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Medium effects on intermediate-energy one-nucleon removal cross sections
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The influence of Pauli-blocking medium effects on intermediate-energy one-nucleon removal cross sections
for sd-shell nuclei have been investigated using density-dependent nucleon-nucleon interaction cross sections
within the S-matrix formalism under the Glauber approximation. All considered prescriptions for the density
dependence result in a reduction of the one-nucleon removal cross sections. The effect is smaller than 20% for
incident energies between 50 and 100 MeV/nucleon, and smaller than a few percent above 200 MeV/nucleon.
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I. INTRODUCTION

Direct nuclear reactions, collisions during which very few
nuclear degrees of freedom are modified, are commonly used
to access information on nucleonic shell occupancies through
the extraction of spectroscopic factors Sf . Spectroscopic
factors are defined as the overlap between populated final states
and the initial state of the wave function [1]. In the case of
single-orbit nucleon stripping reactions, they are determined
as the ratio of the measured cross section σexp to the theoretical
single-particle cross section σsp, Sf ∝ σexp/σsp, assuming the
reaction mechanism is correctly modeled. Several stripping
processes have been used to study ground-state properties
across the nuclear chart. Proton shell structure has been largely
studied via (e, e′p) knockout reactions on stable nuclei [2].
Shell structure of unstable nuclei can be investigated in inverse
kinematics by low-energy transfer reactions analyzed within
the distorted wave Born approximation (DWBA) or coupled-
channel formalisms [3] and by intermediate-energy nucleon-
removal reactions usually analyzed within the Glauber ap-
proximation [4]. These reactions have been shown to provide
rather consistent spectroscopic factors for stable or exotic
nuclei [5–7]. The question is still open regarding the stripping
of deeply-bound nucleons in very asymmetric systems [8].
In any case, uncertainties on the reaction mechanism impacts
directly the reliability of calculated single-particle cross sec-
tions, limiting our capability to extract absolute spectroscopic
factors.

Among the above mentioned experimental probes,
intermediate-energy nucleon removal reactions are a unique
and robust tool to perform the spectroscopy of very exotic
nuclei that are produced at intensities as small as a few particles
per second [9]. These reactions have been extensively used to
study very asymmetric systems displaying a large excess or a
deficiency of neutrons compared to stable isotopes. Single-
particle cross sections for such reactions can be evaluated
using the Glauber approximation. Such an approximation, for-
mulated within the S-matrix theory, is valid when the intrinsic
nucleon velocity is negligible compared to the projectile-target
relative velocity. It is considered fulfilled for energies above
∼30 MeV/nucleon [9]. Microscopic S-matrix calculations

rely essentially on two types of input: (i) nuclear densities
(target, projectile, and single-particle wave functions) and
(ii) the in-medium nucleon-nucleon (NN ) cross sections
[10,11] or a nucleon-nucleon, or nucleon-target, optical po-
tential to account for the stripping process [12]. The effect of
the kind of densities considered in S-matrix calculations on
knockout cross sections has been discussed for sd-shell nuclei
[13]. When densities from Skyrme energy density functional
(EDF) calculations are used, the final one-nucleon knockout
cross section may vary up to several percents depending on the
parametrization used. Moreover, deformation can modify the
single-particle cross sections by up to 30% for well deformed
systems [14,15].

The NN interaction to consider in the calculation is
expected to be modified in the nuclear medium compared
to the free case due to Pauli-blocking which partially reduces
the phase space of collisions, and due to the modification of
the single-particle properties of the nucleon at finite density.
Indeed, several authors have studied the in-medium NN

scattering problem using different approaches. There exists in
the literature calculations of the in-medium NN cross sections
based on the nonrelativistic Brueckner theory [16–22] as well
as its relativistic version, the Dirac-Brueckner theory [23–26],
or the variational method [27]. These medium effects can be
taken into account via a density dependence (DD) of the NN

interaction cross sections or of the effective nucleon-nucleon
optical potential. However, they are often disregarded in
the calculation of one-nucleon removal cross sections where
mainly free-space NN cross sections are considered. In the
specific case of two-neutron halo removal cross sections at
intermediate energies and total reaction cross sections on light
neutron-rich nuclei, their effect has already been studied and
shown to be small [28].

Using in-medium NN cross sections based on a Brueckner
calculation [22] and on two different parametrizations by Li
and Machleidt [24,25], and by Xiangzhou et al. [29], we study
in this paper the effect of the in-medium NN interaction on
one-nucleon removal reactions at intermediate energies on
sd-shell nuclei and evaluate its impact on single-particle cross
sections.
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II. FORMALISM

A. S-matrix formalism

In order to implement density-dependent effective NN

interaction cross sections in the S-matrix formalism, we
have developed a dedicated code that calculates one-nucleon
removal cross sections within the Glauber approximation.
Similar developments have been performed to investigate the
effect of density dependence on reaction cross sections [28].
In the following, we assume inverse-kinematics reactions.
The one-nucleon removal cross section is calculated using
the eikonal formalism [10,30] and consists of a stripping
and a diffractive part, i.e., σ = σstr + σdiff . The projectile
wave function |ψ〉 is defined as a core wave function |φC〉
complemented with the wave function of the removed nucleon
|φN 〉. Calculations are based on two main quantities: the elastic
S matrices for the core (SC) and the removed nucleon (SN ). In
an impact-parameter representation, the stripping part of the
cross section is calculated as

σstr = 2π

∫
bdb

∫
d�r |φN (�r)|2|SC(�bC)|2(1 − |SN (�bN )|2),

(1)

where �bC, �bN are the impact parameters of the core and of the
removed nucleon, respectively. The elastic S matrix for the
core-target system SC is defined from the target (T ) and core
densities as well as from the in-medium NN cross sections
σNN (E, ρ) that depends on both the incident energy and the
total density of the system, i.e., the sum of projectile and target
densities ρ = ρP + ρT . At an impact parameter �b, the S matrix
is defined as a phase shift SC(�b) = exp(iχC(�b)) with a complex
phase

χC(�b) = −
∫

dz

∫
d �r ′ σNN (E, ρ(�r ′)) ρC(�r ′) ρT (|�b − �r ′|),

(2)

where the density ρ is taken at point �r ′ and the trajectory of
the center of mass is considered as a straight line along the z

axis. We explicitly differentiate Tz = 0 and Tz = 1 interactions
by considering proton and neutron densities separately. The
diffractive part is obtained from the same S matrices as

σdiff = 2π

∫
bdb

{∫
d�r |φN (�r)|2 |(1 − SC(�bC)SN (�bN ))|2

−
∣∣∣∣
∫

d�r |φN (�r)|2(1 − SC(�bC)SN (�bN ))

∣∣∣∣
2
}

. (3)

We restrict our calculations to a zero-range NN interaction
in order to reduce the amount of space integrals since we
observe that the interaction range has a small impact on the
final nucleon-removal cross section for the cases we studied
in this work. In the case of the free (density-independent)
NN interaction cross section, Eq. (2) reduces to the usual
formulation. The SC matrix for the core-target system is
computed through the full four-dimensional integral of Eq. (2),
considering the various density dependences of the in-medium
NN interaction cross sections. The imaginary-to-real part ratio
of the interaction cross section, dependent on the incident

energy, is taken from Ref. [31]. For a 9Be target, a density
derived from quantum Monte Carlo calculations based on the
AV18 potential is considered [32] but our conclusions do not
vary if we consider a Gaussian matter density with a root
mean square of 2.36 fm. For reactions on a 12C target, we use
a Gaussian matter density with a root mean square of 2.32 fm.
The core density is obtained from a Skyrme-EDF calculation
with the Sly4 zero-range effective interaction [33] using the
HFBRAD code [34]. The removed-nucleon wave function is
calculated in a Woods-Saxon potential whose depth and radius
are fixed to reproduce the experimental separation energy of
the nucleon and mean-square radius of the corresponding
HF wave function. A similar equation to Eq. (2) is used
for the nucleon S matrix, exchanging the target density ρT

with the single-particle presence probability of the removed
nucleon. The S matrices give also access to reaction and
elastic-scattering cross sections.

The calculation of the multidimensional integrals to cal-
culate the phase shifts χ of Eq. (2) has been computed in a
four-dimensional box of 20 fm4. These integrals have been
discretized on a regular mesh with a δx = 0.2 fm integration
step. The influence of the step size on the reaction and
one-nucleon removal cross sections has been studied and
showed, for the studied cases, to be converged for δx = 0.4 fm
with a precision smaller than 1%. The numerical calculation
of the spatial integrals have been parallelized in order to be
performed in a reasonable time.

We first considered the free NN cross section from
Ref. [35] in order to determine the single-particle cross sections
for one-nucleon removal from 32Ar, 28S, 24Si, 46Ar, and 12C
and compared to corresponding published theoretical results
[6,8,13,36]. Our calculation agrees with the latter with a
mean deviation of 2% and no systematic trend is observed.
Discrepancies can be imputed to the differences of the
considered mean-field densities and numerical uncertainties
in the integral evaluations.

B. In-medium N N cross sections

In-medium NN interaction cross sections constitute one of
the basic ingredients in the calculation of the nucleon-removal
cross sections. In the present work, we have considered three
different sets of in-medium NN interaction cross sections:
(i) a set based on a microscopic nonrelativistic Brueckner-
Hartree-Fock (BHF) calculation of isospin asymmetric nuclear
matter performed by us [22] that uses the realistic Argonne
V18 nucleon-nucleon interaction [37] as an input in the
Bethe-Goldstone equation, (ii) a cross-section parametrization
based on the relativistic Dirac-Brueckner approach of Li and
Machleidt (L&M) [24,25] that uses the Bonn nucleon-nucleon
potential [38] as bare interaction, and (iii) a phenomenological
formula for in-medium NN cross sections developed by
Xiangzhou et al. (CX) [29]. The Coulomb force is neglected
in the three sets of calculations. We present in the following a
short review of our calculation and provide a few details about
the other two.

The scattering amplitude of two nucleons in the presence of
a surrounding nuclear environment is given, in the context of
Brueckner theory, by the Brueckner reaction matrix G which
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is obtained by solving the Bethe-Goldstone equation

Gτ1τ2;τ3τ4 (ω) = Vτ1τ2;τ3τ4 +
∑
ij

Vτ1τ2;τi τj

× Qτiτj

ω − ετi
− ετj

+ iη
Gτiτj ;τ3τ4 (ω), (4)

where τ = n, p indicates the isospin projection and the linear
momentum of a nucleon in the initial, intermediate, and
final state, whereas V denotes the bare NN interaction, in
our case the Argonne V18 potential, and Qτiτj

the Pauli
operator that allows only intermediate states compatible with
the Pauli principle. ω designates the so-called starting energy
that corresponds to the sum of nonrelativistic energies of the
scattered nucleons. The single-particle energy ετ of a nucleon
with momentum �k is given by

ετ (�k) = h̄2k2

2mτ

+ Re[Uτ (�k)], (5)

where the single-particle potential Uτ (�k) represents the mean
field “felt” by a nucleon due to its interaction with the other
nucleons of the medium. In the BHF approximation, U (�k)
is calculated through the “on-shell energy” G-matrix, and is
given by

Uτ (�k) =
∑
τ ′

∑
|�k′|<kF

τ ′

〈�k�k′ | Gττ ′;ττ ′(ετ (k) + ετ ′(k′)) | �k�k′〉A,

(6)

where the sum runs over all neutron and proton occupied states
and where the matrix elements are properly antisymmetrized.
It is worth mentioning that in the case of two reacting nuclei
such as considered here, the relative velocity of the target and
projectile matter densities is not considered in the microscopic
determination of Pauli-blocked states. Note that Eqs. (4) and
(6) are coupled due to the occurrence of Uτ (�k) in Eq. (5)
and, therefore, they have to be solved self-consistently. Once
self-consistency is achieved, the total in-medium NN cross
section can be obtained from the G matrix as

σττ ′ = m∗
τm

∗
τ ′

16π2h̄4

∑
LL′SJ

2J + 1

4π

∣∣GLL′SJ
ττ ′;ττ ′

∣∣2
, (7)

where GLL′SJ
ττ ′;ττ ′ is the partial-wave projection of the on-shell

G matrix evaluated at the collision energy of the interacting
nucleons in the laboratory frame.

It is clear from Eqs. (4) and (6) that medium effects
on the NN cross sections arise from Pauli-blocking and
from the dispersive effect of the single-particle potential.
In our BHF calculation, however, we have considered only
medium effects associated with Pauli-blocking in order to
make the analysis of the results simpler. We have solved
the Bethe-Goldstone equation taking into account only kinetic
energies in the particle-particle propagator, and the effective
masses appearing in Eq. (7) have been taken equal to the
bare nucleon mass. It is expected that the use of the effective
masses will lower the in-medium NN cross sections in
comparison to the free case and in addition to the reduction
induced by Pauli-blocking. However, evaluating the effect

of the single-particle potential is not so obvious, since, due
to its momentum dependence [see Eq. (6)] and the energy
dependence of the G matrix [see Eq. (4)], it can induce either
an increase or a decrease of the in-medium NN cross sections
compared to the free case. As this effect is not straightforward,
it requires a more careful analysis that will be addressed in a
future work.

The second considered calculation, quoted as L&M in
this paper, uses the Bonn potential in a relativistic Dirac-
Brueckner calculation for symmetric nuclear matter in which
the effective nucleon scalar and vector fields are obtained in
a self-consistent way together with the so-called G̃ matrix by
solving the in-medium Thompson equation (relativistic Bethe-
Goldstone equation). The in-medium NN cross sections are
then calculated in terms of the partial-wave G̃ matrix elements
and, finally, fitted by a semi-empirical formula that includes
the dependence on the incident energy (ranging from 50 to
300 MeV) and on the total density of nuclear matter (up to
2–3ρ0).

The third considered calculation (CX) uses a phenomeno-
logical formula for the in-medium NN interaction cross
sections which combines the energy dependence (from
10 MeV to 1 GeV) of the free-space NN interaction cross
section of Charagi and Gupta (C&G) [35] with the L&M
parametrizations.

Finally, we note here that the in-medium NN cross sections
based on our BHF calculation depend also on the isospin
asymmetry (i.e., different neutron and proton densities),
whereas the other two sets do not include such a dependence.
In Fig. 1 we show for comparison the results for the in-medium
neutron-proton cross section obtained from the three sets
of calculations in function of the incident energy. The full
lines show the free-space results, whereas the dashed ones
correspond to a density of ρ = 0.1 fm−3. From 10 MeV
to 300 MeV, our calculations and the CX parametrization
are in good agreement with the experimental data. In this
region, the L&M parametrization is, in comparison, quite
far from the experimental points. At higher energies the CX
parametrization, that is obtained from a fit on experimental
data up to 1 GeV, sticks to the data whereas our calculation
shows a disagreement which increases with energy. This
disagreement is expected since our calculation is based on the
AV18 potential derived from nucleon-nucleon experimental
scattering data up to 300 MeV. The DD effect on the
NN -interaction cross section is also very different from one
prescription to another. The L&M parametrization shows a
50% reduction of σnp from ρ = 0 fm−3 to ρ = 0.1 fm−3,
whereas the DD effect is more moderate for the two other
prescriptions. In our work, σnp does not depend significantly
on the density above 300 MeV meaning that there are no
Pauli-blocked states at these energies in our calculation.
On the contrary the CX parametrization shows a constant
reduction of about 20% from ρ = 0 fm−3 to ρ = 0.1 fm−3

over the whole energy range from 10 MeV to 1 GeV.

III. RESULTS

To illustrate generic trends due to the introduction of
density-dependent NN cross sections, we first detail the
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FIG. 1. (Color online) Neutron-proton cross sections obtained
from our BHF calculation [22] and the parametrizations of Li and
Machleidt [24,25] and of Xiangzhou et al. [29]. (Top panel) From 10
to 100 MeV. (Bottom panel) From 100 to 1000 MeV. Experimental
data are taken from [39–41].

specific case of the one-neutron removal from 24Si on a 9Be
target. Nevertheless similar conclusions have been obtained for
other sd-shell nuclei, for both proton and neutron knockout,
and are presented at the end of this section.

24Si has the particularity to be at the proton dripline.
The proton separation energy is Sp = 3.304 MeV, whereas
neutrons are well bound with a separation energy of Sn =
21.09 MeV. The variation with energy of the reaction cross
section σr is shown in panel (a) of Fig. 2. All parametrizations,
with the exception of the one of L&M, are within a few
percents of the reaction cross sections calculated with the
free NN interaction of C&G [35] over the whole considered
energy range. The dominant part of the reactions occurs at the
nuclear surface where the density effects are negligible. Such
a small impact on σr is consistent with the conclusions of
Ref. [28].

Single-particle one-neutron removal cross sections have
been calculated for a d5/2 neutron with a separation energy Sn

corresponding to the last filled orbital. For all considered NN

interaction cross sections the calculated one-nucleon knockout
cross sections increase with energy up to ∼250 MeV/nucleon
and remain almost constant beyond [see panel (b) of

FIG. 2. (Color online) (Top) Reaction cross section of 24Si +
9Be for different energies ranging from 30 MeV/nucleon to
1 GeV/nucleon. (Middle) One-neutron removal cross section
24Si(9Be,X)23Al as a function of incident energy. (Bottom) Effect
of the density dependence of the in-medium NN interaction
(in %) as a function of incident energy. Three different density-
dependent NN interaction cross section calculations are compared
(see text).

Fig. 2], due to the slow increase of σNN with energy beyond the
two-pion production threshold. At high energy, calculations
based on L&M and our BHF approach reach asymptotically
the free NN interaction case, as expected. On the other
hand, the calculations based on the CX parametrization do
not converge to the free NN interaction case and it seems
to be linked to a limit of the parametrization which does
not converge to the predictions at ρ = 0 for high incident
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energies, as previously mentioned. The largest differences
are observed at lower energies, below 200 MeV/nucleon. All
density-dependent calculations give cross sections below the
free-interaction prediction. For example, at 85 MeV/nucleon,
the free calculation is 14.0 mb whereas DD predictions are
11.9, 12.9, 13.2 mb for L&M, CX, and our BHF approach,
respectively. These differences between free and density-
dependent interaction predictions do not only come from
the density dependence but also from the initial differences
between the considered NN interaction cross sections at zero
density. In order to really pinpoint the effect of the density
dependence, we compared the variations of the one-nucleon
knockout cross sections, for each considered NN interaction,
with its full density dependence and without, i.e., with the
NN interaction cross section taken at ρ = 0 [see panel (c) of
Fig. 2]. In all cases, the density dependence lowers the
knockout cross section but the DD effect becomes negligible
at incident energies above 300 MeV/nucleon. Again, in the
case of the CX parametrization, the DD effect does not vanish
at large energies because of the parametrization itself. In the
case of our BHF calculations, a good asymptotical behavior
is observed, thus we only focus on this prescription in the
following.

In order to illustrate the effect of Pauli-blocking medium
effects that one should expect on typical intermediate-energy
knockout experiment results, we performed similar calcula-
tions for several other nuclei within or close to the sd shell,
considering the knockout of nucleons from orbitals with
different � values (s, d, or f ). We restrict ourselves to systems
studied at intermediate energies at the NSCL and GANIL in
order to evaluate the average impact of such density effects on
existing data. We gather in Table I our one-nucleon knockout
estimates with and without DD for a set of reactions. The
same conclusions as for 24Si can be drawn. At energies ranging
from 55 to ∼90 MeV/nucleon, the DD effect on one-nucleon
knockout cross sections start from 6% to 21%. The studied

TABLE I. Summary of the results for one-proton and one neutron
knockout calculations with σNN (E, ρ) based on our BHF approach
[22]. Given are the projectile type, its incident energy, the � of the
removed nucleon, the single-particle cross sections calculated with
σNN (E, ρ), and with σNN (E, ρ = 0) and the difference between
both.

Projectile Target E

(MeV/nucleon)
n�j σsp

(mb)
σsp

(ρ = 0)
(mb)

δ (%)

Neutron knockout
24Si 9Be 85.3 1d5/2 13.2 14.1 6.4
32Ar 9Be 65.1 1d5/2 8.4 9.5 11.2
46Ar 9Be 70.0 1f7/2 11.1 12.5 11.3
26Ne 9Be 83.0 2s1/2 24.9 28.4 12.3
16C 12C 55.0 1d5/2 30.8 38.8 20.6
20O 12C 62.0 1d5/2 18.9 23.2 18.5

Proton knockout
24Si 9Be 85.3 1d5/2 21.1 23.3 9.6

FIG. 3. (Color online) Evolution of the proton knockout cross
sections at 80 MeV/nucleon along the calcium isotopic chain for the
different parametrizations of σNN .

cases cover a large range of asymmetry,1 from the removal of
very weakly bound to very well bound nucleons. No systematic
trend with asymmetry is observed.

Indeed, one may wonder how the density dependence
varies, at a given incident energy, for systems with different
asymmetry. From a naive point of view, one could expect
the effect of the DD to be larger for deeply-bound nucleon
removal in exotic nuclei, i.e., from a wave function inside the
core density. Single-particle removal cross sections for d3/2

protons in calcium isotopes ranging from A = 40 to A = 52
at 80 MeV/nucleon are shown in Fig. 3 for all previously
considered NN interaction cross sections. As expected, the
one-nucleon removal cross section decreases with the mass of
the isotopes since the πd3/2 wave function is more and more
embedded inside the bulk of the nucleus. The DD effect is
shown in the bottom panel of Fig. 3 and has a mean effect of
10% except for the L&M parametrization (25%) as in the case
of 24Si [see Fig. 2 panel (c)]. Nevertheless, all DD calculations
lead to the same conclusion: the reduction of the one-proton
knockout due to Pauli-blocking does not vary over a mass range
covering a 12-neutron difference. We therefore conclude that

1In this context, we define the asymmetry of a nucleus by the
difference of its neutron and proton separation energies as in Ref. [13].
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this effect does not play a role in the reduction trend mentioned
by Gade et al. [8].

IV. CONCLUSIONS

We have performed calculations of single-particle cross
sections for one-nucleon removal reactions at intermediate
energies using in-medium NN cross sections based on a
BHF calculation of isospin asymmetric nuclear matter [22],
and on two different parametrizations from L&M [24,25]
and CX [29]. The nucleon-removal calculations have been
performed within the S-matrix formalism under the Glauber
approximation. In our BHF approach, we have taken into ac-
count only kinetic energies when solving the Bethe-Goldstone
equation as well as bare nucleon masses in order to consider
only medium effects in the NN cross sections associated with
Pauli-blocking. The relative velocity of the two interacting
nuclei is not included in the determination of the Pauli-blocked
states when the NN interaction cross section is derived. The
effect of the single-particle potential, the effective masses and
the effect of the relative velocity between target and projectile

matter densities on the Pauli-blocked state distribution should
be addressed in a future work. Results obtained with our
BHF approach show the right asymptotic behavior at high
incident energy, which validates this approach for forthcoming
calculations. We have observed that in general the inclusion of
a realistic density-dependence in the NN interaction decreases
the single-particle cross section up to 20% for incident energies
higher than 50 MeV/nucleon, which is of the same order as the
variation brought by other sources of uncertainty. These effects
are predicted to be reduced to less than a few percents at higher
incident energies �200 MeV/nucleon. The present formalism
allows to estimate the Pauli-Blocking medium effects in the
extraction of absolute spectroscopic factors from one-nucleon
removal experiments at intermediate energies.
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