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Anisotropic transverse flow introduction in Monte Carlo generators for heavy ion collisions
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Anisotropic transverse flow patterns that are observed in relativistic heavy ion collisions can be added to the
available microscopic Monte Carlo event generators as a final state modification to the azimuthal angles of the
particles, which are generated isotropically. The method proposed for this purpose by A. M. Poskanzer and S. A.
Voloshin [Phys. Rev. C 58, 1671 (1998)] is valid only for small values of the Fourier coefficients vn and therefore
it is not suitable for simulations with large values of anisotropy such as the ones predicted for Pb-Pb collisions
at the LHC. We present here a possible solution to treat the cases of large anisotropies.
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It is a well-established experimental fact that in heavy
ion collisions with nonzero impact parameter, the azimuthal
distribution of the produced particles in the transverse plane
is anisotropic with respect to the reaction plane [1–4]. The
particle azimuthal distributions relative to the reaction plane
are usually written in the form of a Fourier series as

dN

dϕ
= 1

2π

(
1 +

∞∑
n=1

2vn cos[n(ϕ − �RP)]

)
, (1)

where �RP is the angle defined by the impact parameter vector
in the transverse plane. The vn coefficients are given by vn =
〈cos[n(ϕ − �RP)]〉. The first two coefficients (v1 and v2) are
called directed and elliptic flow, respectively.

The elliptic flow in particular is a powerful probe to
investigate the matter produced in relativistic heavy ion
collisions at the CERN Super Proton Synchrotron (SPS), the
BNL Relativistic Heavy Ion Collider (RHIC), and the CERN
Large Hadron Collider (LHC) accelerators. At these energies,
the observed elliptic anisotropy is attributed to the presence
of a collective motion (flow) of the particles produced in the
collision. For noncentral collisions, the geometrical anisotropy
of the almond-shaped overlap region of the colliding nuclei
causes a larger pressure gradient in the reaction plane than
in the direction orthogonal to it [5,6]. If enough particle
rescatterings occur, the initial spatial anisotropy is converted
into a momentum anisotropy, which can be observed in
the particle azimuthal distribution. Thus, elliptic flow brings
information on the degree of thermalization, on the time
needed to reach the equilibrium, and on the viscosity of the
system created in the nuclear collision [7–10].

The experimental measurement of these anisotropic pat-
terns is based on the analysis of the azimuthal correlations
among the reconstructed particles. It is therefore sensitive
to various sources of particle correlations (such as particle
decays, jet production, momentum conservation) that have
nothing to do with the collective motion and are generally
called nonflow correlations. It is therefore important to have
proper Monte Carlo simulations of the physical events to
study the appropriate corrections for nonflow effects. This
is of crucial importance at the LHC energy where jets will

be copiously produced, thus increasing the effect of nonflow
correlations on the observed v2.

Some of the Monte Carlo microscopic generators com-
monly used to generate heavy ion collisions, however, do
not include collective effects and the resulting distributions
of particle azimuthal angles relative to the reaction plane are
isotropic. In HIJING [11] anisotropy is actually present when
the parton energy loss is activated. However, this anisotropy
does not come from a collective (hydrodynamic like) motion,
but it is a consequence of the radiative energy loss that depends
on the path length of the parton in the medium.

It is, however, possible to introduce anisotropy in a second
step after particle generation following the prescriptions
described in Ref. [1]. This method, used among others by
the ALICE [12] and ATLAS [13] experiments, is not based
on a dynamical description of the system evolution from the
thermalization time up to thermal freeze-out, but it just consists
in changing in a suitable way the momentum components of
the final hadrons. This is obtained by modifying the azimuthal
angle of each particle according to

ϕ0 → ϕ = ϕ0 +
∑

n

−2

n
ṽn sin [n (ϕ0 − �RP)], (2)

where ϕ0 is the original azimuthal angle (distributed isotrop-
ically) given to the particle by the Monte Carlo generator,
ṽn are the input values of the Fourier coefficients, which can
be functions of transverse momentum, rapidity, and particle
species.1 �RP is the reaction plane angle in the transverse
plane, i.e., the direction of the added flow. The resulting
azimuthal distribution of particles is anisotropic with flow
coefficients given by

vn = 〈cos[n(ϕ − �RP)]〉 ≈ ṽn, (3)

which, as pointed out in Ref. [1], agree with the input values
ṽn only for small values of ṽn.

To simplify the formulas and the plots, in the following we
consider the case in which only elliptic flow is present. The
general discussion is, however, valid for all the harmonics and

1The preservation of correlations, which is of crucial importance, is
discussed in more detail at the end of the article.
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FIG. 1. Azimuthal distributions of particles generated isotropically and transformed with Eq. (4) for three values of input ṽ2. The expected
1 + 2ṽ2 cos[2(ϕ − �RP)] trend is superimposed. The dotted line indicates azimuthal isotropic distribution of the particles (dN/dϕ = 1/2π ).

the extension of the formulas to the other terms of Fourier
series is straightforward. If we assume that all vn coefficients
except v2 are zero, Eq. (2) reduces to

ϕ0 → ϕ = ϕ0 − ṽ2 sin [2 (ϕ0 − �RP)]. (4)

The resulting dN/dϕ obtained by changing the azimuthal
angle of particles generated with isotropic azimuthal distri-
butions are shown as solid circle markers in Fig. 1 for three
values of ṽ2 (namely, 0.1, 0.2, and 0.3) together with the
expected 1 + 2ṽ2 cos[2(ϕ − �RP)] trend. It is evident that the
expected 1 + 2v2 cos[2(ϕ − �RP)] modulation is reproduced
only for small values of input ṽ2 (which is the case of particles
with small transverse momentum). For large values of input
anisotropy (i.e., ṽ2 > 0.1) a significant deviation from the
expected trend is observed.

In Fig. 2(a) we report the v2 values calculated starting from
the generated dN/dϕ distributions, obtained by applying the
transformation in Eq. (4), as a function of the input value
ṽ2. The generated value of �RP (uniformly distributed in
[−π, π ]) has been used to define the particle azimuthal angles

relative to the reaction plane (ϕ − �RP). The resolution on
the experimental estimation of �RP is not taken into account
because only the azimuthal anisotropic pattern generation is
being investigated. The v2 values have been extracted both
as 〈cos[2(ϕ − �RP)]〉 (solid triangles) and from a fit to the
expected trend 1 + 2v2 cos[2(ϕ − �RP)] with v2 as a free
parameter (open squares). In Fig. 2(b) the relative difference
(ṽ2 − v2)/ṽ2 is plotted as a function of ṽ2. It can be seen
that for large values of ṽ2 (>0.1) the resulting anisotropy v2

differs from the input value ṽ2 and a correction is needed,
as stated in Ref. [1]. The values of v2 extracted from the fit
to the generated distribution are further affected by the fact
that the fitting function does not reproduce the features of the
generated distribution. It should be noted that the values of v2

measured at RHIC for transverse momenta >∼ 1 GeV/c [3,4]
as well as the ones predicted for the LHC [14,15] fall in the
range where the method is not giving the proper azimuthal
distribution to the generated particles.

The discrepancy between the input value ṽ2 and the
one extracted from the generated distribution is due to the
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FIG. 2. (a) v2 extracted from generated azimuthal distributions as a function of input ṽ2 in the case of anisotropy applied via Eq. (4).
(b) Relative difference between resulting v2 and input ṽ2.
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FIG. 3. Azimuthal distributions of particles generated isotropically and transformed with Eq. (8) for three values of input ṽ2. The expected
1 + 2ṽ2 cos[2(ϕ − �RP)] trend is superimposed. The dotted line indicates azimuthal isotropic distribution of the particles (dN/dϕ = 1/2π ).

approximations used to calculate the formula for the angular
shift. The starting point is a distribution, which is isotropic in
the original angle ϕ0:

dN

dϕ0
= 1

2π
. (5)

A proper transformation of the azimuthal angle ϕ0 → ϕ should
give a distribution:

dN

dϕ
= 1

2π
{1 + 2ṽ2 cos [2 (ϕ − �RP)]}. (6)

The requirement is therefore to have

dN

dϕ
= dN

dϕ0

∂ϕ0

∂ϕ
= 1

2π

∂ϕ0

∂ϕ
, (7)

which gives as solution

ϕ = ϕ0 − ṽ2 sin[2 (ϕ − �RP)]. (8)

The difference between Eqs. (4) and (8) is just the presence
of ϕ instead of ϕ0 in the argument of the sine. Equation (4),
being a result of a first order iteration, is a good approximation
of the correct transformation if ϕ ≈ ϕ0; i.e., if the modification
of the azimuthal angle is small, which is the case only for
small values of the input anisotropy ṽ2. For large values of
anisotropy, Eq. (8) must be used. Because it is a transcendental
equation, the solution for ϕ should be found numerically.

The resulting azimuthal distribution of particles obtained
by solving Eq. (8) with the Newton method are shown as solid
circles in Fig. 3 together with the expected 1 + 2ṽ2 cos[2(ϕ −
�RP)] trend. It can be seen that the produced azimuthal
distributions follow the expected modulation also for large
values of input anisotropy.

In Fig. 4(a) we report the calculated v2 (obtained both
as 〈cos[2(ϕ − �RP)]〉 and from fits to the particle azimuthal
distributions) as a function of the input ṽ2. In this case, the
dN/dϕ distributions have been obtained with the corrected
formula [Eq. (8))] for the azimuthal angle transformation. In
Fig. 4(b) the relative difference between the input value ṽ2

and the resulting anisotropy v2 is displayed: the systematic
deviation observed in Fig. 2 is no longer present.

To conclude, the transformation of the azimuthal angles that
should be used to create an anisotropic azimuthal distribution
starting from an isotropic one in case of large values of vn is
given by the following transcendental equation:

ϕ +
∑

n

2

n
ṽn sin [n (ϕ − �RP)] = ϕ0, (9)

where ϕ0 is the original (isotropically distributed) value of the
particle azimuthal angle. The resulting distribution dN/dϕ

is described by Fourier coefficients vn = 〈cos[n(ϕ − �RP)]〉
that agree with the input values ṽn also for large values of
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FIG. 4. (a) v2 extracted from gener-
ated azimuthal distributions as a function
of input ṽ2 in the case of anisotropy ap-
plied via Eq. (8). (b) Relative difference
between resulting v2 and input ṽ2.
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FIG. 5. Scheme of � → pπ− and D+ →
K−π+π+ decays. Dashed lines show the effect
of the azimuthal angle modifications used to
introduce elliptic flow.

input anisotropy. This method can be easily added as a second
step (after burner) treatment of particles produced by any
Monte Carlo generator. The solution of the transcendental
equation with Newton algorithm is fast. In the case of the
HIJING MC generator the time required for the rotation of
particles produced in Pb-Pb collisions at

√
s = 5500 GeV (in

average 35 000 particles in full phase space) is the ∼ 5% of the
particles’ production time. It is important to note that because
of the shifting of the azimuthal angles, this transformation does
not alter existing multiparticle correlations, due to quantum
statistics, resonances, mini and real jet production, etc. How-
ever, one has to be careful with the correlations due to global
momentum conservation, because as a consequence of the
applied shift, particles systems may obtain an uncompensated
transverse momentum (see Ref. [16] for a discussion about the
importance of correlations due to global transverse momentum
conservation). Another important source of correlations comes

from the decay of unstable particles. In this respect, it should
be noted that special care must be taken to introduce anisotropy
in decay chains where the mother particle participates in the
collective motion and it decays after decoupling from the
system. This is typically the case of nonstable long-lived
particles (such as �’s, D mesons, etc.) that are experimentally
reconstructed from their decay products. In these cases, the
azimuthal angles of the daughter products should not be
modified independently using Eq. (9) and the ṽn coefficients
of their own species. On the contrary, the azimuthal angle of
the mother particle should be transformed with Eq. (9) before
it decays. However, the decay products are usually provided
by the Monte Carlo generator; thus, it is sufficient to modify
coherently the azimuthal angle of the daughter products by
using the same angular shift (�ϕ = ϕ − ϕ0) computed for
their mother. As a consequence, the space coordinates of the
decay vertex need to be properly shifted, as sketched in Fig. 5.
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