�B =
(

1√
3πb2

)3/2

exp

[
− ξ 2

1

4b2
− ξ 2

2

3b2

]
,

(17)
ξ 1 = r1 − r2, ξ 2 = r1 + r2

2
− r3,

�M =
(

1

2πb2

) 3
4

exp

[
− ξ 2

3

4b2

]
, ξ 3 = r4 − r5. (18)

[][C]IS means coupling meson and baryon wave functions to be
overall color singlet and spin S and isospin I . χ (R) is the wave
function of the relative motion between meson and baryon,
where R is the relative coordinate between the center-of-mass

coordinates of meson R2 and baryon R3,

R = R3 − R2, R2 = r4 + r5

2
, R3 = r1 + r2 + r3

3
. (19)

Then expand the relative motion wave function χ (R) by
Gaussians centered at different Si ,

χ (R) =
∑

i

Ci

(
6

5πb2

)3/4

e
− 3

5b2 (R−Si )2

, (20)

and inserting an overall center-of-mass motion Gaussian
function,

�C(RC) =
(

5

πb2

)3/4

e
− 5

2b2 R2
C , (21)

where the Rc = 2R2+3R3
5 , the ansatz, Eq. (16), can be rewritten

as

�5q = A
∑

i

Ci

3∏
α=1

φR(rα)
5∏

β=4

φL(rβ)

× [ηI1S1 (B)ηI2S2 (M)]IS
MI MS

[χc(B)χc(M)][c]
W

= A
∑

i

Ci[ψ3(q1q2q3, Si)ψ2(q4q̄5, Si)]
[C]IS
WMI MS

. (22)

Equation (22) shows that any bound or scattering five-quark
state can be expanded in terms of physical bases Eq. (2). Here
the generating coordinate Si dependence of the physical bases
is shown explicitly. To obtain this result, a special property of
the Gaussian function with the same size parameter b plays a
vital role: the product of single Gaussian functions of different
particle coordinates r1, r2, . . . , rn can be transformed into
the product of individual cluster wave functions of Gaussian
with Jacobian coordinates ξ 1, ξ 2, etc., the wave function of
Gaussian with relative coordinate of individual cluster centers
Rm, Rn, etc., and the overall center-of-mass motion Gaussian
function and vice versa. This is also the reason why we choose
the same size parameter b for meson and baryon even it is not
good in describing the meson and baryon internal structure.

Through a partial-wave expansion and coupling the spin S
and orbital angular momentum l of the relative motion wave
function χ (R), the ansatz Eq. (22) can be expressed as

�5q = A
∑
i,l

Ci,l

∫
d�Si√

4π

3∏
α=1

φR(rα)
5∏

β=4

φL(rβ)

× [
[ηI1S1 (B)ηI2S2 (M)]ISY l(Ŝi)

]J
[χc(B)χc(M)][σ ].

(23)

From the above derivation one can see that in naive and
chiral quark model cases, even though we use the physical
bases, which include the overall center-of-mass coordinate,
the center-of-mass wave function can be factorized and it does
not enter into the Hamiltonian matrix elements and therefore
there is no spurious center-of-mass motion while in QDCSM
the center-of-mass wave function cannot be factorized and
so there is spurious center-of-mass motion. If we use a size
parameter b′ for meson different from the size parameter b

for baryon then even for the simple left and right Gaussian
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FIG. 1. The NN -scattering phase shifts with/without center-of-
mass motion in QDCSM.

function used in naive and chiral quark models there is also
the spurious center-of-mass motion.

A projection method had been developed and the spurious
center-of-mass motion in the NN scattering has been studied
for QDCSM and the effect can be canceled by readjusting the
color screening parameter µ (see Fig. 1) [23].

In the study of five quark exotic states we first do a general
survey of the meson-baryon effective potentials consisting
of ground-state mesons and baryons, which are listed in
Table I, within the u, d, s three-flavor world. Here an adiabatic
approximation based on the physical bases Eq. (2) has been
done. A GCM five-quark wave function with quantum number
set α = (YIJ ) is expressed as a channel-coupling wave
function, i.e., a linear combination of the physical bases
Eq. (2),

�α(q4q̄) =
∑

k

Ck�αk(q4q̄). (24)

The channel-coupling coefficients Ck is determined by the
diagonalization of the five-quark Hamiltonian and the lowest
state for every quantum number set and every generating
coordinate S is fixed in this way.

The effective potential between two hadron clusters at
separation S is defined as [24]

Veff (S) = E(S) − E(∞), (25)

where E(S) is the lowest energy obtained from diagonalizing
the system Hamiltonian on the physical bases �αk at the
generating coordinate S.

For special interesting channels dynamical calculations
with RGM have been done. The RGM dynamical equation∫

H (R, R′)χ (R′) dR′ = E

∫
N (R, R′)χ (R′)dR′, (26)

is obtained from the variation of the

〈�(5q)|H − E|�(5q)〉 = 0 (27)

with respect to the relative motion wave function χ (R) but
fixed the internal wave function �B and �M , where the �(5q)
is the RGM wave function, Eq. (16). After expanding the RGM
wave function, Eq. (16), as Eq. (23), the integrodifferential

RGM equation changed to be a set of linear algebraic equations
[12–14], ∑

j,l

Cj,lH
l,l′
i,j = E

∑
j

Cj,l′N
l′
i,j , (28)

where Nl′
i,j , H

l,l′
i,j are the overlaps and Hamiltonian matrix

elements of the wave function Eq. (2), respectively, and i, j

correspond to the generating coordinates Si and Sj . This
equation can be used both for bound- and scattering-state
calculations if a bound- or scattering-state boundary condition
is used, respectively. An interesting point is worth mentioning
here: if a bound-state boundary is set at quite a large distance,
the solution of Eq. (28) corresponding to energy E larger
than the channel threshold still show the scattering asymptotic
behavior and a scattering phase shift obtained from such
a solution is the same as those obtained from the solution
with the scattering boundary condition within the numerical
uncertainty.

The main advantage of the group theory method proposed
in this report is that the Hamiltonian matrix elements Hi,j

with the physical bases Eq. (2) can be calculated easily
through the matrix elements with the symmetry bases and
the transformation between the physical bases and symmetry
bases. Storing the needed fp, CG, Racah U coefficients and
isoscalar factors in a computer program, the properties of the
whole bunch of 60 five-quark states consisted of the 20 meson
and 21 baryon states listed in Table I in the u, d, s three-flavor
world can be obtained at one blow, one only needs to input the
two-body matrix elements of the choosing model Hamiltonian.

The shortcoming of this method is the internal orbital wave
function of hadrons are limited to be Gaussian with the same
size parameter. For bound-state calculation this shortcoming
is not serious, because the physical bases constructed in this
article are mere bases of Hilbert space. However, for the
scattering calculation, the channel wave function (we use the
RGM wave function in this study) is expected to be as realistic
as possible, i.e., the internal wave functions of interacting
hadrons are better to be the realistic solutions of the model
Hamiltonian. For NN scattering, the group theory method as
explained above has been quite successful. For meson-baryon
scattering, if one use a single Gaussian approximation to
describe the internal orbital wave function of a meson, the
size parameter b′ of the meson is usually different from the
baryon size parameter b. In this case the spurious center-of-
mass motion appears and a center-of-mass motion correction
must be done. The center-of-mass correction method used in
Ref. [23] can be used here. However, a good meson wave
function is in general a multiple Gaussian expansion [25].
In this case the spurious center-of-mass motion correction in
principle can be done as before but in practice will be more
involved and the question of how to apply the group theory
method developed here needs further study.

IV. RESULTS AND DISCUSSIONS

To take into consideration of the effects of various color
structures, the hidden color channels are included in this
calculation, which is different from our dibaryon calculation
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FIG. 2. Effective potentials vs. cluster separation in QDCSM.

where only color singlet channels are included [12,13]. Like
the systematic study of the JW diquark configuration, all
possible states consisted of ground-state mesons and baryons
within the u, d, s three-flavor world have been calculated
in this baryon-meson configuration. Both adiabatic single-
channel and channel-coupling calculations have been carried
out in three quark models. Dynamical calculations with RGM
have been done for some interesting cases.

The threshold checking is made as follows. For adiabatic
calculation, the energy E(∞) is found to be the sum of
two-hadron masses and the relative-motion kinetic energy. For
example, the total energy of KN channel at separation S =
3 fm is 1902/1924 MeV in QDCSM/ChQM, which is the sum
of the theoretic masses of N (939 MeV) and K (647/669 MeV)
and the relative-motion kinetic energy 3h̄2

4µthb2 = 316 MeV, µth

is the theoretic reduced mass of N and K . A relative motion
kinetic energy appears because the GCM wave function Eq. (2)
or Eq. (24) is always with a Gaussian relative motion [see
Eq. (20)]. For dynamical calculation, it is found that if the
lowest eigenenergy is smaller than the sum of the theoretical
masses of two hadrons, the wave function shows bound-
state behavior, otherwise, it shows scattering behavior. For
KN channel, the wave function of the lowest eigenenergy
(1572/1577 MeV in QDCSM/ChQM) shows bound-state
behavior because the energy is smaller than the theoretic
threshold: 1586/1608 MeV. When the energy is higher than

these thresholds, the wave functions beyond the interaction
range oscillate as the spherical Bessel function and the phase
shifts obtained from these wave functions are the same as those
obtained from the scattering solution within the numerical
uncertainty.

To save space, only several general features and the compar-
ison between the JW diquark and meson-baryon configurations
and among three models are given below.

(i) Generally there exist effective attractions for almost
all the states both in the extended QDCSM and the
chiral quark model, while there are about 10 channels
that are pure repulsive in the naive quark model (NN

interaction study already showed that the naive quark
model is not realistic for hadron interaction, it cannot
provide the intermediate range NN attraction). In
QDCSM, the attraction between decuplet baryons and
vector mesons are usually large (>200 MeV), those
between octet baryons and pseudoscalar mesons are
small (less than 10 MeV), and those between octet
(decuplet) baryons and vector (pseudoscalar) mesons
lie between. There are also several exceptions. This
situation is similar to the effective baryon-baryon
interactions where the attraction between decuplet
baryons is large, that between octet baryons is small,
and that between decuplet and octet baryons is in
between. The physical mechanism of these general
feature is the same as discussed for baryon-baryon
effective interaction previously [12,13]. In the chiral
quark model, the above general features are kept but
with more exceptions. Figure 2 gives several examples.
It is clear that �ρ,�K̄∗, and 	∗K̄∗ channels have
strong attractions, whereas 	π,	K , and 
K̄ show
pure repulsive or very small attractions. More examples
can be found in Figs. 4–7.

(ii) For chiral quark model and naive quark model, most
states have very similar results (energy difference less
than 30 MeV) for two configurations: qq-qq-q̄ and
qqq-qq̄ (the two configurations have the same results
when S, T in qq-qq-q̄ go to zero and S in qqq-qq̄

goes to zero). For these states, the separations between
quark clusters corresponding to the minimum-energy
are small (S and/or T < 0.7 fm). The differences

FIG. 3. Mass hierarchy in the 8f + 10f with
J P = 1

2

+
in three quark models, compared with

the one in diquark-diquark configuration and
Ref. [26].
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FIG. 4. Effective potentials for (YIJ ) = (20 1
2 ).

between two configurations tend to disappear after
channel-coupling, the remaining minor differences
come from the different quark orbital wave functions
and the limited model spaces used. There are also
several states, the energy differences are large (greater
than 60 MeV, even 100 MeV) for two configurations.
For these states, the separation between quark clusters
corresponding to minimum-energy in baryon-meson
configuration is a little larger (color-singlet clusters
can stay far away), while the ones in JW diquark
configuration are smaller (colorful clusters tend to stay
closer), which makes the energies different. However,
the extended QDCSM gives different results. The
diquark configuration always gives lower energy than
the baryon-meson configuration. The main reason is
that the color confinement is screened between quark
pairs in different clusters in QDCSM. The higher
the number of clusters, the lower the model energy.
The screened color confinement assumed for quark
pairs in two-color singlet clusters was shown to be
reasonable by the previous studies [12,13,19]; however,
extends to multicolor clusters directly even with the
parameters fixed in NN scattering is questionable.
However, the direct extension of the color-dependent
two-body confinement to multiquark system as used in
the naive and chiral quark models is also questionable.
Further investigation is needed.

FIG. 5. Effective potentials for (YIJ ) = (21 1
2 ) in QDCSM.

FIG. 6. Same as Fig. 4 for chiral quark model.

(iii) For the states in antidecuplet, 27-plet, and 35-plet
the mass hierarchies obtained in the meson-baryon
configuration are quite similar to that of JW diquark
configuration. Here only the mass hierarchies of 8f +
10f states with JP = 1

2
+

of two configurations in three
quark models are given in Fig. 3.

(iv) Figures 4–7 show the effect of channel-coupling (sc
stands for single-channel, cs for color singlet channel
coupling, and cc for full channel-coupling). For most
channels, the effect of channel coupling is small,
especially for QDCSM. It is worth noting that the
hidden-color states have minor effect on the lowest
energy of a channel. Figures 8 and 9 show that
channel coupling effect for (YIJ ) = (00 1

2 ), where the
channel-coupling contributes a considerable attraction.
However, the contributions of hidden-color channels
are still negligible, especially for QDCSM. We like to
emphasize that this result is based on the assumption
that the quark interaction used for hadron spectroscopy
and color singlet hadron channels can be directly
extend to hidden color channels and this assumption
is questionable. In fact we have no information about
the quark interaction between hidden color channels
and colorless ones up to now.

(v) Generally there exist attractions for baryon-meson
system; however, in most cases, the attraction is not
enough to make the energy lower than the threshold, i.e.,

FIG. 7. Effective potentials (YIJ ) = (1 1
2

1
2 ) in QDCSM.
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FIG. 8. Effective potentials for (YIJ ) = (00 1
2 ) in QDCSM.

the sum of corresponding baryon and meson masses.
Therefore there will be no narrow resonances except
there is special reason to prevent the decay. Taking
�+ as an example, the lowest energy state here is
the KN state. The effective potential for the NK

channels in three quark models is given in Fig. 4. For
the I = 0S-wave KN state, although the naive quark
model gives repulsive potentials, there is a moderate
attraction ∼51 MeV at a separation of 0.6 fm in the
QDCSM and a little weaker attraction ∼48 MeV at a
separation of 0.6 fm in the chiral quark model. (The
results differ from the previous calculation [27], where
no attraction was obtained. The reason is the effect of
σ exchange was reduced in Ref. [27] by using larger
mass and ideal mixing of σ0 and σ8.) In QDCSM, the
mass of �+ is 1851 MeV. If we make a correction of
the physical mass of kaon (the model kaon mass is
647 MeV for QDCSM), the energy of the state can be
reduced to 1700 MeV, which is still too high to match
the claimed value 1540 MeV. In the chiral quark model,
the case is quite similar to QDCSM, the mass of �+
is 1872 MeV, it will be reduced to 1699 MeV with the
kaon mass correction.

(vi) Finally, there are several interesting states in QDCSM:
(a) The masses of the following states are lower than

the lowest two- and three-body decay threshold and

FIG. 9. Effective potentials for (YIJ ) = (00 1
2 ) in chiral quark

model.

FIG. 10. The phase shifts of KN scattering.

they might be promising pentaquark candidates.
However, the results are sensitive to model details.
For (YIJ ) = (1 1

2
5
2 ) channel, the lowest state has

mass around 1822 MeV, which is not only lower
than the two-body decay thresholds (�ρ) but also
lower than the three-body decay thresholds (Nπρ).
And for (YIJ ) = (00 5

2 ) channel, there is a state
with mass around 2017 MeV, which is lower than
the corresponding two-body decay threshold 	∗ρ
and the three-body decay thresholds (�πρ).

(b) K−p state has been calculated dynamically to
see if there is a resonance state �(1405). The
calculated mass of K−p is 1560 MeV. If we make a
correction of the physical mass of kaon, the energy
of the state can be reduced to 1408 MeV, which is
close to the observed mass of �(1405).

(c) In Ref. [28], several quasibound states have
been proposed, such as I = 1�K, I = 1

2	K, I =
1
2 , 3

2Nφ, and so on. In QDCSM, strong attraction
(>100 MeV) is obtained for all of these states in
the adiabatic calculation. The dynamical calculated
results are shown in Table V together with the
results of Ref. [28]. Generally QDCSM obtains
larger binding energies than Ref. [28]. The trend
agrees with the previous calculation on dibaryons.
QDCSM obtains lower energies for the states with
small strangeness, while the chiral quark model
of Zhang’s group obtains lower energies for the
states with large strangeness. To make things
clear, the corresponding baryon-meson-scattering

TABLE V. The binding energies of several
pentaquark-states (in MeV).

States QDCSM Ref. [28]

Nφ (S = 1/2) 46 1 ∼ 3
Nφ (S = 3/2) 45 3 ∼ 9
�K (S = 1/2) 56 3 ∼ 20
	K (S = 1/2) 38 18 ∼ 44
�K (S = 1/2) Unbound Unbound

065203-9



PING, HUANG, DENG, WANG, AND GOLDMAN PHYSICAL REVIEW C 79, 065203 (2009)

calculation has been done. Figure 10 shows the
phase shifts of KN obtained in a single-channel
approximation. Here we directly take the model
parameters fixed before for NN scattering. Clearly
both the QDCSM and chiral quark models give
too much KN attraction. This means that the
model parameters fixed in NN scattering cannot
be directly extended to KN scattering. Zhang
et al. readjusted the model parameters as such
in their KN -scattering calculation. But this will
block the unified description of meson-baryon and
baryon-baryon scattering. Maybe the too-rough
approximation of the orbital wave function of
the K meson is also responsible for this. To
improve the calculation by using a more realistic
meson orbital wave function and incorporating
other states in baryon-meson scattering is in
progress. This will be a further check to see if
the group theory method proposed in this report
is good enough to do the meson-baryon-scattering
calculation.

V. SUMMARY

The multiquark system is complicated, our knowledge
about multiquark systems is limited, and there is no exper-
imentally well-established multiquark state. Nevertheless, its
study is indispensable for understanding the properties of the
abundant color structures allowed in QCD. The systematic
study could provide a general features of the multiquark
system. In this case, a powerful method is needed. This
article (and the previous one [15]) reports a group theoretic
method for five-quark calculation. The method is applied to a
systematic study of all possible 60 five-quark states consisted
of ground-state mesons and baryons within u, d, s three-flavor
world in baryon-meson configuration with three quark models.
The powerful feature of group theory method is shown by the
large amount of spectroscopy data obtained at one blow in this
approach (only very limited results have been shown in this
report).

In the pentaquark studies few years ago various constituent
quark models were proposed. Our transformation between
different physical bases to the same set of symmetry bases
shows these models are a choice of different parts of the Hilbert
space of the five-quark system. Our calculation shows that if
one uses a large-enough model space the differences of these
different configuration choices tend to disappear.

In addition to the five-quark bound-state calculation, the
baryon-meson scattering is another field where the technique
developed in this article can be used. With the progress on
the meson spectroscopy of nonrelativistic quark model [29],
the unified description of hadron properties and hadron-hadron
interaction is expected. There are lot of work devoted to
baryon-baryon scattering, but baryon-meson scattering is less
studied. The group theoretic method presented here will be
a useful one to do the baryon-meson scattering within the
framework of constituent quark models.

There are experimental indication and theoretical motiva-
tion that the pure q3 baryon and qq̄ meson configuration should
be modified to include higher Fock components, i.e., unquench
the bare quark model. The effect of the five-quark component
q3qq̄ of baryon can be studied as well by the same technique
developed here. Many baryon resonances’ energies are higher
than the related meson-baryon threshold and the resonance
parameters are obtained from the corresponding scattering.
To calculate the properties of these resonances, such as their
energies and widths, a bare q3 quark model calculation is
not reliable. The open scattering channel-coupling gives rise
not only to the width but also large energy shift. A q3 and
q3-qq̄ channel-coupling calculation is needed. The method
developed in this report is also useful in these bound q3 and
open q3-qq̄ quark model calculations.
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