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Relativistic diffusion and heavy-ion collisions

Rajeev S. Bhalerao* and Sourendu Gupta†

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
(Received 24 February 2009; published 3 June 2009)

We study first- and second-order theories of relativistic diffusion coupled to hydrodynamics under the
approximation, valid at midrapidity in the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC), that conserved number densities are much smaller than the entropy density. We identify
experimentally accessible quantities of interest and show that the first- and second-order theories may lead to
radically different evolutions of these quantities. In the first-order theory the memory of the initial state is almost
completely washed out, whereas in the second-order theory it is possible that freeze-out occurs at a time when
transient dynamics is still on and the memory of the initial state remains. There are observational consequences
that we touch upon. In the first-order theory, and for initial conditions when the second-order theory mimics the
first-order theory, one may be able to put a bound on the diffusion constant.
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Event-to-event fluctuations of conserved quantum numbers
in heavy-ion collisions have been espoused as signals of the
underlying thermodynamics [1]. Quantities that have been
considered interesting include the baryon number, B, the
electric charge, Q, and even the strangeness, S, which is
conserved in strong interactions. The proton number, Np,
has been suggested as a proxy for B [2]. Of interest are the
net conserved quantum number and its distribution over the
ensemble of events at the collider.

In every observation of a collision event, one can find
the density of B,Q, or S as a function of rapidity. In the
usual measurement of fluctuations one usually sums such a
density over all rapidity within the observational window: this
corresponds to taking the Fourier coefficient k = 0 of the den-
sity profile. However, other Fourier coefficients can be easily
constructed. In this article we point out that hydrodynamic
evolution of the Fourier coefficients of conserved number
densities are interesting in their own right, because they may
contain interesting signals not only of the initial conditions but
also of hydrodynamic evolution.

To this end we investigate the coupled evolution of the
number densities and the usual hydrodynamic quantities, i.e.,
the stress-energy tensor, Tµν , expressed as usual in terms of
the field of flow velocity, uµ, and the energy density, ε, or
the entropy density, s, and the dissipative parts. In heavy-
ion collisions at the RHIC net conserved number densities
are small compared to the entropy density. This is usually
expressed as the observation that the ratio of the appropriate
chemical potential, µ, and the temperature, T , i.e., µ/T , is
small [3]. This ratio is expected to become even smaller at the
forthcoming CERN Large Hadron Collider (LHC) experiment.
As a result, the finite µ corrections to the pressure, p, to
the speed of sound, cs , and to ε and s are expected to
be small. The combination of these quantities along with
the number densities obeys a set of coupled equations. The
smallness of µ/T implies that the equations can be linearized
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in µ/T , and an accurate picture of the hydrodynamics is
obtained by considering the diffusion equation coupled to the
hydrodynamic flow while neglecting the effect of the number
densities on the flow. We note that this approximation is made
here for convenience. It allows us to understand the essential
physics of the situation without much of a sacrifice in accuracy.
If higher accuracy is needed, one can easily investigate the fully
coupled formalism [4].

Previous work had investigated heavy quark diffusion in
the heavy-ion induced fireball [5]. The energy loss of the
heavy quark was estimated using weak-coupling theory [6],
the Boltzmann equation [7], AdS/CFT techniques [8], and
Langevin dynamics [9]. A diffusive theory has also been
invoked to describe stopping and early time entropy production
[10]. Our motivation, and therefore the theory we develop, is
quite different.

In this article we consider only longitudinal background
fluid flow, i.e., flow in which the z axis is defined by the
direction of the incoming nuclei, and the dependence of all
quantities on the orthogonal x and y coordinates is neglected.
This first approximation is expected to be valid in nearly
head-on (small impact parameter) collisions of nuclei for
times shorter than the sound travel time across the fireball,
i.e., for τ � R/cs , where R is the radius of the colliding
nuclei. We work with curvilinear coordinates, i.e., the space-
time rapidity, η = (1/2) log(t + z)/(t − z), and the epoch,
τ = √

t2 − z2. The covariant derivatives, dµ, then include
Christoffel symbols. We define the local time-like derivative,
D = uµdµ. This allows us to define a vector vµ = (Duµ)/S
that is a space-like unit vector orthogonal to uµ, where
S2 = −(Duµ)(Duµ). In terms of this new vector we define the
space-like derivative D̃ = vµdµ. The space-like projector is
�µν = gµν − uµuν . A scalar that appears often is � = dµuµ.
For longitudinal flow we can parametrize the fluid velocity as
uτ = cosh y and τuη = sinh y, with the other two components
vanishing. Boost-invariant flow corresponds to taking y = 0
everywhere. This is not the same as the fluid being at rest;
the choice of the particular curvilinear coordinates that we
use makes this simple parametrization possible. Then one
has � = 1/τ and S = 0 (note that vµ remains finite) and the
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derivative D = ∂/∂τ and τD̃ = ∂/∂η. In all this we follow
the notation of Ref. [11], to which we refer readers for further
details.

We examine the kinematics of the number current, nµ. One
finds the number density as usual, n = nµuµ. Then one can
write nµ = nuµ + νvµ, where νvµ is the dissipative part of
the number current. Clearly, one has ν = −vµnµ. When there
is more than one conserved particle number, one can write
an analogous decomposition for each conserved quantity, with
different n and ν for each. For each conserved number, the
equation of continuity is

0 = dµnµ = Dn + n� + D̃ν + Sν. (1)

We assume in this article that the background fluid undergoes
boost-invariant longitudinal flow. However, as a result of
the assumption that µ/T � 1, there is no contradiction in
assuming that nµ is not boost invariant while the background
flow is. In fact, the physics of diffusion, which is the central
object of interest here, would be trivially absent if n and ν

were both independent of η.
In ideal fluids there is no dissipative part to any hydrody-

namic quantity, so ν = 0. The hydrodynamics then lies entirely
in the continuity equation and its self-similar solution

dn(τ, η)

dτ
= −n(τ, η)

τ
,

so that

n(τ, η)

n(τ0, η)
= τ0

τ
. (2)

Any initial number density profile is then propagated in
time unchanged in shape but attenuated as 1/τ due to the
geometry of longitudinal flow. We call this phenomenon
Bjorken attenuation.

Following Ref. [11] we define the Fourier transform and
the power spectrum of the density, respectively, as

n(τ, k) = 1√
2π

∫
dηn(τ, η) exp[−ikη]

and

P (τ, k) = |n(τ, k)|2. (3)

Note that the measure used here is dη, whereas the invariant
volume measure contains τdη. Hence, the Fourier coefficient
n(τ, k = 0) is not the conserved charge, but τn(τ, k = 0)
is conserved. For an ideal fluid all Fourier coefficients of
the number density profile also undergo Bjorken attenuation,
which, as we see, is a purely geometric phenomenon for
boost-invariant flows.

For non-ideal fluids the first-order constitutive equation for
diffusion is Fick’s Law. In the local rest frame of the fluid this
takes the form

0 = ni − D∂in, (4)

where D is the diffusion coefficient. In a general frame one
can recast this in the form

0 = �µνnν − D�µνdνn = νvµ − D[dµn − uµDn], (5)

using the projector orthogonal to u. When the last form on the
right is contracted with uµ, one finds that it vanishes trivially. A
contraction with vµ relates the dissipative part with the spatial
derivative of the number density:

0 = −ν − DD̃n. (6)

Substituting this form of Fick’s law into the continuity
equation and thereby eliminating ν, one finds the relativistic
version of the diffusion equation in a fluid undergoing
longitudinal expansion:

0 = Dn − D̃DD̃n − DSD̃n + n�. (7)

Note that the last two terms are directly related to the
hydrodynamic flow. Because the equation is linear, it can
be solved by Fourier transforming in the spatial variable and
considering the evolution of each Fourier mode separately.
For later convenience we give the name Fick diffusion to
phenomena that arise from this equation.

The relative importance of flow and continuity versus
diffusion can be quantified through the dimensionless quantity
that compares the second and the last terms in Eq. (7),

W = λ2

τD = τ

D sinh2 �η, (8)

where λ = τ sinh �η is an intrinsic length scale in the density
profile, corresponding to a scale �η in rapidity. When W � 1
then diffusive effects dominate over flow; when it is much
greater than unity, flow dominates. Which behavior dominates
depends also on how D changes with time. In the high tem-
perature phase of the plasma, where there is essentially only
one scale, T , one has D ∝ 1/T (in an AdS/CFT computation
one typically obtains DT = 1/2π , although much smaller and
larger results can also be obtained by tuning parameters [12]).
However, at sufficiently small T (close to Tc, for example) it is
possible thatD is controlled by a hadronic length scale and may
change only marginally with T . In the high temperature phase,
if the background flow is boost invariant and longitudinal, then,
for constant cs, T ∝ 1/τ (1+c2

s )/4. In this case W increases with
τ , leading to a decreased importance of the diffusive term.
At lower temperatures as well, because D varies little, W
increases and the flow terms become more important. If we
are concerned with a �η range such that diffusion dominates
at initial times, then, after a time τfl = D/ sinh2 �η, flow
dominates over diffusion. If at times less than τfl diffusion
manages to destroy structures in the number density profile,
then the memory of the initial state can be lost.

This can be seen in a simple model of a fluid where
all transport coefficients are constant and independent of
parameters such as µ and T . Then, for any longitudinal
background flow of such a fluid the diffusion equation
[Eq. (7)] becomes

0 = ∂n

∂τ
+ n

τ
− D

τ 2

∂2n

∂η2
, (9)

after linearizing in µ/T . The Fourier coefficients of n obey
the equation

0 = ∂n(τ, k)

∂τ
+ n(τ, k)

τ
+ Dk2

τ 2
n(τ, k). (10)
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The solution can be obtained by quadrature:

n(τ, k) = n(τ0, k)
(τ0

τ

)
exp

[
−Dk2

τ0

(
1 − τ0

τ

)]
. (11)

The homogeneous mode (k = 0) exhibits Bjorken attenuation,
as all Fourier components eventually do, consistent with the
analysis of W . Behavior typical of first-order diffusion is the
relative suppression of modes with larger k, i.e., the monotonic
smoothing of any initial density profile.

It is possible for experiments to give an upper bound for
D. If one sees no structure in the number density profile for
rapidity separations up to �η, then one can conclude either that
structures on such scales were not present in the initial state or
that they were present and were wiped out by diffusion. The
time available for diffusion to act is bounded by the freeze-out
epoch, τf . Hence, one gets the limit D� τf sinh2 �η. One
should be careful about this upper limit for D, if �η is very
small, i.e., if one observes fluctuations in the number density
profile at all scales. There is a sum rule between D and the
relaxation time for diffusive processes, τR [13,14]: D = c2

s τR .
When freeze-out occurs away from a critical point, a vanishing
D implies a vanishing τR , whereas we expect that τR is not
zero. Hence, if we see fluctuations of number densities at all
scales �η, then it is likely that the first-order theory breaks
down. To find what could happen then, we next investigate the
second-order theory.

At second order, Fick’s law, Eq. (4), can be replaced by the
form [13,14]

0 = (1 + τR∂t ) ni − D∂in, (12)

where τR is a relaxation time for number changing processes.
This equation is written in the rest frame of the fluid. One uses
the projector orthogonal to u to write this covariantly. The
covariant equation is

0 = νvµ + τR�µνDnν − D(dµn − uµDn). (13)

Projecting parallel to u gives 0 identically. Projecting parallel
to v and using the definition Duµ = Svµ and the identity
vµDvµ = 0 gives

ν + τRDν = −DD̃n − SτRn. (14)

This replaces the constraint [Eq. (6)] for ν obtained in the
first order formalism. Kelly makes the identification D/τR =
c2
s , and we retain this intuition in this work. The quantity

τR is currently unknown; it could be of the order of typical
QCD scales, i.e., 1 fm, or it could be significantly smaller in
AdS/QCD scenarios, for example, 0.1 fm.

In the background of boost-invariant longitudinal flows,
Eqs. (1) and (14) reduce to

0 = ∂n

∂τ
+ n

τ
+ 1

τ

∂ν

∂η

and

0 = τR

∂ν

∂τ
+ ν + D

τ

∂n

∂η
. (15)

This is the form that Kelly’s second-order diffusion Eq. (13)
takes in a boost-invariant geometry. In general one expects
the diffusion constant D and the relaxation time τR to depend

on the temperature, T . Because the time evolution of T is
obtained by solving the remaining hydrodynamic equations,
one gets an explicit time dependence of D and τR , and hence
one can solve the equations by Fourier transformation. The
evolution equations for the Fourier modes can be written in
the form

∂

∂τ

(
n(τ, k)

ν(τ, k)

)
= −

(
1/τ ik/τ

ic2
s k/τ 1/τR

)(
n(τ, k)

ν(τ, k)

)
. (16)

Because c2
s varies within a bounded region, c2

s /τ falls with τ ,
and at late times ν decays as exp(−τ/τR) and n decays as 1/τ ,
thus reducing to Bjorken attenuation at late times. The k = 0
mode exhibits Bjorken attenuation at all times.

For more detailed analysis it is useful to change variables
to ϑ = log(τ/τR). The equations then become

∂

∂ϑ

(
n(ϑ, k)

ν(ϑ, k)

)
= −M

(
n(ϑ, k)

ν(ϑ, k)

)
, M =

(
1 ik

ic2
s k eϑ

)
.

(17)

Note three regions of Fourier modes.

(i) When k is sufficiently smaller than unity, the off-
diagonal terms may be neglected to a good approxi-
mation, and the problem decouples. The equation for
n(ϑ, k) is then similar to the ideal case. We do not
discuss the k = 0 mode in the following.

(ii) When k is sufficiently larger than exp(ϑ), the problem
simplifies again. However, the hydrodynamic equations
are an approximation to microscopic physics and are
valid for long wavelength spatial fluctuations and for
long-time phenomena. The time scales are exp ϑ > 1,
and the limit of k → ∞ must be discarded, although
the equations simplify.

(iii) In the remaining region the equations are fully coupled
and a more detailed analysis is called for. This follows.

Because M depends explicitly on ϑ , a complete solution
to the differential equations cannot be obtained by just
diagonalizing it. First note that when k �= 0, then for either
ϑ �= 0 or c2

s �= 1, one has [M,M†] �= 0, i.e., M is non-normal.
As a result, M is not diagonalized by a unitary transformation,
and the eigenvectors are not orthogonal. For non-normal
matrices the concept of pseudospectra can yield powerful
results [15]. In this article, however, we present a standard
spectral analysis, because very detailed information can be
obtained by this route.

Because the trace and determinant of M are real, the
eigenvalues are either both real or both complex,

λ± = 1
2 (1 + eϑ ) ± 1

2

√
(eϑ − 1)2 − 4c2

s k
2. (18)

For a given ϑ , the eigenvalues are real for |k| � (eϑ − 1)/(2cs).
When they are real, then they are both positive because the first
term of the expression in Eq. (18) is greater than eϑ/2 and the
second term is less than eϑ/2. When both are complex, then
the real parts are positive, because the trace is so. This implies
that |n|2 and |ν|2 both must decay at long times. However,
there may be transient growth.
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θ=0

θ=π

θ=π/2

FIG. 1. (Color online) The parts of the sphere in which the power
spectrum is amplified are indicated by the dark patches. They are
symmetrically placed at the poles and are bounded in the region
0 � θ � tan−1 k and symmetrically in π + tan−1(−k) � θ � π .

One way to show that transient growth may occur in general
is to write down the evolution equation for the power spectrum:

P (ϑ, k) = |n(ϑ, k)|2 = x†Ax, where x =
(

n

ν

)
and

A =
(

1 0

0 0

)
. (19)

The evolution equation is

dP (ϑ, k)

dϑ
= dx†

dϑ
Ax + x†A

dx
dϑ

= −x†Mx,

where

M =
(

2 ik

−ik 0

)
, (20)

independent of c2
s and ϑ . The quantity −x†Mx/|x|2 is called

the numerical range of the matrix −M and is bounded by
the eigenvalues of −M, because the matrix is Hermitean.
Because the determinant is negative, one of the eigenvalues

is positive and the other negative. As a result, the numerical
range has an indefinite sign and amplification of the power
spectrum is possible. The vectors x may be parametrized as
x† = x(sin θe−iφ, cos θ ), where θ and φ range over the sphere.
Then one has

− x†Mx = −2|x|2 sin θ (sin θ + k cos θ sin φ) . (21)

At the equator, θ = π/2, this quantity is negative. There are
zeros at the poles, θ = 0 and π . Other zeros occur along the
curves tan θ = −k sin φ. This equation describes two closed
curves on the sphere, each of which passes through one of
the poles (see Fig. 1). In the area of the sphere inside these
curves (not containing the equator) the function is positive.
Amplification of P (ϑ, k) can take place whenever x passes
through the non-empty region where x†Mx < 0.

Because initial conditions change from event to event, the
probability of transient growth is measured by the fractional
area of the sphere where transient growth may occur. The
larger the value of k, the closer the zero curve comes to
the equator, and hence the larger the probability of transient
growth becomes. However, large k corresponds to smaller
�η and hence to short range structures in rapidity. Because
such structures are efficiently erased in Fick diffusion, their
observation in a significant fraction of events would serve as
a signal of Kelly diffusion.

In Fig. 2 we show an example of the evolution of number
density profiles using Eq. (17), starting from random initial
conditions. In terms of Fourier modes it is clear that transient
growth may occur for any k. The typical time scale of this
growth is ϑ ≈ 1, i.e., τ ≈ eτR . However, even at ϑ ≈ 2, i.e.,
τ ≈ e2τR , the evolution does not begin to resemble Bjorken
attenuation. If τR is in the range of 1/2 to 2 fm, then the
evolution of number densities may be dominated by transients.
Such long time scales are good news, because they allow one
to extract information on the early stages of the fireball.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

P
,k

FIG. 2. (Color online) The evolution of the power spectrum, P (ϑ, k), and the number profile, τn(ϑ, η), for initial conditions containing
only a discrete set of non-vanishing modes, from top to bottom: k = 1/4 (red), 1 (blue), 2 (dark blue), 1/2 (green), 1/8 (black), and 4 (gray),
which are taken with a flat power spectrum at ϑ = 0. We have chosen c2

s = 1/3 for this example. The initial conditions on the corresponding
ν(0, k) are assigned at random. The evolution of the power spectrum is shown on the left and of the profile on the right. In contrast to the
intuition from the Fick theory, the profile may steepen at intermediate times.
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0.0
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0.8
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FIG. 3. (Color online) Same as Fig. 2, but using the first-order diffusion equation. The evolution of the power spectrum is governed by
Eq. (11). From top to bottom the curves are for k = 1/8, 1/4, 1/2, 1, 2, and 4.

Figure 3 shows the evolution in the Fick theory of P (ϑ, k)
and τn(ϑ, η) starting from the same initial conditions as above.
The difference between first-order (Fick) and second-order
(Kelly) theories of diffusion seems to be fairly fundamental.
The main intuitive understanding of diffusion from the Fick
theory is the following: if initial conditions set up sharp
density gradients, then diffusion always smooths these out
on all scales, monotonically; i.e., as time evolves the gradients
get smoother and smoother. The Kelly theory can violate this
intuition. Depending on initial conditions, gradients may be
transiently amplified, at different scales at different times. The
asymptotic final state is the same in both theories. However,
because freeze-out may not occur at asymptotically late times,
the number density profiles at freeze-out could be different.
Some feel of the differences between the theories can be
obtained by comparing Figs. 2 and 3. Note, in particular,
that the solution of Kelly’s equation contains structure in the
number density profile at scales of �η � 1 even at times
τ � 7.5τR . In contrast, for the solution of Fick’s equation,
the scales of �η on which structures are seen are much
larger.

In Fig. 4 we show the conserved charge, N (ϑ,�η = 1),
in a rapidity window �η = 1 (between η = 0 and η = 1) as
a function of ϑ . In both theories there is a tendency for the

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

N
,

1

FIG. 4. (Color online) The total conserved charge, N , within a
window �η = 1 (between η = 0 and η = 1) for the initial conditions
used in Figs. 2 and 3. The upper line is for the Kelly theory and the
lower one for the Fick theory.

charge to become independent of ϑ at late times. This happens
because diffusion must eventually wipe out all spatial structure
in n(ϑ, η), and once the profile has flattened, the number
density is locally conserved. The differences between the two
theories are due precisely to the transients that we have studied.
In the Fick theory transient lifetimes are extremely small even
for k < 1; hence the asymptotic behavior sets in very early.
This can also be seen from the profiles in Fig. 3. In the Kelly
theory, however, transients could be long lasting (depending on
initial conditions). This is seen in the evolution of the density
profiles in Fig. 2, as well as of N (ϑ,�η = 1) (Fig. 4).

Our discussion until now has been geared toward identi-
fying the fundamental differences between the Fick and the
Kelly theories of diffusion. However, the observables that
we have discussed may not be the best suited for heavy-ion
physics. This is because we have looked at the consequences
of starting from a given initial condition. The initial conditions
for the fireball change from event to event, and averages
over events are unlikely to show overdense or underdense
regions. At the LHC particle multiplicities are expected to
be high enough that one could build up the profile function
n(τf , η) at the freeze-out epoch, τf , in a single event. Then by
observation of a relatively small number of events, one could
distinguish between Kelly and Fick diffusion. However, other
techniques are required when the particle multiplicities are
smaller.

It would be simplest to construct observables that depend
on the power spectrum at the freeze-out epoch, τf . In an event
with Nt tracks, one has the charge qj of the j th track and its
rapidity ηj . Given these, one may construct the power spectrum
of the charge as

P (τf , k) =
∣∣∣∣∣∣

Nt∑
j=1

qj exp(−ikηj )

∣∣∣∣∣∣
2

. (22)

Because the qj are conserved numbers and not their densities,
one has P (τf , k) ∝ τ 2

f P (τf , k). One may similarly construct
the power spectrum of any conserved quantity: S,B, or even
the proton number, by replacing qj in the above formula by the
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FIG. 5. (Color online) The distributions of the square root of the power spectrum of Eq. (22) in the Fick (blue, peaked at zero) and the Kelly
(red, peaked away from zero) theories of diffusion for various k at τf corresponding to ϑ = 2. The results are from Monte Carlo simulations
with 10 000 points for each simulation. Initial conditions were chosen from a Gaussian distribution with zero mean and unit variance. All other
parameters correspond to the values used to obtain the results in Figs. 2 and 3. The frequency histograms are normalized to have unit area.

quantum number under discussion. Again, a plot of P (τf , k),
averaged over events, as a function of k will smear out many
of the effects that we have discussed. Some information can
be gained by comparing the results with those obtained from
“mixed events,” i.e., when tracks from different events are
randomly thrown together into an artificial event with the right
multiplicity.

We find that the distinction between Kelly and Fick theories
can be observed most directly in the event-to-event distribution
of τf |n(τf , k)| ∝

√
P (τf , k). The proportionality constant

requires knowledge of the initial volume. However, both the
first- and second-order diffusion equations being linear, the
overall normalization of the n and ν are immaterial. We take
advantage of this to work with the dimensionless quantities√

P (τf , k) = τf n(τf , k)/σ0 and τf ν(τf , k)/σ0, where the
dimensional quantity σ0 need not be specified except when
making an actual connection to models of the initial state.
Even so, a prediction of the distribution of

√
P (τf , k) is not

possible because the initial distribution is not known. However,
starting from the same initial distribution the two theories give
rise to completely different distributions at freeze-out, and the
differences can be investigated.

An example is shown in Fig. 5. Here we started with initial
conditions drawn from a Gaussian distribution with zero mean
and unit variance. Then from Eq. (11) it is clear that for Fick
diffusion, the distribution of

√
P (τf , k) at freeze-out is also a

Gaussian, with standard deviation exp[−Dk2(1/τ0 − 1/τf )].
Note the strong dependence of the variance on k, which is also
apparent in Fig. 5. The distribution of this quantity in the Kelly
theory cannot be derived so easily. We determined it through a
Monte Carlo simulation, deriving the distribution at freeze-out
time by evolving many different samples of initial conditions.
The resulting distribution is clearly different. It does not peak at
zero, the position of the peak shifts with k, and it has a very long
tail. These features are intimately connected with the transient
amplification phenomenon that is discussed above. Beyond
the range shown in the figures, as k decreases, the frequency

of small
√

P increases, the tail shrinks, and the distinction
between Fick and Kelly theories is lost in the limit of k → 0.
Most importantly, the fact that in all theories the long-time
behavior is dominated by Bjorken attenuation means that the

distribution of P (τf , k) (or its square root) is independent of
τf . Event-to-event distributions of this kind therefore seem to
be the most promising observable distinction between first-
and second-order diffusion.

One of the most widely studied signals of a critical end
point of QCD is the distribution of event-to-event fluctuations
of conserved quantities contained within a rapidity acceptance
window. The present work, with its removable simplifications,
shows that these measures could be influenced, possibly
strongly, by the nature of the transport process—whether
first or second order. Therefore our understanding of the
nature of diffusion needs to be improved before event-to-event
fluctuations can be interpreted. We have shown that one way
to do this is to study the event-to-event distribution of the
power spectrum of the conserved charge [see Eq. (22)], at τf

for different k (see Fig. 5). There are qualitative differences
between the results for the two theories of diffusion.

In summary, here are our main conclusions.

(i) The Fourier coefficients, n(τ, k), and the power spec-
trum, P (τ, k), of the number density profile [see
Eq. (3)], obtained by Fourier transforming in the
rapidity (which is equal to η for boost-invariant flow),
are of interest in the study of diffusion and hydro-
dynamics. One can construct number density profiles
for any quantum number that is conserved in strong
interactions. The obvious ones are B (or Np), Q, and
S. A power spectrum can also be constructed from
experimental data [see Eq. (22)] and easily compared
to theory.

(ii) The net conserved number is obviously constant no
matter what the dynamics of diffusion. As a result,
the event-to-event distribution of this quantity tells
us directly about initial conditions. The net charge
within a given rapidity window, however, may change
differently in different kinds of diffusion (see Fig. 4).
Because freeze-out may occur at different times for
different centralities, this may show up as a dependence
of the net observed charge on centrality.

(iii) The Fourier modes give interesting information on the
nature of the transport theory. In Kelly (second-order)
diffusion, the power in short range modes, i.e., modes
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with large k, could be large. This is impossible in Fick
(first-order) diffusion. The simplest of observables, i.e.,
a plot of P (τf , k) = τ 2

f |n(τf , k)|2 as a function of k, for
an event, can potentially distinguish between these two
theories. One thing to note is that this must be done on
an event-to-event basis. Averaging over events before
constructing the power spectrum could wash out the
signal.

(iv) Event-to-event distributions of the observed power
spectrum [see Eq. (22)], or its square root, for one or
more values of k can potentially distinguish between
Fick and Kelly theories of diffusion (see Fig. 5 and the
corresponding discussion in the text).

(v) If the Kelly theory is ruled out by such observables,
then one can construct an upper bound on the transport

coefficient,

D� τf sinh2 �η, (23)

using the rapidity interval �η over which all structure
has been washed out and an independent estimate
of τf .
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