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Common signatures of statistical Coulomb fragmentation of highly excited nuclei and
phase transitions in confined microcanonical systems
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Characteristic signatures of statistical Coulomb fragmentation of highly excited nuclear systems are analyzed.
It is found that in many important aspects, they coincide with perceived signatures of phase transitions in confined
hypothetical pseudomicrocanonical systems and, therefore, may give rise to an incorrect interpretation of certain
experimental observations in terms of phase transitions occurring in nuclear matter. It is demonstrated that
domains of negative heat capacity predicted by certain classes of pseudomicrocanonical model calculations for
the immediate vicinity of phase transitions are artifacts of an unphysical truncation of the model phase space and
that such domains disappear already with a very rudimentary enhancement of this phase space. Appearance of
bimodality and of signatures of critical phenomena in Coulomb fragmentation is discussed.
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I. INTRODUCTION

For over a quarter of century now, the observed process
of disintegration of highly excited nuclear systems into
multiple intermediate-mass fragments (IMF) has provided a
strong driving force for research in the field of intermediate-
energy heavy-ion reactions. This process, commonly called
multifragmentation, has inspired both, theoretical speculations
regarding its mechanism and experimental effort to map out
its characteristics. Experimental observations point often to
dynamical IMF production mechanisms, but they also reveal
“robust” patterns commonly attributed to statistical production
mechanisms [1]. While there appears to be a general consensus
regarding the presence of a statistical component in the
observed IMF yield, the standard equilibrium-statistical decay
codes [2,3] with their gentle Boltzmann-like scaling of yields
are not able to predict meaningful yields of intermediate-mass
fragments (IMFs) heavier than lithium. The difficulty arises
here from the fact that experimental yields show a significant
departure from Boltzmann-like scaling with a fixed transition-
state energy. Rather, single and multiple IMF production are
seen to set in rapidly with excitation energy, in a fashion
reminiscent of phase transitions, raising tempting prospects for
experimental studies of phase transitions in microscopically
small (nuclear) systems.

As a result of the difficulties encountered by standard
equilibrium-statistical models to explain abundant statistical
IMF production and to effectively parametrize some of
the salient trends in the observed IMF yields, a number
of models [4–9] have been proposed that supplement the
traditional framework of statistical theory by incorporating
either explicitly or implicitly ancillary (ad hoc) assumptions.
The nature of these ad hoc assumptions is such that there
appears to be no obvious way to justify them in the framework
of known physical theory and that their only “validation”
appears to be a satisfactory fit of resulting “predictions” to
select experimental observations. Furthermore, these models
describe mostly stationary equilibrium states, typically of
spatially confined systems, without addressing the paramount
issue of stability with respect to actual decay modes. The

relevance of such model calculations for nuclear matter is
sometimes asserted by invoking the principle of universality,
which is merely a heuristic notion. Similarly, although IMF
yields predicted in these models [5,6,8] appear to exhibit
patterns reminiscent of phase transitions, conclusions that
nuclear multifragmentation is a manifestation of a nuclear
liquid-gas phase transition are in fact unfounded hypotheticals.
Nevertheless, in spite of an obvious lack of a sound theoretical
foundation, over the years a paradigm or dogma has appeared
in linking nuclear multifragmentation with nuclear phase
transitions and “collateral” phenomena such as negative heat
capacity, bimodality, or criticality.

To illustrate in more detail the point regarding the ad hoc
nature of “mainstream” multifragmentation models, one notes
that in the Copenhagen [5] and Berlin [6] multifragmentation
codes, treated here as benchmarks, the model “nuclear” matter
is tacitly taken to be infinitely incompressible in the liquid
phase and infinitely compressible in the gaseous phase. Such a
peculiar model equation of state (EOS) is not stated explicitly,
but can be inferred from the fact that these models do not
allow matter to undergo thermal expansion and set interaction
energy to zero for the gas phase, regardless of matter density
(including the ground-state density of nuclear matter). The
equilibrium state assumed in these models is that of an
ensemble of spherical objects that are continually scattering
off each other and off the walls of a hypothetical spatial
containment, the so-called freeze-out volume, while at the
same time evaporating, reabsorbing, and exchanging nucleons
and excitation energy among themselves. An important, but
little noticed, fact is that, contrary to common beliefs, these
models do not predict statistical breakup of the system at all
in the sense the term “breakup” appears to suggest, i.e., as
a fast single act. What they actually do predict is only that
highly excited matter with the particular model EOS would
time-asymptotically end up fragmented. It may do so plausibly
by evaporating nucleons into the free space of the “freeze-out”
volume, where these nucleons subsequently synthesize into
intermediate-mass clusters or fragments. Obviously, the nature
of these models is such that they cannot distinguish between a
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physically single-act breakup and the more lengthy process of
evaporation and nucleosynthesis.

The present work is part of a continued effort [10–18]
to model the behavior of finite nuclear systems with dif-
fuse surface domains within the framework of liquid drop
and Fermi gas models and to construct a thermodynamical
framework for understanding nuclear multifragmentation as a
natural, fissionlike decay mode of highly excited compound
nuclei, all while avoiding ad hoc assumptions of the kind
discussed above. It is worth noting in this context that the
standard statistical decay models [2,3] were designed for
compound nuclei at low to moderate excitations, where particle
evaporation and fission rates obey quite well Boltzmann
scaling. At higher excitation energies, of the order of E∗/A >

2–3 MeV, physical phenomena of thermal expansion, reduc-
tion in surface tension, and growth of shape fluctuations
can become important and alter nuclear decay patterns
qualitatively.

Recently [12,15], it was shown that, when even a very rudi-
mentary allowance is made for the surface entropy and thermal
expansion of nuclear matter, the basic statistical scenario of
asymmetric fission is quite sufficient to explain the large
observed IMF yields and also to explain multifragmentation
as a form of generalized fission associated with multifragment
saddle shapes. In this scenario, an excited nucleus approaches
a state of local thermodynamical equilibrium that is conceptu-
ally identical to that of a compound nucleus. The term “local”
refers here to a finite volume in the phase space delimited by the
hypersurface of transition states, i.e., states connecting to the
open decay channels. In contrast to the “classical” low-energy
compound nucleus, however, the system is now allowed to
maximize its entropy by expanding thermally to correspond-
ing equilibrium density and by exercising substantial shape
fluctuations.

Obviously, equilibration of shape degrees of freedom is
part of the overall equilibration process, where the system is
“racing” for its survival against particle evaporation and other
decay modes and where its “life expectancy” diminishes with
increasing excitation energy as the decay time scales shorten.
How far the system is able to advance on its path toward
equilibrium depends critically on the latter time scales. The
general assumption here, as in “classical” compound nucleus
model, is that the degree of equilibration actually reached
is sufficient to justify application of equilibrium statistical
thermodynamics as a meaningful approximation. It is also
worth noting in this context that the equilibration process sets
in already as first amounts of excitation energy are supplied to
the system by the collision dynamics and not, as some models
(e.g., Ref. [4]) assume, after all of the excitation energy had
been supplied. “Fortunately,” in the (doomed) race for survival
mentioned above, the system is assisted by a peculiar feedback
such that thermal expansion and excitation of shape degrees
of freedom cause nuclear temperature to decrease (expansion
cooling), thus extending particle evaporation time scales [13].
It is worth noting that such a feedback mechanism is an
expected manifestation of Le Chatelier’s principle, where the
system responds to the supplied excitation energy in a way
(expansion plus fluctuations) that opposes the direct result of
this supply—increase in temperature. As the system, on its way

toward equilibrium, reaches randomly a particular binary or
more complex saddle configuration, it is driven toward scission
by Coulomb and/or centrifugal forces resulting in observed
fragment yields.

For the purpose of the following discussion, the decay
scenario described above is named Coulomb fragmentation,
to reflect the crucial role of Coulomb forces in the ultimate
dynamical breakup of the system into two or more indi-
vidual fragments. In fact, this is the same scenario that is
considered, e.g., by the statistical decay code GEMINI [3].
This code succeeds in describing quasisymmetric but not
highly asymmetric binary fission, where the latter failure is
attributable to an inadequate accounting, of thermal expansion
of nuclei and of the role that the surface entropy plays in the
process.

As was shown recently [15], asymmetric binary Coulomb
fragmentation is described by equations that are largely
equivalent to the parametrization used with the nuclear Fisher
droplet model [19] to fit a large volume of experimental data.
In addition, multiple Coulomb fragmentation is consistent
with the numerical procedures used in the statistical multi-
fragmentation codes SMM [5] and MMMC [6], providing an
explanation for why these codes appear to agree with selected
sets of experimental observations.

The present study shows for the first time that statistical
Coulomb fragmentation of finite nuclei shares some prominent
signatures with first- and second-order phase-transitions in
spatially confined pseudomicrocanonical systems. Most no-
tably, such a process sets in rather suddenly with excitation
energy and in a “non-Boltzmannian” fashion and may also
exhibit apparent negative heat capacity and bimodality. Fur-
thermore, at sufficiently high excitation energies, where the
surface tension vanishes, statistical Coulomb fragmentation
may also be expected to exhibit signatures of criticality, where
the outcome is decided by combinatorial factors only. In other
words, a rapid onset of single and multiple IMF production,
the bimodality of select distributions, an apparent negative heat
capacity and the “rule” of power law, are all consistent with and
occur naturally in Coulomb fragmentation of hot nuclei. These
findings challenge the concept of multifragmentation as a
manifestation of a liquid-gas phase transitions in finite nuclear
systems and favor the simpler, more plausible Coulomb
fragmentation scenario.

The following Sec. II briefly reintroduces the schematic
model of Ref. [11] and demonstrates that the two
phenomena, second-order phase transitions in confined
pseudo-microcanonical systems and statistical Coulomb frag-
mentation, are described by a common mathematical for-
malism. Both are manifestations of the crossing of relevant
partition functions on the excitation energy scale.

In Sec. III, the significance of experimental trends in
fragment productions is discussed in terms of Coulomb frag-
mentation. Here, the possibilities for observing signatures of
first- and second-order phase transitions, as well as criticality
are assessed.

Section IV offers an extended discussion and a summary.
This section stresses the importance of the diffuse surface
domain for nuclear stability and provides a tentative road-map
for a further exploration of Coulomb fragmentation.
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II. MODELING OF PHASE TRANSITIONS IN CONFINED
PSEUDO-MICROCANONICAL SYSTEMS AND OF

STATISTICAL COULOMB FRAGMENTATION

For the purpose of this study, a schematic model [11]
is considered that emulates essentials of the (benchmark)
pseudomicrocanonical models SMM [5] and MMMC [6], as
far as phase transitions are concerned, but at the same time
allows one to model Coulomb fragmentation [15]. The model
considers a finite amount of isoneutral Fermi matter that
is allowed to assume two spatial configurations, a spherical
mononucleus and a symmetric dinuclear configuration of two
equal touching spheres. These two configurations are taken
to represent either two distinct phases of a confined nuclear
system or two spatial configurations of an open system. In
the latter context, the dinuclear configuration represents a
transition state (saddle) connecting to an open binary frag-
mentation channel. Importantly, this model accounts for the
diffuse nuclear surface domain, including in the calculations
both surface energy and entropy [12]. As demonstrated in
Ref. [12], the diffuse surface domain has profound, qualitative
effects on the evolution of the system with increasing excitation
energy.

In the qualification of SMM [5], MMMC [6], and other
models, the prefix “pseudo-” is used to stress the important fact
that only a truncated phase space is numerically manageable
in calculations for systems at the high excitation energies of
interest here. Quite naturally, the same prefix applies to the
model used in the present study. As shown further below, an
incomplete accounting of phase space may have nontrivial,
qualitative consequences specifically in domains of phase
transitions. In fact, the omission of certain parts of phase space
may well be responsible for apparent but false signatures of
such transitions, such as the negative heat capacity and some
forms of bimodality reported in the literature [1].

In what follows, a “phase” is defined as a macroscopically
distinct state of the system. Accordingly, a phase transition
is defined here as an event in which the most likely phase
of the system changes, as the value of the control parameter
changes. Of course, small systems fluctuate strongly between
different phases, where the relative dwelling times are given
by phase partition functions. Because the fundamental differ-
ence between the conventional first- and second-order phase
transitions is that the former involve transfer of latent heat
while the latter do not, the phase transitions considered here
are “nominally” of second order.

The above definitions of phases and phase transitions are
fully consistent with conventional thermodynamics, a fact that
is reiterated here to enhance the clarity of a chain of arguments
made further below. While for the sake of specificity, in
what follows, reference is mostly made to phases and phase
transitions, one should keep in mind that the same applies
always to macroscopic configurations of an open system, as
well.

Formally, the probability wi of finding the system in a
particular phase is given by the associated partition function,

wi = Zi∑
k Zk

. (1)

For a microcanonical statistical ensemble, which is the
ensemble most suitable for the description of isolated systems,
partition functions for individual phases (phase partition
functions) are expressed via the associated entropies Si (phase
entropies). Therefore,

wi = eSi∑
k eSk

. (2)

With the above conventional definition of material phases,
a phase transition occurs when the partition functions for
different phases intersect, as the controlling parameter (such
as the total energy or the temperature) is varied. This point is
illustrated with the schematic pseudomicrocanonical model of
Ref. [11], which permits just two distinct macroscopic states of
an excited nuclear system, the mononuclear and the symmetric
dinuclear configuration. In this case the pseudomicrocanonical
weight functions wi(E∗) for the two configurations i are
functions of the total excitation energy E∗ of the system. They
are related to the phase entropies Sm and Sd associated with
mono- and dinuclear configurations, respectively. These are
the formal entropies calculated for the system in either a pure
mononuclear (subscript m) or a pure dinuclear (subscript d)
configuration,

wm/d (N,E, V ) = eSm/d (N,E,V ). (3)

Here, N is the number of particles in the system and V is
the system volume, here taken to be constant. Because of the
above simple microcanonical relationship between a weight
function and the corresponding configurational entropy, a
(second-order) phase transition will occur at a system energy
of E = EP.T., where the entropy functions for the two
configurations or phases cross, i.e., where Sm(N,EP.T., V ) =
Sd (N,EP.T., V ). Note that for canonical ensembles (constant
particle number N , constant temperature T , and fixed volume
V ), the corresponding weight functions can be expressed in
terms of the Helmholtz free energies Ai ,

wm/d (N, T , V ) = e−Am/d (N,T ,V )/T . (4)

Accordingly, for an isothermal-isobaric ensemble (constant
values of N , temperature T , and pressure p) the weight
functions are properly expressed in terms of the Gibbs free
energies Gi

wm/d (N, T , p) = e−Gm/d (N,T ,p)/T . (5)

Obviously, for all three kinds of ensembles considered
above, any crossing of the configurational weight functions
for any two macroscopically distinct configurations (phases)
occurs at that value of the control parameter (E for micro-
canonical ensembles, otherwise T ) at which the corresponding
pairs of thermodynamic state functions (S,A, or G) intersect.
In the thermodynamical limit, such crossing of the relevant
special thermodynamic state functions results in a “logarithmic
singularity” in the relevant partition function such that the
respective first derivatives of logarithms of these partition
functions are discontinuous. This singularity is reflected in
corresponding singularities of the various thermodynamical
functions.

Using the Fermi gas model to calculate the level densities of
the constituent spherical fragments, the conditional entropies
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for the pseudomicrocanonical mono- and symmetric dinuclear
configurations considered here can be written as

Sm(A,E∗) = 2
√

amE∗ (6)

and

Sd = 2
√

ad

[
E∗ − (

E
pot
d − E

pot
m

)]
. (7)

In Eqs. (6) and (7), am and ad are the level-density
parameters (little-a) for mono- and dinuclear configurations,
respectively, and E

pot
m and E

pot
d are the potential energies of

these configurations. The level-density parameters for a realis-
tic nuclear matter distribution with diffuse surface domain can
be calculated using the Thomas-Fermi approximation. They
can be expressed approximately [10] in terms of volume and
surface contributions,

am = A

14

(
1 + 4A−1/3

)
MeV−1 (8)

and

ad = 2
A

28

[
1 +

(
A

2

)−1/3]
MeV−1. (9)

The potential energies Ed and Em for di- and mononuclear
configurations can be calculated from the liquid drop model
[20] such that their difference is equal to the difference
in the sums of surface and Coulomb energies for the two
configurations

Ed − Em = cSurf
(
Fd

2 − 1
)
A2/3 + �ECoul. (10)

Here cSurf is the surface energy coefficient and Fd
2 = 21/3 is

the ratio of the surface area of the symmetric dinucleus to that
of a single sphere of the same volume. The Coulomb term is
left out for the purpose of this study.

Accounting for a surface specific contribution to the
level-density parameter is essential for the present study. In
particular, it is crucial for developing a quantitative under-
standing of Coulomb fragmentation, both binary and multiple.
This surface level-density term approximately accounts for
the excess entropy per nucleon (surface entropy) contributed
by the dilute matter in the diffuse surface domain, relative
to that of the denser bulk matter. At elevated excitation
energies this extra surface entropy becomes large enough to
significantly enhance the chances for a system to populate
configurations with large surface areas such as represented
by the dinuclear phase of a confined system and the saddle
configuration of an open system. The surface entropy is also
directly responsible for an intersecting of the weight functions
for different configurations at characteristic excitations [11]
signaling a phase transition as defined above. This feature is
illustrated in figures presented further below.

In Figs. 1 and 2 results are shown of model calculations for
a two-configuration system allowing mono- and symmetric
dinuclear configurations within the schematic formalism [11]
discussed above. For the sake of an easier demonstration of
the effects of the size of the system the Coulomb interaction
was left out in these particular calculations.

The top panel of Fig. 1 illustrates the intersecting of the
entropy functions for the two (mono- and di-) model phases at

mono
di
Bltzmn

FIG. 1. Functional dependence of entropies (top panel) and rela-
tive population probabilities (bottom panel) for mono- and dinuclear
phases, solid and dashed lines, respectively) on excitation energy per
nucleon exhibiting a crossing at approximately E/A = 7 MeV. The
dotted line in bottom panel illustrates Boltzmann-like behavior for
a hypothetical dinuclear phase with 4 MeV of potential energy and
with no gain in surface entropy.

a “crossover” excitation energy of E/A ≈ 7 MeV, which also
signifies the crossing of the corresponding weight functions
for the two configurations. The calculations are for a system
of A = 300 nucleons.

The bottom panel of Fig. 1 illustrates the way in which the
relative population probabilities of the two phases of interest
evolve with increasing excitation energy. As seen in this
panel, at low excitations, where Sm > Sd , the system dwells
dominantly in the mononuclear configuration or phase (solid
line). As the excitation energy increases and approaches the

FIG. 2. Reduced entropy (top panel) and system temperature
(bottom panel) vs. excitation energy per nucleon for the two-phase
system of mono- and dinuclear configurations and three sizes of
the system: thermodynamic limit (TL), “large” with A = 300, and
“intermediate” with A = 200 (see text).
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crossing point, the system fluctuates more frequently away
from the mononuclear configuration into the dinuclear domain
(dashed line). In the vicinity of the “crossover” energy, the
two phases coexist, but not in the sense of conventional
first-order phase transitions for macroscopic systems, where,
e.g., finite amounts of liquid and gas are simultaneously
present in a given volume. Rather, the system continually
jumps from one phase to the other (at no cost in latent
heat) but at any instant in time is either in one or in the
other pure macroscopic state or phase. At higher excitation
energies, beyond the crossover energy, the system is found
dominantly in the dinuclear state or phase. Notable in Fig. 1,
bottom panel is the rapidity with which the dinuclear phase
sets in, as excitation energy is increased. It should be kept
in mind that the same “phase-transition-like” scaling with
E/A applies to the population probability of the fragmentation
saddle configuration as compared, e.g., with the population of
(compact) particle emission transition states. Such a “phase-
transition-like” scaling is in stark contrast with the Boltzmann-
like scaling illustrated in the bottom panel of Fig. 1 by a dotted
line. The latter is calculated for a hypothetical configuration
with just 4 MeV of potential energy and with no gain in
surface entropy with respect to the mononuclear configuration.
Note that the population probability of this hypothetical
configuration approaches asymptotically the probability of the
mononuclear configuration, but never “overtakes” it.

The thermodynamics of phase transitions in the present
schematic model can be further explored by studying the
evolution of the system entropy (as opposed to phase entropies)
with increasing excitation energy. This system entropy is given
by the logarithm of the microcanonical partition sum

S[m,d](E) = ln[eSm(E) + eSd (E)], (11)

where Sm(E) and Sd (E) are phase entropies for the mono-
and dinuclear configurations. For a better demonstration of
important mathematical properties of the system entropy
S[m,d], a reduced entropy is defined such that a linear function
is subtracted from the former that makes the latter zero at the
boundaries of the energy region of interest. Importantly, the
subtraction of a linear function preserves the second derivative
and thus does not affect properties of interest here, such as
convexivity or concavity.

A reduced entropy function per nucleon (multiplied by
1000) for the ensemble considered here and the corresponding
caloric curves are illustrated in Fig. 2 for three different
sizes of the system: infinite (TL: A− > ∞), large (A = 300),
and intermediate (A = 200). The calculations were performed
according to Eqs. (6), (7), and (11) for the case of A = 300.
To preserve the location of the crossing point of the entropy
functions and to isolate the effect of the overall system size
from that of the relative size of the surface domain, the entropy
for the case of A = 200 was calculated using Eq. (11), with Sm

and Sd obtained by renormalizing by a factor of 200/300 the
entropies calculated for the system of A = 300. In the same
spirit, the data for the thermodynamic limit were obtained
from calculations for the A = 300 system by taking the
mononuclear entropy function for excitation energies below
the crossover point and the dinuclear entropy function above
this point. Obviously, in the true thermodynamic limit, not

only do fluctuations vanish but also any surface effects must
vanish.

As seen in the top panel of Fig. 2, in the thermodynamic
limit the reduced entropy (and hence the model entropy) fea-
tures a singularity at the crossing of entropy functions around
E/A = 7 MeV but remains always a concave function of the
energy. Correspondingly, caloric equation of state features a
singularity in the form of a jump (bottom panel). Fluctuations
present in finite systems make the entropy differentiable at
all energies, although larger systems with smaller fluctuations
exhibit a qualitatively different behavior. As seen also in the
top panel of Fig. 2, in the “large” system (A = 300), a convex
domain or “convex intruder” persists as a telltale remnant of
the kink present in the case of the thermodynamic limit. This
convex intruder maps then onto the caloric equation of state
as a domain of negative heat capacity (bottom panel). The
more “robust” fluctuations present in the “intermediate-size”
system (A = 200) further “heal” the entropy function, which is
now strictly concave. Accordingly, the heat capacity is always
positive (bottom panel). The thermodynamic temperatures
plotted in the bottom panel of Fig. 2 are calculated according
to the standard microcanonical expression for the average
temperature

T −1 = β = dS

dE
. (12)

A. Origins of an apparent negative heat capacity

In principle, irregularities or nonmonotonicities in the
caloric curve T (E) appear possible in the phase-transition
domain of physical systems. However, to prove in numerical
modeling the presence of a negative heat capacity in such
a domain is exceedingly difficult, if not impossible. This is
so because it is obviously technically impossible to include
in the model calculations explicitly all energetically allowed
microstates of a physical system. Neither is it feasible to
include all possible macroscopic configurations. Therefore,
it is impossible to deduce the true entropy function and
the corresponding true microcanonical temperature. Actual
numerical simulations can address only finite subspaces
of an untractably large true microcanonical phase space.
Therefore, in such simulation calculations only apparent or
pseudothermodynamic potentials and functions are evaluated
and not the true functions. It is therefore impossible to tell
whether any particular fine (as opposed to gross or average)
trend in an apparent thermodynamical quantity deduced for
a numerical model system reflects its true thermodynamical
counterpart in a physical system. Specifically, it is impossible
to predict fine trends in thermodynamical functions for physi-
cal systems with phase-space-truncated numerical calculations
on which models such as SMM [5], MMMC [6], and lattice
gas models [8] are based. Concerning reports of apparent
negative heat capacities for physical systems, for example, it is
demonstrated further below that the exclusion of certain classes
of microstates from experimental observation may result in a
corresponding artifact.

In evaluating such apparent caloric phenomena, one notes
first that it is physically impossible for a nuclear system
to populate just two distinctly different macroscopic spatial
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FIG. 3. The “healing” effect of an interphase
configuration on the apparent caloric curve for
the two-phase system of mono- and dinuclear
configurations for a A = 200 system.

configurations, such as the ones (m and d) used in the
schematic model introduced previously, without also popu-
lating the entire continuum of intermediate macrostates, those
“connecting” the two limiting spatial distributions. In fact,
physical systems must be able to follow continuous pathways
connecting any number of macroscopic spatial configurations.
In the present context, it is impossible for a spherical mononu-
cleus to jump to a symmetric dinuclear configuration without
passing through a continuous sequence of intermediate states
of various intermediate deformations. Similar considerations
apply to the configuration spaces considered by SMM [5],
MMMC [6], and lattice gas [8] models. Importantly, the
intermediate macroscopic configurations have a noticeable
influence on the apparent trends of thermodynamic functions
exactly in the domain of phase transitions, i.e., where the
weight functions for the phases (configurations) of interest
cross. This is so, because the weight functions of the inter-
mediate configurations must intersect the weight functions
for the phases of interest in the immediate vicinity of their
crossing. Therefore, the intermediate configurations make
a noticeable contribution to the overall partition function
selectively only in this domain. Consequently, exclusion of
any of these intermediate configurations depletes the model
entropy locally (on the energy scale) and may give rise to a
false convex intruder in the entropy function S(E). Effects of
such false convex intruder propagate to other thermodynamic
functions and representations of thermodynamic observables.
In particular, a false intruder results in a caloric curve featuring
a domain of apparent negative heat capacities. This rather
trivial mechanism of generating unphysical negative heat
capacity in truncated-space microcanonical calculations is
illustrated in more detail in Fig. 3.

Figure 3 illustrates effects of an exclusion of intermediate
macrostates by considering the effect associated with just one
extra deformed configuration intermediate between the two
limits of spherical mono- and deformed dinuclear (“base”)
configurations. The assumed interphase configuration corre-
sponds to a deformation parameter of F2 = 1.13, where F2 is

the ratio of the surface area of a configuration to the surface
area of a sphere of equal volume. This parameter value is
halfway between the respective values for spherical mono-
nuclear (F2 = 1) and dinuclear (F2 = 21/3) configurations.
As seen already in Fig. 2, the apparent entropy S[m,d](E)
for a system including only these two base configurations
(m and d) exhibits a convex intruder in the vicinity of the
crossing point of the phase entropy functions Sm(E) and
Sd (E). The caloric curve T[m,d](E) deduced for a hypothetical
system with such a drastically truncated phase space features
a negative heat capacity in the vicinity of this crossing
(cf. Fig. 2). As seen in Fig. 3, restoring the previously
neglected additional intermediate interphase (i) configuration
with a deformation parameter of F i

2 = 0.5(Fm
2 + Fd

2 ) changes
the apparent caloric curve T[m,d,i](E) qualitatively, causing
the domain of apparent negative heat capacity to disappear. The
mechanism of elimination of this domain can be understood
in more detail from Fig. 4

The top panel of Fig. 4 illustrates the sequential crossing of
entropy functions for mononuclear (solid line), intermediate
(dashes), and dinuclear (dotted line) phases in a three-phase
system. The entropy functions are plotted relative to that
for the mononuclear configuration to enhance the view. At
low excitations, mononuclear configuration dominates. As the
excitation energy increases, first the intermediate configuration
“catches up” with the mononuclear phase, becoming the
dominant phase around E/A ≈ 7 MeV. Subsequently, the
dinuclear phase “catches up” with the intermediate one,
becoming dominant around E/A ≈ 7.3 MeV. As seen in the
middle panel of Fig. 4, the “interphase” configuration (i) plays
a noticeable role selectively only in the vicinity of the crossover
energy of the weight functions wm and wd for the two phases
considered. Accordingly, as seen in the bottom panel of Fig. 4,
it contributes to the overall apparent entropy only in the energy
region of the phase transition but not much beyond it. It is
this additional entropy component, which is not accounted
for in the truncated two-phase phase space, that restores the
overall concavity of the entropy as a function of energy. This
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FIG. 4. Crossing of relative phase entropy functions (top panel)
and phase weight functions (middle panel) for three macroscopic
configurations, mono- and dinuclear (subscripts m and d) and inter-
mediate (i) as functions of energy. The bottom panel illustrates the
extra system entropy resulting from the presence of the intermediate
phase i.

“healing” is achieved by a slight reduction in the system
temperature caused by the ascending slope and a slight increase
caused by the descending slope of the intermediate entropy
function, consistent with the definition of temperature as
T −1 = ∂S/∂E.

The present schematic calculation demonstrates that, in the
vicinity of an anticipated phase transition (crossing of weight
functions), apparent thermodynamic quantities behave qualita-
tively differently when certain classes of valid macrostates are
excluded from the numerical calculations or from observation.
As it is practically impossible to guarantee that all relevant
states are included in any realistic model description, model
calculations do not provide a sound foundation for conclusions
regarding fine trends in thermodynamical functions. This is
especially true in the vicinity of phase transitions.

B. Apparent bimodality

Recently, suggestions have been made Refs. [21,22] that
the bimodality of certain distributions or of thermodynamic
functions represents a robust signature of a nuclear liquid-gas
phase transitions. In this context, one is immediately reminded
of examples of bimodal distributions that are associated with
other phenomena. For example, the statistical competition of
Coulomb fragmentation or fission with particle evaporation re-
sults naturally in bimodal distributions of various observables.
In the schematic model discussed previously, postevaporation
fragment mass distribution are bimodal for excitation energies
close to the crossover energy, where the entropy functions
for mononuclear configuration [Sm(E∗)] and dinuclear saddle

configuration [Sd (E∗)] intersect. In this case, one peak in the
mass distribution represents the massive evaporation residues
of the primary mononuclear product, while the second peak
just below one-half of the total system mass represents the
evaporation residues of the two, nearly symmetric fragments
produced in the primary Coulomb fragmentation process. One
may also expect a bimodal temperature distribution, with a
lower average temperature for the fragmentation channel. This
kind of bimodality is in fact well known from fission studies.
Evidently, bimodality is not an exclusive signature of phase
transitions and its experimental observation can therefore not
be taken as proof that such a transition actually occurs in
excited nuclei.

C. First-order phase transitions in small systems with
truncated phase space

Quite generally, first-order phase transitions in small
confined microcanonical systems can be viewed as a rapid
succession along the energy axis of crossings of weight or
entropy functions for a series of macroscopic configurations
or phases, e.g., those associated with a successively increasing
number of gas particles. In the aggregate, a succession of
such second-order phase transitions has the appearance of a
conventional first-order phase transition. In this case, the latent
heat conventionally associated with first-order transitions is
represented here by the difference in excitation energies
between adjacent crossing points of phase entropy functions.
As discussed further above, at crossings, phase transitions
occur without infusion of energy from an external source, i.e.,
with zero latent heat. To illustrate the above point, a sequence
of crossings of entropy functions for 20 configurations,
including the mononuclear, dinuclear, and 18 intermediate
with uniformly spaced deformation (surface area) parameters
F2, is illustrated in Fig. 5. As discussed further below, the

8

6

4

2

0

-2

-4

S
x-

S
m

on
o

8.07.57.06.56.0

E/A (MeV)

mono

di
 

FIG. 5. Crossing of relative phase entropy functions for 20 macro-
configurations (phases) with surface area parameters F2 increasing
from 1 (mono-) to 21/3 (di-) in 20 equal steps.
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sequence seen in Fig. 5 may be viewed as representing a
first-order phase transition of matter from the dense bulk to
the less dense surface domain.

In actual (small) nuclear systems, the energy intervals
between the consecutive crossings (the apparent latent heat)
may fluctuate significantly, for example, due to pairing or
isospin effects. A scenario of successive second-order phase
transitions accommodates such variations naturally and offers
therefore a more direct access to the underlying transitional
phenomena than one based on the corresponding picture of
conventional first-order transition.

It is worth noting that in the SMM and MMMC models an
otherwise dominant population of the gas phase is suppressed
by an ad hoc resetting of the gas interaction energy to zero
at any density. At the same time, these calculations artificially
enhance the relative weights of multifragment configurations
by an ad hoc setting of the nuclear incompressibility modulus
to infinity. As a result, in these models, the crossings of the
overestimated weight functions for many multifragment con-
figurations occur in the same excitation energy domain where
crossings would occur between entropy functions for different
liquid-gas compositions, obscuring possibly a true first-order
liquid-gas transition. It is of interest to have SMM- or MMMC-
type calculations performed for “numerical” matter with a
more realistic effective EOS to see whether such more realistic
model matter would still be predicted to “clusterize” (via
evaporation and nucleosynthesis) into various sets of IMFs
plus relatively few free nucleons floating in a “freeze-out”
volume. Alternatively, and more likely, such more realistic
matter would end up as a large, thermally expanded liquid
residue surrounded by a small amount of gas of interacting
nucleons. However, such interest is purely academic, as it is
not possible to confine a highly excited nuclear system to a
fixed spatial volume, as would be required to confirm or falsify
improved model predictions.

III. EXPERIMENTAL PHASE-TRANSITION-LIKE
SIGNATURES IN COULOMB FRAGMENTATION

As discussed briefly further above, Coulomb fragmentation
is a process similar to binary fission but generalized to
arbitrary saddle shapes, including multifragment shapes [15].
The process can be described approximately in terms of
microcanonical thermodynamics of an excited nuclear system,
which surface tension confines transiently to a finite domain of
6A-dimensional (A is the mass number) phase space or the sys-
tem phase space. This domain is delimited by a hypersurface
in phase space that includes all possible transition states, i.e.,
those defined by particle evaporation barriers or thresholds,
as well as the complete set of (multi-)fragmentation saddle
configurations. To achieve maximum entropy, microcanonical
equilibrium thermodynamics requires the system to explore
all energetically allowed microstates with equal a priori
probability. In the course of such an “exploration” and before
it is completed, the system reaches eventually a microstate
on the hypersurface of transition states that is connected
to an open decay channel. If this happens to be a particle
emission channel, a particle escapes while the residual system

evolves toward a new equilibrium characterized by accordingly
reduced energy and particle numbers. Depending on the
degree of the equilibration reached, the just-emitted particle
is viewed as an evaporated or as a pre-equilibrium ejectile.
However, if the transition state represents a fragmentation
saddle configuration, the system is driven toward scission,
all the while continuing its exploration of the accessible
phase space. The basic macroscopic phenomena associated
with equilibration are thermal expansion and thermal shape
fluctuations. The latter are responsible for Coulomb fragmen-
tation, i.e., for bringing the system occasionally to a particular
saddle configuration from which it is dynamically driven
apart by Coulomb forces. The above picture is essentially
identical to a compound nuclear fission scenario and to the
IMF production scenario adopted in statistical decay models. A
novel observation made only recently [12] is that extra entropy
associated with the diffuse surface domain plays a critical role
in facilitating large and complex shape fluctuations.

A. Signatures of second-order phase transitions

The probability for an excited nuclear system to arrive at a
particular transition-state configuration is given by a respective
weight function identical to the one discussed further above
in the context of phase transitions of confined systems. The
weight functions for various transition-state configurations,
given by Eq. (3), intersect at different, characteristic excitation
energies. Because compact transition-states configurations are
characterized by low potential energies, their entropy functions
“take off ” already at low excitation energies that, however, are
insufficient for supporting higher potential energies associated
with more deformed transition-state configurations. However,
when with increasing excitation energy the entropy functions
for deformed configurations eventually do “take off,” they
grow at a rate superior to that for compact configurations.
As a result, the entropy (weight) functions for different
fragmentation channels cross and leave signatures reminiscent
of second-order phase transitions.

It is worth noting that the observation of Coulomb frag-
mentation phenomena is subject to an inherent experimental
filter that allows only the saddle configurations to pass but
not all those configurations that did not quite “make it”
to the saddle, i.e., configurations intermediate between the
deformed saddle and the spherical reference configurations.
However, to extract the true, and not just some apparent,
values of the interesting thermodynamical parameters from
experimental Coulomb fragmentation data from comparisons
with theoretical simulations, such simulations need to include
also the experimentally “invisible” configurations in the model
space. To reiterate a statement made previously, it is virtually
impossible to guarantee that deduced fine trends such as
an apparent negative heat capacity are not simply artifacts
resulting from the neglect of relevant configurations in the
model phase space.

In view of the fact that reasonably sized systems have a
large number of possible saddle shapes and corresponding
crossings of the respective weight functions, one may wonder
if, and under what circumstances, irregularities show up in the
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apparent trends in thermodynamic quantities inferred from
a cursory sampling via Coulomb fragmentation channels.
Obviously, crossing points of the configurational weight
functions are not distributed uniformly in energy. Rather,
their distribution is expected to exhibit statistical fluctuations,
including some local purely statistical bunchings. Sufficiently
strong bunchings of crossing points along the excitation
energy may show up as irregularities in an apparent caloric
curve and perhaps even simulate a negative heat capacity.
Such irregularities, however, should not be taken to signal
phase transitions or transitions from one preferred individual
fragmentation channel to another. Rather, such phenomena
reflect statistical fluctuations in the distribution of crossing
points in a fashion reminiscent of Ericson fluctuations [23] in
compound nucleus decay at low excitations.

B. Signatures of first-order phase transitions and criticality

An instructive view on first-order phase transitions in finite
nuclei can be obtained with the conventional definition of
phases as referring to parts of the system, which allows
one to consider one part of the system being in one phase
(liquid) and the other part in a different phase (gas). In
this approach, as was pointed out in Ref. [15], an excited
nucleus is inherently a two-phase system, consisting of liquid
quasiuniform bulk matter and diluted surface-domain matter.
Obviously, these two phases are characterized by different
densities, energies per nucleon, heat capacities, and even
pressures.

With increasing excitation energy, in a quest for maximum
entropy, the system seeks out an optimum macroscopic
configuration with increased effective level-density parameter
but at the cost of also increased potential energy. Note that
quite generally, an increase in level-density parameter signifies
a corresponding reduction in correlations: spatial, but also
pairing and shell correlations. An obvious way to achieve
maximum entropy leads through thermal expansion [12].
The other way leads through a transfer of matter from the
spatially more correlated bulk to the less correlated surface
domain, in what may be viewed as a true first-order liquid-gas
phase transition. Such transfer is effected at the cost of
increased potential energy in two distinctly different ways.
First, the surface area and diffuseness will increase with
increasing excitation energy. Second, and more importantly
from the experimental point of view, thermal shape fluctuations
grow in size with increasing excitation energy allowing one
to experimentally probe their reaching of transition state
deformations.

The presence of such a first-order, bulk-to-surface phase
transition manifests itself in the Coulomb fragmentation
excitation function as a fast succession of crossings of
weight functions for fragmentation saddle configurations with
successively increasing surface areas (see Fig. 5). This is a
true conventional first-order liquid (bulk)-gas (surface) phase
transition with latent heat represented by the amount of energy
needed to cause transfer of a certain amount of nuclear matter
from bulk to surface domain. With increasing excitation en-
ergy, the individual configuration entropy functions eventually

converge at a critical excitation energy, where the surface
tension vanishes. As a result of this convergence, the prob-
abilities of observing experimentally various multifragment
configurations will be governed by combinatorial principles
only, resulting in a power-law distribution of fragment masses
and, consequently, in an appearance of signatures of criticality.

While it is not obvious what can be learned from dis-
cussing Coulomb fragmentation in the framework of first-
order phase transitions, it appears likely that experimental
trends and patterns of this phenomenon reflect primar-
ily properties of the diluted, nonuniform nuclear surface
matter. Therefore, a better understanding of fragmentation
properties may help to detail the mapping of the EOS
of moderately diluted nuclear matter, including its isospin
dependence.

IV. DISCUSSION AND SUMMARY

It appears rather obvious that trends in apparent thermo-
dynamical quantities modeled in numerical simulations of
nuclear systems that sample only a fraction of the micro-
canonical or canonical phase space do not accurately represent
corresponding trends in their actual physical counterparts. This
observation poses the question of whether such model trends
reflect at least qualitatively the correct underlying physics and,
conversely, under what circumstances predicted model trends
in apparent quantities may even be qualitatively misleading.
The present study demonstrates that qualitative discrepancies
between physical processes and model interpretations are
likely to occur for phenomena involving phase transitions,
the very focus of many numerical modeling attempts. The
numerical examples discussed above show that an omission
of macroscopic configurations intermediate between those
associated with different phases depletes the partition function
selectively exactly in the excitation energy domain of interest
but not much beyond it. As a result of such a depletion,
one observes a deficit in apparent entropy (“convex intruder”)
and an apparent or false negative heat capacity in the model
calculations. No such deficit would be present in a calculation
performed with a more complete phase space and a proper
modeling of the containment vessel consistent with the second
law of thermodynamics.

While modeling of a confined system is of purely academic
interest, modeling the decay modes of excited nuclear systems
is of practical importance. This latter venture aims at a deeper
understanding of experimental observations rather than just
parameterizing them. For the first time, the present study
demonstrates that Coulomb fragmentation exhibits signatures
deceptively similar to those of phase transitions in confined
systems. Both sets of signatures are understood to reflect cross-
ings of respective weight functions with increasing system
excitation. Hence, this work offers a plausible explanation
why Coulomb fragmentation can easily be mistaken for a
nuclear phase transition in a confined system, a transition of
either first or second order. It is also important to note that,
not only in theoretical modeling but also in measurements
of binary or multifragment decay, only a fraction of the
relevant underlying phase space is sampled. Sampled are only
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saddle-point configurations but none of the “intermediate”
presaddle configurations. Therefore, also experimentally, one
can determine directly only apparent thermodynamic quan-
tities and their trends but not the trends in the true ther-
modynamic quantities describing the highly excited nuclear
systems. A more accurate determination of trends has to
rely on a comparison with simulations admitting a repre-
sentative, sufficiently large subspace of the full configuration
space.

Because of the large number of possible saddle con-
figurations in reasonably sized systems and because of
thermal fluctuations, it is unlikely for any single second-
order “phase” transition between two distinct saddle config-
urations to leave a distinct and unambiguous experimental
“fingerprint.” More likely, phase-transition-like signatures
are observable in Coulomb fragmentation when random,
statistical “bunching” of the crossing points of weight func-
tions for different saddle configurations occurs at certain
excitation energies. Such statistical fluctuations could result
in observable irregularities, e.g., on caloric curves, somewhat
reminiscent of Ericson fluctuations [23] in compound nucleus
decay.

While it is not yet clear, what there is to be learned
from the irregularities of apparent thermodynamic quantities
extracted from nuclear fragmentation data, it is clear that
an analysis of experimental data in terms of Coulomb
fragmentation (generalized fission) has important implications
for an understanding of properties and behavior of the surface
domain of excited nuclei. In particular, such data may allow
one to probe specifically the nuclear EOS of the diluted
surface domain matter and, separately, also that of bulk
nuclear matter diluted through thermal expansion. It is rather
obvious from the lessons of compound nuclear fission that
the stability of nuclear systems against fragmentation depends
critically on the presence and the properties of a diffuse surface
domain. As has been pointed out in Ref. [15] and further
above, because of the differences in average density, binding
energy, and level-density parameter between bulk and surface
matter, finite nuclei are inherently two-phase systems. As
the excitation energy of such a two-phase system is raised,
matter is transferred from the bulk to the surface domain,
which can be viewed as a true first-order liquid-gas phase
transition. It is also natural to expect that, at high excitation
energies, the surface tension generated by the density gradient
in the surface domain will vanish and give rise to critical
phenomena.

The signatures of Coulomb fragmentation can be probed ex-
perimentally in greater detail by studying excitation functions
for individual fragmentation channels. Because the process ap-
pears to be controlled by the manner in which weight functions
for various multifragment saddle shapes cross in succession,
the yield for individual fragmentation channels is expected to
exhibit a rise and fall with increasing excitation energy. (See
Fig. 4, middle, Gaussian-like curve.) This may potentially
open a completely new venue of experimental exploration
of Coulomb fragmentation: spectroscopy of multifragment
saddle configuration, where the excitation functions for various
channels are studied, e.g., as functions of fragment sizes and
isospins. Furthermore, it may be possible to use the location

of the peaks in various yields on the energy scale as a measure
of excitation energy, i.e., as a tool of calorimetry of highly
excited nuclei. Also, there must be situations, where two or
more weight functions run quasiparallel avoiding each other
but crossing some other weight functions. This effect will
give rise to gentle Boltzmann-like scalings for some relative
yields embedded in phase-transition-like scalings of some
other yields. This situation may arise when two saddle shapes
differ in isospin but not so much in surface area, leading to
isoscaling.

With the above experimental opportunities in mind, a more
coordinated theoretical effort appears warranted aiming to
achieve a better quantitative understanding of the evolution
of the properties of the surface domain with excitation energy
[17,18] and other variables. To understand nuclear dynamics
on a deeper level, it is important to assess the morphing of
quasisymmetric binary fission first into asymmetric binary
Coulomb fragmentation and then into multiple fragmenta-
tion. Such an effort would also advance thermodynamic
theory of small open quantal systems inherently endowed
with diffuse surface domains—a valuable goal in its own
merits.

Finally, it is worth noting that, while the physics underlying
the present schematic model differs conceptually from that
reflected implicitly in the “benchmark” multifragmentation
models SMM [5] and MMMC [6], the formal basis of all
three models is the same [15]. It is expressed in the fact that
more fragmented (i.e., less correlated) spatial configurations
show higher entropy production rates (larger effective level
density parameter a) and thus are able to “catch” up in
terms of entropy (as excitation energy is increased) with more
correlated but less fragmented configurations. In the present
model, the extra catch-up entropy is produced for fragmented
configurations due to their larger total surface domain. In SMM
[5] and MMMC [6] models, however, extra entropy comes
from the implicit thermal motion of spherical constituents of
fragmented state within a hypothetical oversize confinement
vessel—named as “freeze-out” volume. By adjusting the
volume of this latter invisible vessel, one fine-tunes the
magnitude of the extra entropy such that these models may
ultimately appear to provide fits to selected experimental data.
It is interesting to note that when moderately time averaged,
such thermal motion of the spherical fragments produces
an effective matter distribution that emulates the diffuseness
of the surface domain of the actual matter distribution and
emulates also complex multifragment saddle geometries.
Consequently, to a good extent, the extra entropy generated
by the fragment thermal motion is equivalent to the entropy
due to the diffuse surface domain of the matter distribution.
In fact, it is the latter observation that has inspired the
present effort of exploring the role of the surface diffuse-
ness in facilitating fragmentation of highly excited nuclear
systems.
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[10] J. Tõke and W. J. Swiatecki, Nucl. Phys. A372, 141 (1981).
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Schröder, Phys. Rev. C 72, 031601(R) (2005).
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