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tin isotopes based on the soft-rotator model

Jeong-Yeon Lee,1,* Insik Hahn,2 Yeongduk Kim,3 Seung-Woo Hong,1,4 Satoshi Chiba,5,6 and Efrem Sh. Soukhovitskii7
1Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

2Department of Science Education, Ewha Womans University, Seoul 120-750, Korea
3Department of Physics, Sejong University, Seoul 140-747, Korea

4Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
5Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195, Japan

6National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
7Joint Institute for Energy and Nuclear Research-Sosny, Minsk-Sosny 220109, Belarus

(Received 23 February 2009; published 23 June 2009)

The soft-rotator model is applied to self-consistent analyses of the nuclear level structures and the nucleon
interaction data of the even-even Sn isotopes, 116Sn, 118Sn, 120Sn, and 122Sn. The model successfully describes
low-lying collective levels of these isotopes, which exhibit neither typical rotational nor harmonic vibrational
structures. The experimental nucleon interaction data—total neutron cross sections, proton reaction cross sections,
and nucleon elastic and inelastic scattering data—are well described up to 200 MeV in a coupled-channels optical
model approach. For the calculations, nuclear wave functions for the Sn isotopes are taken from the nonaxial
soft-rotator model with the model parameters adjusted to fit the measured low-lying collective level structures.
We find that the β2 and β3 deformations for incident protons are larger than those for incident neutrons by ∼15%,
which is clear evidence of the deviation from the pure collective model for these isotopes.
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I. INTRODUCTION

Analyses and understanding of nuclear level structures and
nucleon interaction data for Sn isotopes are not only interesting
but also useful, because Sn is a component of nuclear reactor
materials and a candidate material for superconducting mag-
nets in fusion reactors. From the theoretical perspective, the
Sn isotopes have usually been considered as vibrational nuclei;
therefore, most calculations of nucleon interaction cross sec-
tions for these nuclei using coupled-channels or distorted-wave
Born approximation (DWBA) formalism have usually been
performed using the harmonic vibrational model. However,
the energy splittings of the yrast 0+, 2+, 4+, and 6+ levels
for these nuclei are too irregular to be considered as harmonic
vibrational states. Sn isotopes are single-closed-shell nuclei of
Z = 50 with many interesting features. Therefore, it is inter-
esting to see whether the calculations using a self-consistent
coupled-channels (CC) optical model [1] may produce differ-
ent nuclear deformations for different external probes (protons
or neutrons) for Sn isotopes, as predicted in Ref. [2].

In the present work, we employ the soft-rotator model [3,4]
to describe the collective level structures of the even-even
116–122Sn isotopes. The present soft-rotator model includes
the nonaxial quadrupole, octupole, and hexadecapole defor-
mations, and the β2, β3, and γ vibrations [3,4]. The model
allows us to identify not only collective levels of positive
parity bands but also those of negative parity bands, which
are associated with octupole surface vibrations. The essential
difference between the present optical model coupled-channels
approach and the ones that conventionally use rotational or
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vibrational models [1] is that we consider, simultaneously,
rotations and quadrupole and octupole vibrations of nonaxial
nuclei. Therefore, our expressions for the coupling matrix
elements involve the corresponding overlap integrals of the
wave functions over the appropriate deformation, which
describes vibrational motions. This enhances the coupling of
channels in comparison with the results predicted by rotational
model cases [1]. Conventional CC models need to keep
different deformations for different pairs of levels to describe
experimental cross sections for excited levels, while in our
model such difference appears naturally through “effective”
deformations. Therefore, the softness of a nucleus leads to
redistribution of the flux of scattered particles among the
channels. Furthermore, the present soft-rotator model is self-
consistent in that the parameters of the nuclear Hamiltonian
are determined by fitting the calculated energies of collective
levels to the evaluated nuclear structure data and that the wave
functions from such a nuclear Hamiltonian with parameters de-
scribing low-lying collective levels are used to build coupling
in the coupled-channels optical model calculations. This model
has been quite successful in describing the low-lying collective
excitations, nucleon interaction data, and electromagnetic
transitions for a heavy rotational nucleus of 238U [5], a light
nucleus 12C [6,7], and the vibrational nuclei 58Ni [8], 56Fe [9],
and 52Cr [10]. Since the coupling strength involved in such
CC optical model calculations already takes into account
nuclear level structure effects, the optical model parameters
are expected to be free from such effects, and thus this model
is suitable for the systematic determination of optical model
parameters when coupled-channel effects are significant.

It is our aim to consistently describe the collective nuclear
structures and nucleon scattering properties of the 116–122Sn
even-even isotopes in the framework of the self-consistent
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soft-rotator model. Section II sketches the soft-rotator model
applied to the analysis of the collective level structures of the
116–122Sn even-even isotopes. In Sec. III, CC optical model
calculations based on wave functions from the soft-rotator
nuclear model are applied to analyze all nucleon interaction
data available for the Sn even-even isotopes. Section IV shows
the dependence of Sn isotopes deformations on the incident
probe. Conclusions follow in Sec. V.

II. DESCRIPTIONS OF LOW-LYING COLLECTIVE LEVEL
STRUCTURES FOR Sn EVEN-EVEN ISOTOPES

The observed low-lying collective levels of even-even Sn
isotopes with A = 116, 118, 120, and 122 are described
by adjusting the Hamiltonian parameters in the soft-rotator
nuclear model. The assignment of the soft-rotator model
quantum numbers to the experimental low-lying collective Sn
levels is done by following Ref. [11]. We take the first levels
with spins and parities Jπ = 0+

1 , 2+
1 , 4+

1 as the members of the
ground state (g.s.) rotational band with K � 0, nβ = nγ = 0.
The first Jπ = 3+

1 levels are assigned as members of the K �
2, nβ = nγ = 0 band. The second Jπ = 0+

2 levels are taken
as the heads of the K � 0, nβ = 1, nγ = 0 band. The third
Jπ = 0+

3 and Jπ = 2+
3 levels are considered as levels of the

K � 0, nβ = 0, nγ = 1 positive parity rotational band, and the
first 3−

1 levels as collective levels of K � 0 negative parity band
associated with octupole surface vibrations. Such assignments
allow us to find soft-rotator Hamiltonian parameters. The
nuclear Hamiltonian parameters for 116,118,120,122Sn are given
in Table I. (The detailed definition of these parameters can be
found in Refs. [4,6].) One can see that Sn isotopes are very
soft to β2 and γ deformations. The softness µβ20 is found to
be 3.306 for 116Sn and is smoothly decreasing to 2.324 for
122Sn, thus implying that Sn isotopes are very soft but become
relatively more rigid as mass number increases.

Figure 1 compares the theoretically predicted nuclear
energy levels with the experimental ones for the isotopes 116Sn,
118Sn ,120Sn, and 122Sn. For each Sn isotope, we can produce
nine levels out of approximately 10–12 levels observed up
to 2.4 MeV in excitation energy. In all these isotopes, we

TABLE I. Nuclear Hamiltonian parameters adjusted to reproduce
the experimental nuclear energy levels for the four even-even Sn
isotopes. h̄ω0 is in MeV; other quantities have no dimension.

116Sn 118Sn 120Sn 122Sn

h̄ω0 1.0005 1.0228 1.0610 1.0996
µβ20 3.3060 3.0160 2.5955 2.3241
µγ0 4.7600 4.7600 4.7600 4.7600
γ0 0.5632 0.4310 0.4120 0.4011
a32 0.0049 0.0049 0.0049 0.0049
γ4 0.0939 0.0939 0.0939 0.0939
δ4 0.6972 0.6972 0.6972 0.6972
a42 0.3500 0.3500 0.3500 0.3500
µε 1.9310 1.4554 1.1829 1.0665
η 0.0422 0.0276 0.0802 0.0473
δn 1.4016 1.7318 2.0042 2.1818

are unable to produce the energy sequence of 5−
1 levels,

which are observed experimentally at energies lower than
3−

1 ones. Theoretically predicted energies of Sn levels other
than 5−

1 are in good agreement with the experimental ones.
Rotational structures are not very prominent in Sn isotopes;
nevertheless, for each isotope we can describe at least five
first low-lying collective levels, with average energy prediction
accuracy better than 5%, and some other levels lying above,
necessary for creating the coupling scheme of coupled-channel
calculations.

III. OPTICAL MODEL CALCULATION FOR NUCLEON
INTERACTION DATA

A. Nuclear shapes and nuclear optical potential

We assume that the excited states observed in even-even
nonspherical nuclei can be described as combinations of rota-
tion, β-quadrupole and octupole vibrations, and γ -quadrupole
vibrations. Instantaneous nuclear shapes that correspond to
such excitations can be presented [12,13] in a body fixed
system as

R(θ ′, ϕ′) = R0

⎧⎨
⎩1 +

∑
λµ

βλµYλµ(θ ′, ϕ′)

⎫⎬
⎭ . (1)

Multipoles of deformed nuclear optical potentials are usually
considered to arise from deformed instantaneous nuclear
shapes of Eq. (1). We can expand such a potential with
a deformed radius in a Taylor series considering the term∑

λµ βλµYλµ(θ ′, ϕ′) to be small,

V (r, R(θ ′, ϕ′)) = V (r, R0) +
max∑
t=1

∂tV (r, R)

∂Rt

∣∣∣∣
R(θ ′,ϕ′)=R0

× Rt
0

t!

⎛
⎝∑

λµ

βλµYλµ(θ ′, ϕ′)

⎞
⎠

t

, (2)

in which the body fixed coordinates can be easily converted to
the laboratory ones, that is,

Yλν(θ ′, ϕ′) =
∑

ν

Dλ∗
µνYλµ(θ, ϕ), (3)

with the optical nuclear potential taken to be the standard form

V (r) = −VRfR(r) + i4WDaD

d

dr
fD(r) − WV fV (r)

+
(

h̄

µπc

)2

(Vso + iWso)
1

r

d

dr
fso(r)σ · L + VCoul(r),

(4)

with the form factors of a Woods-Saxon type.
For the Coulomb potential VCoul(r), an expansion with

evident dependences of deformations becomes possible as we
follow the suggestion of Satchler et al. [14], using a multipole
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FIG. 1. Comparison of the theoretical and experimental nuclear levels for 116,118,120,122Sn nuclei. The experimental levels denoted with
thin lines are not included in the present calculations. The Roman numbers denote the bands with the following quantum numbers:
(i) K � 0, nγ = nβ2 = nβ3 = 0; (ii) K � 0, nγ = nβ3 = 0, nβ2 = 1; (iii) K � 2, nγ = nβ2 = nβ3 = 0; (iv) K � 0, nγ = nβ2 = nβ3 = 0;
(v) K � 0, nγ = 1, nβ2 = nβ3 = 0.

expansion of the Coulomb potential VCoul for the charged
ellipsoid with a uniform charge density within the Coulomb
radius RCoul. Up to the second order of

∑
βλµYλµ, it becomes

VCoul = ZZ′e2

2Rc

[
3 − r2

R2
c

]
θ (RCoul − r) + ZZ′e2

r
θ (r − RCoul)

+
∑
λµ

3ZZ′e2

2λ + 1

[
rλR

−(λ+1)
Coul θ (RCoul − r)

+Rλ
Coulr

−(λ+1)θ (r − RCoul)
]
(βλµYλµ)

+
∑
λµ

3ZZ′e2

2λ + 1

[
(1 − λ)rλR

−(λ+1)
Coul θ (RCoul − r)

+ (λ + 2)Rλ
Coulr

−(λ+1)θ (r − RCoul)
]

×
∑
λ′λ′′

λ̂′λ̂′′

(4π )1/2λ̂
(λ′λ′′00 | λ0)

∑
µ

(βλ′ ⊗ βλ′′)λµ Yλµ,

(5)

where λ̂ = (2λ + 1)1/2, while the symbol ⊗ means vector
addition, i.e.,

(βλ′ ⊗ βλ′′ )λµ =
∑
µ′µ′′

(λ′λ′′µ′µ′′ | λµ)βλ′µ′βλ′′µ′′ , (6)

and θ (r) = 1 if r > 0 and θ (r) = 0 if r < 0.
The Coulomb potential used in the present work introduces

some modifications to Eq. (5). The spherical term in Eq. (5) is
calculated taking into account the diffuseness of the charge
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distribution. Because our model involves quadrupole, oc-
tupole, and hexadecapole instantaneous nuclear deformations,
the expansion of the Coulomb potential can in principle result
in additional coupling strength between collective states with
angular momentum transfer of 0 to 8. However, in expanding
the Coulomb potential, we truncate the dynamic square terms
which lead to zero angular momentum transfer. This is
equivalent to introducing a dynamic negative deformation β00

in the radial expansion given in Eq. (1),

β00 = −
∑

λ

(−1)λ
λ̂

(4π )1/2
(βλ ⊗ βλ)00 , (7)

which is required as a condition to conserve the nuclear
volume, i.e., the nuclear charge [15]. This correction is
necessary to have the right asymptotic behavior for the
spherical term of the Coulomb potential, which must be equal
to ZZ′e2/r . The additional coupling due to the Coulomb
potential is obtained in the same manner as for the nuclear
one [6] with deformed radii as described above.

Since we intend to analyze the interaction data in a wide
energy region (at least up to 200 MeV incident energies)
for both neutrons and protons simultaneously, we use a
global form of the optical potential which incorporates the
energy dependence of the potential derived from the dispersion
relation of Delaroche et al. [16] and the high-energy saturation
behavior consistent with the Dirac phenomenology. The
imaginary components of this potential form vanish at Fermi
energy, a property stemming from nuclear matter theory. Such
an energy dependence allows data analysis without unphysical
discontinuities in the whole energy range of interest for both
neutrons and protons:

VR = (
V 0

R + V
disp
R e−(λ1RE∗+λ2R E∗2+λ3R E∗3)

)
×

(
1 + 1

V 0
R + V

disp
R

(−1)Z
′+1Cviso

A − 2Z

A

)
(8)

+CCoul
ZZ′

A1/3
ϕCoul(E

∗), (9)

WD =
[
W

disp
D + (−1)Z

′+1Cwiso
A − 2Z

A

]
e−λDE∗

× E∗2

E∗2 + B2
D

, (10)

WV = W
disp
V

E∗2

E∗2 + B2
V

, (11)

Vso = V 0
soe

−λsoE
∗
, (12)

Wso = W disp
so

E∗2

E∗2 + B2
so

. (13)

Here Bi (i = D,V, and so) denotes a width of the imaginary
dispersive potentials and E∗ = (Ep − Efm), with Ep the en-
ergy of the projectile and Efm the Fermi energy, determined to
be Efm(Z,A) = − 1

2 [Sn(Z,A) + Sn(Z,A + 1)] for neutrons
and Efm(Z,A) = − 1

2 [Sp(Z,A) + Sp(Z + 1, A + 1)] for pro-
tons. Here, Si(Z,A) denotes a separation energy of nucleon
i from a nucleus, while Z′, Z and A are charges of incident
particle and nucleus and nuclear mass number, respectively.
Since we intend to analyze neutron and proton scattering
data simultaneously, we keep unique optical potentials for

nucleons with a form suggested by Ref. [16] plus a term
CCoulZZ′/A1/3ϕCoul(E∗) describing the Coulomb correction
to the real optical potential and isospin terms added to
the real (−1)Z

′+1Cviso(A − 2Z)/Aϕviso(E∗) and imaginary
(−1)Z

′+1Cwiso(A − 2Z)/A · ϕwiso(E∗) surface potentials. We
assume that the dependences on the initial energy of the
real potential isospin term ϕviso(E∗) and imaginary isospin
term ϕwiso(E∗) follow the rate of real and imaginary surface
potential energy dependence [see Eqs. (8) and (10)], while
ϕCoul(E∗) is considered to be the negative of the derivative of
Eq. (8), so that

ϕCoul(Ep) = (λ1R + 2λ2RE∗ + 3λ3RE∗2)

×V
disp
R e−(λ1RE∗+λ2R E∗2+λ3R E∗3)

×
(

1 + 1

V 0
R + V

disp
R

(−1)Z
′+1Cviso

A − 2Z

A

)
.

(14)

All potential parameters are taken to be equal for neutrons
and protons. We consider that the Lane model [17] is valid,
and therefore the neutron-proton optical potential difference
of the suggested potential stems from the isospin terms, from
the Coulomb correction added to the real central potential, and
from the neutron-proton Fermi energies.

Since energy losses due to the collective excitation of levels
are expected to be non-negligible compared to the nucleon
incident energies, the dependence of the local optical potential
for different channels is taken into account, i.e.,

Vif = V

(
Ep − Ei + Ef

2

)
,

where Ei and Ef are the corresponding energy levels of
initial and final channels, respectively. And our nonrelativistic
Schrödinger formalism takes into account relativistic general-
ization suggested by Elton [18]. The nucleon wave number k

is taken in the relativistic form

(h̄k)2 = [E2 − (Mpc2)2]/c2,

where E denotes the total energy of the projectile, Mp the
projectile rest mass, and c the speed of light. To allow
nonrelativistic motion of the target with rest mass MT , incident
particle mass Mp is changed by relativistic projectile energy E

in the reduced mass formula, so that the quantity k and optical
potential values are multiplied by a coefficient:

1

1 + E/(MT c2)
.

Following Elton’s [18] suggestions, we multiply the optical
potential values (except the spin-orbit component) by a factor
K(E), as a relativistic generalization of the optical potential
behavior; Elton [18] suggests K(E) = E/(Mpc2). However,
this factor increases without limit as the projectile energy
E increases. We alternatively use the factor suggested by
Madland [19], K(E) = 2E/(E + Mpc2), which saturates at
the value of 2 as incident energy grows, as it is more physical
and allows easier fitting of experimental data. Of course,
optical potentials can, in any case, be fit to the experimental
data without such a multiplier, so that a relativistic correction
can be included in the fit. However, we agree with Elton [18]
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that “it is advantageous to separate out known relativistic
factor in the central potential,” as this may allow successful
extrapolation of optical potential from a low incident projectile
energy region to higher and vice versa. One can see that for
low energies, all these relativistic generalization factors have
the nonrelativistic kinematic limit.

B. Optical model calculations

Nuclear wave functions from the soft-rotator model with
the parameters for the nuclear Hamiltonian given in Table I
adjusted to describe the energies of low-lying collective levels,
are used for our CC calculations. Specifically, we couple the
collective levels 0+(g.s.), 2+

1 , 0+
2 , 2+

2 , 3−
1 , and 4+

1 , in our CC
optical model calculations. Positive parity levels with Jπ =
0+

3 , 2+
3 of K � 0, nβ = 0, nγ = 1, and Jπ = 3+

1 of K � 2,
nβ = nγ = 0 are not used in the CC optical calculations, as
they change the results much less than experimental errors.

In our calculations, pairs of the levels having the same
parity and levels themselves are coupled by all possible even
multipoles with angular momentum transfer up to 8h̄, and pairs
of levels with different parity are coupled by odd multipoles
with angular momentum transfer up to 7h̄. The Coulomb
interaction enhances the coupling in all the pairs of levels
except between 0+ and 0+

2 states (as square terms that lead
to Coulomb potential zero multipoles are truncated), so these
levels are coupled by the nuclear potential only. We emphasize
that in our model, levels from various bands are coupled not
only with the g.s. band but also with each other without any
additional assumptions. Such a feature is absent in most of the
previous analyses.

Optical potential parameters were determined by minimiz-
ing the quantity χ2 defined by

χ2 = 1

N + M

⎡
⎣ N∑

i=1

1

Ki

Ki∑
j=1

(
dσ calc

ij /d� − dσ
exp
ij /d�

�σ
exp
ij /d�

)2

+
M∑
i=1

(
σ calc

tot,i − σ eval
tot,i

�σ eval
tot,i

)2
⎤
⎦ , (15)
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FIG. 2. Comparison of the theoretical and experimental total
neutron (open points and solid line) and proton (solid points and
dashed line) cross sections for 120Sn up to 200 MeV neutron incident
energy.

where N is the number of experimental scattering data sets,
Ki number of angular points in each data set, M number of
energies, for which evaluated total neutron cross section is
available. The final overall χ2 is 3.8, 10.3, 5.7, and 4.7 for
116Sn, 118Sn, 120Sn, and 122S, respectively. This indicates that
the experimental data are described within approximately
1.9, 3.2, 2.4, and 2.2 standard deviations, respectively.
In searching for the optical potential parameters, all the
nuclear Hamiltonian parameters are fixed as in Table I. The
resultant optical potential parameters, allowing the best fit
to the experimental data, are presented in Table II. The
parameters are essentially the same for all Sn isotopes except

TABLE II. Optical potential parameters for the Sn isotopes allowing the best fit with the experimental
data. Potential strengths are in MeV; radii and diffusenesses in fm. Note that optical potential strengths,
except for the spin-orbit and Coulomb terms, must be multiplied by a factor K(E) = 2E/(E + Mpc2)
due to the relativistic generalization as discussed in the text.

V 0
R = −35.59–0.025A V

disp
R = 93.96

λ1R = 0.003904 λ2R = −0.00000054 λ3R = 0.000000031

W
disp
D = 13.89 BD = 11.15 λD = 0.0665

W
disp
V = 15.12 BV = 80.64 + 0.085A

V 0
so = 6.2 λso = 0.005

W
disp
so = −3.1 Bso = 160.00

rR = 1.2058 aR = 0.654
rD = 1.2393 aD = 0.580
rV = rR = 1.2058 aV = aR = 0.654
rCoul = 1.2518 aCoul = 0.340
CCoul = 1.27 Cviso = 16.0 Cwiso = 23.0
rso = 1.0837 aso = 0.59
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FIG. 3. Comparison of the theoretical and experimental angular distributions for neutrons elastically scattered by 116,118,120,122Sn. The solid
lines denote the calculated results.
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FIG. 7. Comparison of the theoretical and experimental angular distributions for protons scattered with 2+
1 level excitations of 116,118,120,122Sn.

for a small dependence of V 0
R and BV on the mass number.

We do not include scattered angular distribution data for
low nucleon interaction energies (lower than 7 MeV) in the
adjustment, because we cannot guarantee that the compound
interaction contribution to angular distributions is less than
the experimental errors and can be neglected. At the higher
energies considered, we therefore assume that the interactions
of nucleons with Sn isotopes proceed completely via a direct
mechanism, which can be described by the optical model.

Figure 2 shows the calculated total neutron cross sections
for 120Sn compared with the experimental data from 0.1 to
200 MeV incident energy for natural Sn [20]. Such comparison
is reasonable because 120Sn has the highest abundance in
natural Sn (about 34%) and total cross sections are to be
smoothly proportional to A1/3. One can see that theoretical
results are in good agreement with the experimental data over
the energy range. Proton reaction cross sections are also shown
in Fig. 2. We see that available experimental proton reaction
cross sections as well as the total neutron cross sections are
reasonably well described by using our potential.

Figure 3 shows the angular distributions for the neu-
tron elastic scattering cross sections for four tin isotopes,
116,118,120,122Sn. We can state that the soft-rotator approach
allows us to describe the angular distributions for the elastically
scattered neutrons.

Figure 4 shows the angular distributions of the cross
sections for the neutron inelastic scatterings leading to the 2+

1
excitation energies of 116,118,120,122Sn. For the most incident
energies, the calculated results show good agreement with
experimental data.

Figure 5 shows the angular distributions of the cross
sections for the neutron inelastic scatterings leading to the

3−
1 excitation energies of 116,118,120Sn. For 120Sn, we un-

derestimate angular distributions for neutron incident energy
9.993 MeV, probably because the compound process contri-
bution to this excitation was not accounted for. This difference
disappears at higher incident energies where such compound
contributions vanish.

Figure 6 compares our calculations and the available experi-
mental data for protons elastically scattered by 116,118,120,122Sn.
One can see that the elastic scattering data are well described
almost within errors for proton incident energies from 9.7 to
156 MeV.

Figure 7 shows the angular distributions of the cross
sections for the inelastic scatterings leading to the 2+

1 excitation
energies of 116,118,120,122Sn up to 61.5 MeV. The calculated
results show good agreement with experimental data over the
considered energy regions.

Figure 8 shows the angular distributions of the cross
sections for the inelastic scatterings leading to the 3−

1 excitation
energies of 116,118,120,122Sn. The calculated results are also in
good agreement with experimental data over the wide incident
energy regions from 20 to 61.5 MeV.

We mentioned above that we cannot describe the energy
sequence of 5−

1 levels of Sn isotopes because they are observed
at energies lower than those of 3−

1 levels. Nevertheless, we
tried to describe available experimental angular scattering
data with excitation of 5−

1 level of 122Sn, adding it to the
coupling scheme. Figure 9 compares such calculated results
and experiment data. Though predicted values are by a factor
of 2 lower than the experimental data for scattering angles
lower than 60◦, they can describe the experimental data for
the higher angles. We can conclude that the overall shape of
the theoretical angular distributions for the proton inelastic
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FIG. 8. Comparison of the theoretical and experimental angular distributions for protons scattered with 3−
1 level excitations of 116,118,120,122Sn.

scatterings leading to 5− excitation energy is almost the same
as the one of the corresponding experiment data.

IV. ANALYSES OF Sn NUCLEI β2 AND DEFORMATION
DIFFERENCES FOR PROTON AND NEUTRON PROBES

It was predicted that the measured deformation for pro-
ton (neutron) closed-shell nuclei would increase when the
nucleus is probed with protons (neutrons) compared to the
measurements with neutrons (protons) [2]. Sn isotopes are
proton closed-shell nuclei. To check this theoretical prediction,
we determine the best fit values for β2 and β3 deformations
with incident protons and neutrons. Since we perform a

10-5

10-4

10-3

10-2

 0  60  120  180

dσ
/d

Ω
 (

m
b/

st
r)

θ(deg)

122Sn(p,p’), 5-
1(2.24 MeV)

20.4 MeV

Van Hall et al., 1989

FIG. 9. Comparison of the theoretical and experimental angular
distributions for protons scattered with 5−

1 (2.240 MeV) level
excitation of 122Sn.

consistent coupled-channels optical model calculation using
the strongly coupled levels, we can simultaneously distinguish
the differences in both β2 and β3 deformations, free from
any errors associated with the missing coupling strength.
Deformations allowing the best fit for incident protons and
neutrons are presented in Table III; these are equilibrium values
and to obtain the “effective” deformation values, they must be
multiplied by enhancement factors [6,8], which are 4.25, 4.41;
3.89, 3.86; 3.39, 3.52; and 3.06, 3.15 for β2, β3 deformations
for 116Sn, 118Sn, 120Sn, and 122Sn, respectively. The relative
ratios of effective deformation values for neutrons and protons
are, however, the same as for the equilibrium ones.

We do find that the β2 deformations for all Sn isotopes are
higher for incident protons than for neutrons as the incident
probe: the average β2 difference for 116Sn, 118Sn, and 120Sn
is about 15%, while β3 for these Sn isotopes is also higher
by about 5%. β2 deformations determined in the present work
are much more accurate than those calculated with a DWBA
approach and more accurate than those calculated via simpler
CC calculations. For example, a CC calculation of 118Sn [21]

TABLE III. Deformation parameters of Sn isotopes allowing the
best fit with the experimental data.

Nuclide β20 β30 = β20ε0 β40

Neutrons Protons Neutrons Protons

116Sn 0.0246 0.0267 0.0504 0.0526 −0.080
118Sn 0.0291 0.0345 0.0471 0.0489 −0.060
120Sn 0.0336 0.0364 0.0433 0.0447 −0.094
122Sn 0.0347 0.0452 0.0350 0.0588 −0.012
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used a simple coupling scheme that ignored the contribution of
β3 deformations to the coupling of 0+(g.s.) with 2+

1 level. This
coupling is needed for a consistent approach, as it gives rise to a
second-order expansion of deformed radii β2µ ∼ (β3 ⊗ β3)2µ

and two step excitation through the 3− level. Determinations
of β3 deformations in our work are much more accurate for
the same reasons. While a 5% increase of β3 for protons is
close to the accuracy of our calculation, we still conclude that
β3 has the same tendency to increase as β2, but the impact of
the closed shell on it is very small.

Our calculated 122Sn neutron-proton β2 and β3 deformation
differences have the same tendency, but with a much larger
effect: 30% and 60%, respectively. For 122Sn, our results are
not so accurate, as they are based on experimental neutron
and proton measurements with a single incident energy.
Furthermore, for the neutron experimental scattering data, the
3− level excitation is unavailable, so the β3 deformation for
incident neutrons is determined by the impact on the elastic
and 2+

1 level excitation. As mentioned above, our consistent CC
approach allows this, but this approach leads to significantly
larger uncertainties in β3 values for 122Sn.

For a 118Sn nucleus, we can compare the effective β2 and
β3 deformations determined in the present work with those of
earlier works [21–23]. Our calculated effective β2 for neutrons
is 0.113, while it was determined to be 0.115 in Ref. [21];
for protons, our calculated effective β2 is 0.133, whereas it
was 0.134 in Refs. [22,23]. And our effective β3 for neutrons
is 0.183, while it was 0.172 in Ref. [21]; for protons, our
calculated effective β3 is 0.189, while it was 0.174 in Ref. [23].
One can see that our calculated β2 values agree very well with
the previous works, while the present work β3 values are 6%
greater than the old ones. This can be understood because their
3− level analyses [23] were based on DWBA calculations. In
the absence of 2+ level couplings, predictions of the 3− level
excitation result in a lower value of β3.

V. CONCLUSIONS

The CC calculations based on the soft-rotator nuclear
Hamiltonian wave functions are applied to simultaneously
analyze all data available for Sn even-even isotopes including
nuclear level structure, total neutron cross sections, and
nucleon elastic and inelastic scattering cross sections. The non-
axial quadrupole, octupole, and hexadecapole deformations,

and quadrupole and octupole vibrations are taken into account
in this soft-rotator model. Furthermore, our soft-rotator model
is self-consistent, since the parameters of the nuclear Hamil-
tonian are determined by adjusting the energies of collective
levels to the nuclear structure data prior to the optical model
calculation. The nuclear level energies for the four Sn isotopes
are predicted using the soft-rotator model, analyzed, and
compared with the experimental ones. For each Sn isotope, we
can describe nine collective levels out of approximately 10–12
levels observed below 2.4 MeV in excitation energy. For all
these isotopes, we are not able to describe the energy sequence
of 5−

1 levels, which are observed at energies lower than 3−
1 ones.

Theoretically predicted energies of Sn levels other than 5−
1 are

in good agreement with the experimental ones. It is also found
that rotational structures are not very prominent in Sn isotopes.
Nevertheless, for each isotope, we can describe at least the first
five low-lying collective levels, with average energy prediction
accuracy better than 5%, as well as numerous higher-lying
levels which are necessary for coupled-channel cross section
calculations. In addition, all the nucleon interaction data
available, including total neutron cross sections and nucleon
elastic and inelastic scattering data, are well described within
such a unified approach up to 200 MeV incident energies with
unique optical potential parameters. Isotopes are described by
individual nuclear Hamiltonian parameters, Fermi energies,
deformations, and Z,N potential dependencies. Analyses
show that β2 deformation for incident protons is 15% higher
than that for incident neutrons, which is consistent with
theoretical predictions for proton closed-shell nuclei such as
Sn. β3 deformation shows the same tendency. Our approach
seems useful for analyses of nucleon interactions with nuclei
in a wide atomic mass region by using global optical model
potentials.
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