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Elastic scattering and breakup effect analysis of 11Be + 12C at 38.4 MeV/nucleon
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11Be + 12C elastic-scattering data at 38.4 MeV/nucleon has been analyzed using the optical model. The optical
potential is calculated in the framework of the double folding model using M3Y effective nucleon-nucleon
interaction. Different models of 11Be density are tested and the model that does not include the halo structure
gives poor fitting with data. The breakup effect is studied by introducing a complex dynamical polarization
potential (DPP) that is added to the “bare” potential. The DPP is taken in different forms that have been
obtained from simple phenomenological, semiclassical approximation, and microscopic methods. The simple
phenomenological DPP is related to the semiclassical approximation method. The sensitivity of the differential and
reaction cross sections to these polarization potentials is tested. The microscopic DPP that has been constructed
from the derivative of the folding potential describes the breakup effect well. It gives an explicit justification for
the long range of the polarization potential.
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I. INTRODUCTION

Light neutron-rich exotic nuclei are characterized by weak
binding energies that lead to “exotic” features such as halos
[1]. The striking feature of the halo nuclei is the long tail
of their matter density due to their weak binding energy, so
the probability to be excited to continuum states is higher
compared to the stable isotopes. Also, the coupling to the other
reaction processes may be stronger [2]. The optical potential
is the basic part for description of the elastic scattering, and it
is also important in breakup calculations.

The interaction potential arising from coupling to nonelastic
channels is called the dynamical polarization potential (DPP)
[3]. It is weak but has a longer range than the “bare” optical
potential, and it is complex with repulsive real part [4,5].
There are several models to obtain DPP that represents
the effect of the breakup of halo nuclei and it is added
to “bare” halo-target optical potential. It is stimulated by
a complex phenomenological surface Woods-Saxon (WS)
potential [2,4,6,7]. In Ref. [4], the halo nucleus is easily broken
up by the removal of the loosely bound halo neutrons. The
breakup effect is represented by complex DPP with repulsive
real part and attractive imaginary part that is important for
increasing the reaction cross section due to the breakup effect.
In Ref. [6], the DPP is also taken as complex surface potential
that is added to the real folded and imaginary WS potentials
for 6He + 12C and 6Li + 12C. The DPP is shown to affect
the total optical potential strongly at the surface and gives
estimation for the strength of breakup effect. The DPP is also
deduced microscopically from the inversion of the S matrix in
the framework of the coupled discretized continuum channels
(CDCC) calculations [8–10]. The DPP is found to be strongly
repulsive real part and very small absorptive imaginary part
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that is quite different from heavy-ion scattering with small
real part. The repulsive effect of the breakup channels can be
stimulated well simply by reducing the real part of the optical
potential in the folding model to reproduce the elastic data
in the single-channel calculation [8–10]. The DPP for 11Li
scattering from 12C at 637 MeV was calculated using both
two- and three-body descriptions of the 11Li structure applying
Glauber theory for the scattering and breakup processes [11].
It has been found that the real part of the DPP is repulsive in the
far nuclear surface. The DPP is also calculated within the semi-
classical approach [12,13]. The DPP is taken as an exponential
tail imaginary potential and is evaluated according to the
breakup probability. Several authors [5,14–20] have studied
and calculated the DPP and breakup effect of halo nuclei.

Recently, the elastic scattering of 11Be on 12C has been
measured at 38.4 MeV/nucleon up to 14◦ in the center-
of-mass (c.m.) frame [2], which covers considerably wider
angles than the previous measurement at 49.3 MeV/nucleon
[12]. The 11Be breakup from 2s state has been discussed
in Refs. [2,12,14,18]. The real potential of this reaction at
38.4 MeV/nucleon is calculated within the framework of
the folding model using CDM3Y density-dependent effective
nucleon-nucleon (NN ) interaction [2]. The coupling effect is
stimulated by introducing the complex repulsive phenomeno-
logical surface potential that is added to the real folded and
WS imaginary potentials. In Ref. [14], 11Be + 12C is treated at
49.3 MeV/nucleon as a three-body 10Be + n + 12C problem
and is discussed using the semiclassical eikonal approxi-
mation. The phenomenological potential of 11Be + 12C is
obtained based on 10Be + 12C and n + 12C potentials. The
projectile excitation and breakup effects are found to be
significant. Also, the 11Be + 12C scattering cross sections
are calculated using the adiabatic approximation [18]. It is
found that the coupling of the elastic and projectile excitation
channels is crucial to the analysis, and a simple relationship
exists between the elastic scattering of a composite halo
nucleus and of its core from a stable target. The DPP for the
11Be + 12C reaction at 49.3 MeV/nucleon is calculated in the

0556-2813/2009/79(6)/064608(10) 064608-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.064608
mailto:mym.hassan@yahoo.com
mailto:myhfarag@hotmail.com
mailto:h.maridi@yahoo.com


HASSAN, FARAG, ESMAEL, AND MARIDI PHYSICAL REVIEW C 79, 064608 (2009)

framework of semiclassical theory [12]. An exponential tail is
assumed for the imaginary surface potential with diffuseness
directly related to the small decay length of the initial wave
function that describes the long range of the polarization
potential. The polarization potential, which is added to the
phenomenological optical potential, gives an enhancement in
the reaction cross section.

In the present work, we have analyzed the elastic-scattering
data of 11Be + 12C at 38.4 MeV/nucleon in microscopic double
folding model using density-independent M3Y effective NN

interaction and different forms of 11Be density distribution.
The coupling of the elastic channels to breakup channel is
taken into account. The DPP is calculated using different
methods. First, it is taken phenomenologically as surface
derivative as in Refs. [2,4,6,7]. The second method involves
the use of a semiclassical method based on the probability
for the breakup of 11Be → 10Be + n, as in Refs. [12,13].
For the third method, it is obtained microscopically as the
derivative of the folding potential. Also, an approximation to
the simple phenomenological DPP is carried out. The folding
model analysis for 11Be + 12C elastic scattering is given in
Sec. II. The different methods for the calculation of the DPP
are presented in Sec. III. The applications of these methods
for 11Be + 12C system are given in Sec. IV. The applications
for 11Li + 12C and 6He + 12C are presented in Sec. V. The
conclusions are given in Sec. VI.

II. FOLDING MODEL ANALYSIS FOR 11Be + 12C
ELASTIC SCATTERING

The real nucleus-nucleus optical potential in the double
folding model is given by the expression [21]

VF (r) =
∫

ρ1(r1)ρ2(r2)νnn(s)dr1dr2, (1)

where ρ1(r1), ρ2(r2) are the nuclear matter density distribu-
tions for projectile and target nuclei, respectively, and νnn(s)
is the effective NN interaction with s = |r − r1 + r2| is the
distance between the two nucleons.

The popular M3Y NN interaction is used. It is derived by
Bertsch et al. [22], it is obtained from the fitting of the G-matrix
element of the Reid-Elliot NN interaction. The parameterized
form of the M3Y interaction introduced by Satchler and Love
[21] is given as

νnn(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00(E)δ(s),

(2)

where the zero-range pseudopotential J00(E) represents the
single-nucleon exchange term and is given by [21]

J00(E) = −276(1 − 0.005E/A) MeV fm3, (3)

where E and A are the incident energy and the mass number
of the projectile, respectively.

The neutron halo nuclei are assumed to be composed of a
core surrounded by a halo of one or more neutrons [1,23], so
we consider the one neutron halo nucleus 11Be to be composed
of a 10Be core and one-neutron.

ρ11Be(r) = ρ10Be(r) + ρn(r). (4)

The root-mean-square (rms) radius of 11Be is quite large
compared to that of 10Be. The density of 10Be core is assumed
to be of a Gaussian form [24] with rms radius equals to 2.46 fm
[25]. While the parameters of the halo density are adjusted to
obtain the rms radius of 11Be which equals to 2.90 fm [26]. The
deduced core size of 11Be slightly exceeds the measured radius
of 10Be, which is assumed to be the core in 11Be. This may
be explained by the fact that the motion of the center-of-mass
of the core around the center-of-mass of the whole nucleus
increases the effective core size. This may be due to the core
polarization [27]. To test the sensitivity to the radial shape of
the nuclear matter distribution, three different nuclear matter
density distributions are assumed, one being a Gaussian with
Rm = Rc = Rv = 2.90 fm (where Rc,Rv , and Rm denote
the rms radii of the core, valence neutron, and the halo
nuclei distributions). The two others being the sum of two
distributions, a Gaussian for the core nucleons (with Rc =
2.46 fm) and the valence neutron is assumed to have either 1p

or 2s shell distributions. The rms radius of one-halo neutron
density, Rv , can be obtained from [28,29]

Rm =
[

10R2
c + R2

v

11

]1/2

. (5)

Therefore, the value of Rv equals 5.7 fm. We denote the three
densities as G, G1p, and G2s, respectively. The three density
distributions have the same nuclear matter radius Rm but have
different radial shapes. The G1p and G2s densities have long
tails due to the consideration of the core-halo structure.

The three different densities of 11Be nucleus that have been
used are plotted in Fig. 1. One can see that the G density,
which describes the 11Be nucleus as a whole, has no tail while
the other two densities that are formed from the core and one
valence neutron yield an extended tail in 11Be nucleus. So
these describe better the halo structure of the 11Be nucleus
with a large radius. It is clear that, at r < 5 fm, G1p and G2s
densities are mainly formed from the core. However, at r >

5 fm the halo contribution for the two densities is dominant.

FIG. 1. Densities of 11Be used in this work.
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The density of 12C nucleus was given by Vineyard et al. [30]
in harmonic oscillator (HO) form

ρ12C(r) = ρ0(1 + αr2) exp(−βr2), (6)

where ρ0 = 0.1644 fm−3, α = 0.4988 fm−2, and β =
0.3741 fm−2 with 〈r2

rms〉1/2 = 2.407 fm [31].
The real part of the optical potential for the reaction

11Be + 12C is calculated using the double folding model. The
imaginary part is taken as a part of the folded potential. The
total optical potential can be written as

Uopt(r) = (NR + iNI )VF (r) + UC(r), (7)

where NR and NI are the renormalization factors of the real
and imaginary microscopic potentials, respectively. VF is the
folded potential that is calculated with density-independent
M3Y effective NN interaction, and the Coulomb potential
UC(r) is taken as the usual Coulomb form between a point
charge and a uniform charge distribution of radius Rc =
rc(AP

1/3 + AT
1/3) with rc = 1.2 fm [6]. A search on the

renormalization factors NR and NI are carried out to give
best fit with experimental data.

FIG. 2. Real folded potentials of 11Be + 12C system at
38.4 MeV/nucleon obtained using M3Y interaction with G, G1p,
and G2s densities, shown in (a) linear scale and (b) logarithmic scale.

FIG. 3. Elastic-scattering cross sections for 11Be + 12C at
38.4 MeV/nucleon in the comparison with the optical model (OM)
results given by the folded potential (obtained with M3Y interaction)
with different densities.

Figure 2 presents the real folded potentials [Eq. (1)] for
elastic scattering of 11Be + 12C at 38.4 MeV/nucleon that is
calculated with M3Y effective NN interaction and different
densities: G, G1p, and G2s. They are given without the
renormalization factor NR (i.e., NR = 1). It is seen that the
potential using the G density has a smaller depth than that
of the G1p and G2s densities. At large distance, the folded
potential using the G density falls rapidly than the potentials
obtained using the other two densities that have longer range.
This is due to the type of each density.

The differential cross sections of 11Be + 12C elastic scatter-
ing at the energy 38.4 MeV/nucleon using real and imaginary
folded potentials with M3Y interaction for different densities
of 11Be nucleus are presented in Fig. 3. The renormalization
factors NR and NI that give good fitting with the experimental
data and the total reaction cross sections are listed in
Table I. One can notice that the result with G density
gives fitting with lower quality than that with the other two
densities and it has the largest χ2. The results with the two
densities G1p and G2s are approximately similar. The results
with G2s density give relatively the best result because it gives
fitting with χ2 relatively smaller than G1p density.

The effect of changing the renormalization factors NR and
NI is presented in Fig. 4 for 11Be + 12C elastic-scattering data
using the folding potential that is calculated with M3Y inter-
action and G2s density. The fitting sets of the renormalizaton
factors NR and NI and the obtained reaction cross sections are

TABLE I. Renormalization parameters of optical potential for
the elastic 11Be + 12C cross sections at 38.4 MeV/nucleon and
reaction cross sections obtained by fitting the experimental data [2]
using M3Y effective NN interaction with different densities.

Density type NR NI χ 2 σR (mb)

G 0.67 0.52 10.87 1355
G1p 0.77 0.53 8.48 1406
G2s 0.8 0.55 8.09 1430
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FIG. 4. Elastic-scattering cross sections for 11Be + 12C at
38.4 MeV/nucleon in the comparison with the OM results given by
the folded potential (obtained with M3Y interaction and G2s density)
with different fits.

listed in Table II. One can see that the result with NR = 0.6
is in good agreement with θc.m. < 10◦ but has lower fitting
in θc.m. > 10◦. However, without the renormalization factor
(NR = 1.0), the result is in good agreement for large angles
better than for small angles. While the result with NR = 0.8
has a reasonable agreement with most of the experimental data.
It is noted that increasing the value of NR reduces the width
of minima and maxima so shifts the obtained curve to the left.
The reduction of the real potential in the double folding model
is explained well as the coupling effect of the channels on the
elastic scattering. But the simple renormalization procedure
fails to reproduce the data over the whole angular range.
Therefore, the breakup effect is taken into consideration by
adding the polarization potential to the optical potential. In
the following section, we present several methods for the
calculation of the DPP. The applications of these methods
for 11Be + 12C system are given in Sec. IV.

III. POLARIZATION POTENTIAL DUE TO BREAKUP

The very weak binding of the halo neutron of 11Be with
small separation energy (Sn = 0.503 MeV) makes the 11Be
nucleus more susceptible to breakup in the field of the target
nucleus as 11Be → 10Be + n. Then, the DPP is introduced,
which represents the effect of coupling to breakup channels.

TABLE II. Renormalization parameters of the opti-
cal potential for the elastic 11Be + 12C cross sections at
38.4 MeV/nucleon and reaction cross sections obtained by
fitting the experimental data [2] using M3Y effective NN

interaction and G2s density with different fitting sets.

NR NI χ 2 σR (mb)

0.6 0.39 4.69 1283
0.8 0.55 8.09 1430
1.0 0.69 12.55 1533

It is added to the “bare” optical potential. It has a longer
range than the “bare” optical potential, and it is also complex
potential as

Upol(r) = Vpol(r) + iWpol(r), (8)

where Vpol and Wpol are the real and imaginary dynamical
polarization potentials, respectively. According to Feshbach
theory of microscopic optical potential [32], the real part of
the total potential is taken as VF + Vpol(r) which may almost be
approximated well by �NRVF in a single channel calculation
[10]. This is just the origin of the reduction of NR in the folding
model. In this work, different methods will be given for the
calculation of the DPP. These are semiclassical approximation,
phenomenological, and microscopic methods.

A. DPP from semiclassical approximation

According to Refs. [12,13], the surface imaginary optical
potential Ws[R(t)] represents the transfer and breakup reac-
tions. R(t) = bc + vt is the classical trajectory of relative
motion for the nucleus-nucleus collision with constant velocity
v in the z direction and core-target impact parameter bc in the
xy plane [33]. For a halo nucleus at high incident energy
the transfer probability is going to be much smaller than the
breakup probability, therefore the surface potential has been
identified here with the breakup potential and can be related
to the breakup probability as

∫ ∞

−∞
Ws[R(t)]dt = −h̄

2
Pbup(bc), (9)

with Pbup(bc) = P0(bc)pbup(bc), where Pbup is the breakup
probability, pbup is the total breakup probability, and P0 is
a damping factor that has been referred as the core survival
probability that has been parameterized as [12]

P0(r) = |SCT|2 = exp[− ln 2e(Rs−r)/a0 ] (10)

within the strong absorbtion radius Rs = 1.4(A1/3
P + A

1/3
T ) fm,

a0 = 0.6 fm−1, and SCT is the scattering S matrix due to the
core-target interaction. P0 = 1 is assumed at large distances.
The effect of breakup is most important at large distances
(bc > Rs). The breakup probability is given by [12,33,34]

pbup ≈
∫

dεf

∑
lf

(|1 − 〈Slf 〉|2 + 1 − |〈Slf 〉|2)B(lf , li). (11)

Equation (11) gives the neutron transfer probability from a
definite single-particle state of energy εi , momentum γi =√−2mεi/h̄, and angular momentum li in the projectile to
a final continuum state of energy εf , and momentum kf =√

2mεf /h̄ within an interval dεf . It is the sum of transfer
probabilities to each possible final lf state in the energy bin
dεf . 〈Slf 〉 is the optical model scattering matrix that describes
the rescattering of the neutron on the target [35] and the factor
B(lf , li) is the elementary transfer probability and is given
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by [12,33,34]:

B(lf , li) = 1

2

(
h̄

mv

)2
m

h̄2kf

(2lf + 1)Plf (Xf )

× |C1|2 e−2ηbc

2ηbc

Pli (Xi), (12)

where

Xi = 2

(
k1

γi

)2

+ 1, Xf = 2

(
k2

kf

)2

− 1.

Also

k1 = −
(
εi − εf + 1

2mv2
)

h̄v
and k2 = −

(
εi − εf − 1

2mv2
)

h̄v

are the z component of the neutron momentum in the initial
and final state, respectively. η is the modulus of the transverse
component of the neutron momentum and is given by η =√

k2
1 + γ 2

i =
√

k2
2 − k2

f . mv2

2 is the incident energy per nucleon
at the distance of closest approach for the ion-ion collision.
|C1|2 is the asymptotic normalization constant of the initial
wave function. Pli and Plf are the Legender polynomials
coming from the angular part of the initial and final wave
functions.

In the case of a weakly bound projectile, in the limit of
the small initial binding energies, it is found that k2 ≈ kf and
Plf ≈ 1 [33]. By introducing the classical angular momentum
λ = kf bn and (2lf + 1) = 2λ in Eq. (11) the sum over lf can
be replaced with an integral over the neutron-target impact
parameters bn with respect to the target. The phase shift can
be approximated by the eikonal form such that [33]

Slf ≈ e−iχ(bn), (13)

with

χ (bn) = 1

h̄v

∫ ∞

−∞
V2(x, y, ź)dź,

where V2 is the neutron-target complex potential and can be
taken as a Global phenomenological optical potential [36].
Equation (11) can be written as [33,34]

pbup ≈
∫

dεf

dp

dεf

, (14)

where

dp

dεf

= m

h̄2kf

∫ ∞

0
bndbn(|1 − e−iχ(bn)|2

+ 1 − |e−iχ(bn)|2)|C1|2 e−2ηbc

2ηbc

Pli (Xi), (15)

where

|�̃1(bc, k1)|2 ≈ |C1|2 e−2ηbc

2ηbc

Pli (Xi).

|�̃1|2 is the initial state momentum distribution [33,34].
In Eq. (14), pbup has a maximum at the minimum value

of η = γi . Also, the main dependence on the core-target
impact parameter bc contained in the exponential factor e−2ηbc .
Therefore, after integrating over εf the bc dependence of the

breakup probability pbup(bc) will still be of the exponential
form pbup(bc) ≈ e−bc/α with α = 1

2γi
, where γi is the decay

length of the neutron initial state wave function [12,13]. At
large distances, where P0 = 1, it is assumed that the same
exponential dependence for the absorptive potential, WS(r) =
W0e

−r/α , and R(t) = bc + vt . Then, Eq. (9) reads [12,13]:∫ ∞

−∞
Ws(bc, z)dz = −h̄v

2
pbup(bc). (16)

The left-hand side with assumption of bc 	 z can be approx-
imately evaluated as∫ ∞

−∞
Ws(bc, z)dz = W0

∫ ∞

−∞
e−(bc+ z2

2bc
)dz

= W0

√
2πbcαe−bc/α. (17)

Equating the right-hand sides of Eqs. (16) and (17) gives

W0(bc) = −h̄v

2
pbup(bc)

1√
2πbcα

ebc/α. (18)

In the nuclear induced peripheral reactions like breakup
and transfer, most of the cross section comes from impact
parameters around the strong absorbtion radius Rs [12]. Also,
the initial state amplitude |�̃1|2 depends on the choice of bc =
Rs [33]. Therefore, the surface imaginary optical potential
that is assumed as Ws(r) = W0e

−r/α , as indicated above, can
be written as

Ws(r) = −h̄v

2
pbup(Rs)

1√
2παRs

exp

(
− r − Rs

α

)
, (19)

where α = 1
2γi

with γi =
√−2mεi

h̄
. εi is the separation energy

of the neutron. For 11Be, εi = −0.503 MeV so α = 3.2 fm.

B. Phenomenological DPP

The DPP has an exponential behavior outside the target
nucleus. It can be taken as simple phenomenological surface
Woods-Saxon (WS) form and can be defined as [2,4,6,7]

Upol(r) = −(Vp + iWp)fP (r), (20)

where

fP (r) =
exp

( r−Rp

ap

)
[
1 + exp

( r−Rp

ap

)]2 . (21)

The real part is repulsive (Vp � 0).
Equation (20) can be rewritten by considering fp(r) at

large distance [4]. Then, the phenomenological DPP can be
approximated as:

Upol(r) = −(Vp + iWp) exp

(
− r − Rp

ap

)
. (22)

Now, comparing the imaginary parts of Eq. (22) and Eq. (19),
identifying Rp as Rs and ap as α. Hence, Eq. (22) can be
rewritten in the form

Upol(r) = −(V̄p + iW̄p) exp

(
− r − Rs

α

)
, (23)

064608-5



HASSAN, FARAG, ESMAEL, AND MARIDI PHYSICAL REVIEW C 79, 064608 (2009)

with two free parameter V̄p and W̄p. According to Feshbach
theory [10,32], V̄p � 0 to the real DPP becomes repulsive.
W̄p is attractive to give an enhancement in the total reaction
cross section due to the breakup. Equation (23) represents
an approximation of the simple phenomenological DPP at
the surface where the breakup effect is important. This
approximated DPP is characterized by two fitting parameters
only and the diffuseness of this DPP reflects the small decay
length of the neutron wave function entering breakup, so the
long range of the polarization potential is obtained.

C. Microscopic DPP from the derivative of the folding potential

By analogy with Eq. (20) for phenomenological surface
potential, the surface potential can be obtained microscopically
from the derivative of the folding potential as

Upol(r) = −(Nrp + iNip)r
dVF (r)

dr
, (24)

where Nrp and Nip are the normalization factors of real
and imaginary polarization potential. Similarly as before, the
repulsive real part (Nrp � 0) to verify Feshbach theory of
microscopic optical potential [10,32].

IV. DYNAMICAL POLARIZATION POTENTIAL FOR
11Be + 12C SYSTEM

Let us denote the DPP as Semi. DPP, Pheno. DPP I, Pheno.
DPP II, and Micr. DPP for dynamical polarization potentials
that are obtained by semiclassical approximation [Eq. (19)],
simple phenomenological with four free parameters [Eq. (20)],
the approximated phenomenological with two free parameters
[Eq. (23)], and microscopic [Eq. (24)] forms, respectively.

First, the differential cross sections of 11Be + 12C elastic
scattering at 38.4 MeV/nucleon are calculated with the DPP
from simple phenomenological and semiclassical approxima-
tion methods. The DPP is added to the bare optical potential
that consists of the real and imaginary folded potentials
with M3Y effective NN interaction and G2s density. The
results of these calculations are presented in Fig. 5. The
fitting renormalization factors of the folded potentials and the
parameters of the different forms of DPP are listed in Table III.
The parameters of the Pheno. DPP I from Ref. [2] are found to

FIG. 5. Elastic-scattering cross sections for 11Be + 12C at
38.4 MeV/nucleon in comparison with the OM results given by the
folded potential (obtained with M3Y interaction and G2s density)
with Pheno. DPP I and Semi. DPP and without DPP.

be the best-fitting parameters with the present work. Without
adding the DPP, the data require suitable renormalization of
the real folded potential (see Table III).

The result with the phenomenological DPP leads to a
good fitting with the experimental data. When the Pheno.
DPP I is added, the real folded potential does not require a
renormalization (see Table III). This feature of the DPP is in
agreement with Sakuragi’s treatment of DPP [8]. The reaction
cross section is almost unchanged by increasing Vp but is
significantly increased by Wp [4].

In semiclassical approximation method that suggests
adding only imaginary part of DPP, the value of NR is found to
be the same one that obtained without DPP. Semi. DPP gives
reaction cross section larger than that obtained with Pheno.
DPP I.

Second, Fig. 6 compares the data of 11Be + 12C at
38.4 MeV/nucleon with phenomenological, microscopic, and
without DPP. The fitting parameters of folded and polarization
potentials are given in Table III. Micr. DPP is fitted with two
parameters only, whereas there are four parameters in Pheno.
DPP. I. One can notice that no significant difference between
pheno. DPP I and Micr. DPP. From Table III, one can see that

TABLE III. Renormalization parameters of real NR and imaginary potentials NI , fitting parameters
of different forms of DPP, and reaction cross sections, obtained by fitting the elastic-scattering data
for 11Be + 12C [2] that were calculated using G2s density and M3Y effective NN interaction at the
energy 38.4 MeV/nucleon.

DPP type NR NI Fitting parameters of DPP χ 2 σR (mb)

Without 0.8 0.55 8.09 1430
Semi. 0.8 0.50 7.99 1616
Pheno. I 1.0 0.47 Vp = −88 MeV, Wp = 20 MeV 7.08 1500

Rp = 0.0 fm, ap = 1.68 fm
Pheno. II 1.0 0.40 V̄p = −2.8 MeV, W̄p = 0.21 MeV 5.85 1584

Rs = 6.32 fm, α = 3.2 fm
Micr. 1.0 0.40 Nrp = −0.04, Nip = 0.02 7.73 1430
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FIG. 6. Elastic-scattering cross sections for 11Be + 12C at
38.4 MeV/nucleon in comparison with the OM results given by the
folded potential (obtained with M3Y interaction and G2s density)
with Pheno. DPP I and Micr. DPP and without DPP.

the Pheno. DPP I gives reaction cross section larger than Micr.
DPP. However, when the Pheno. DPP. I and Micr. DPP are
added to the folded potential, the real folded potential does not
require a renormalization.

Third, the cross sections of 11Be + 12C system at
38.4 MeV/nucleon with the simple phenomenological (with
four free parameters) and the approximated phenomenological
(with two free parameters) polarization potentials are plotted in
Fig. 7. This figure shows that the two polarization potentials,
Pheno. DPP I and Pheno. DPP II, have approximately the
same behavior at angles (θc.m. > 5◦) while the Pheno. DPP II
is the best at small angles (θc.m. < 5◦). The renormalization
factors of the bare optical potential and the fitting parameters of
Pheno. DPP I and II, and the reaction cross section are listed in
Table III. From this table, one can notice that the total reaction
cross section (σR) with Pheno. DPP II is greater than Pheno.
DPP I.

FIG. 7. Elastic-scattering cross sections for 11Be + 12C at
38.4 MeV/nucleon in comparison with the OM results given by the
folded potential (obtained with M3Y interaction and G2s density)
with Pheno. DPP I and Pheno. DPP II and without DPP.

FIG. 8. The folded potential is calculated with M3Y in-
teraction and G2s density for 11Be + 12C elastic-scattering at
38.4 MeV/nucleon. The renormalized potentials is represented with
the dotted line. The dashed, dash-dotted, dash-double dotted, and
solid lines represent the total real and imaginary optical potentials
that are calculated by adding Pheno. DPP I, Pheno. DPP II, Semi.
DPP, and Micr. DPP, respectively, to the folded potential.

The total real and imaginary potentials including the DPP
in different forms are presented in Figs. 8(a) and 8(b), respec-
tively. It is clear that the total potentials (VF + Re Upol) with
different types of the DPP are very close to the renormalized
folded potential (NRVF ) at the surface (at r � 5 fm), these
real potentials are shallower than the renormalized folded
potential at small distances [see Fig. 8(a)]. This result is found
in Refs. [6,8]. But this behavior is found to be reversed for
the imaginary potentials [see Fig. 8(b)]. The renormalization
procedure, which reduces the potential on the whole range,
may not give a correct potential at small distance. Therefore
it is better to add the DPP, which reduces the folding potential
mostly at 4–5 fm [6,37]. One can see that the additional of
DPP shows slightly better fitting of differential cross sections
than without adding the DPP at large angles (above 12◦). This
feature corresponds to the behavior of the potential at small
distances (<5 fm) for different models [see Fig. 8(a)].
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FIG. 9. Elastic-scattering cross sections for 11Li + 12C at
60 MeV/nucleon in comparison with the OM results given by the
folded potential (obtained with M3Y interaction and G1p density)
with Pheno. DPP II and Micr. DPP and without DPP.

V. APPLICATION FOR TWO-NEUTRON HALO NUCLEI
REACTIONS

The two methods, Micr. DPP and Pheno. DPP II, success-
fully describe the breakup effect well for the elastic scattering
of the one-neutron halo (11Be nucleus). It is interesting to apply
these methods to the elastic scattering of weakly bound two-
neutron halo nuclei from the stable nuclei, namely 11Li + 12C
at 60 MeV/nucleon and 6He + 12C at 38.3 MeV/nucleon.

The elastic-scattering data for 11Li + 12C at 60 MeV/
nucleon [38] is calculated using the double folding model.
The folded potential has been obtained using M3Y NN

interaction and Gaussian-oscillator (GO) density, which has
the same form as G1p density, with parameters Rc = 2.50 fm,
Rv = 5.86 fm, and Rm = 3.37 fm [27]. The breakup effect is
considered by adding Pheno. DPP II and Micr. DPP to the bare
potential. The results of these calculations are presented in
Fig. 9. The fitting parameters of the optical potential with
Pheno. DPP II and Micr. DPP and without DPP are given
in Tables IV and V. The separation energy of the two halo
neutrons equals 0.247 MeV [23] that is needed to calculate the
diffuseness of the Pheno. DPP II.

One can see that the results with Pheno. DPP II, Micr.
DPP, and without DPP have similar behavior but the Pheno.
DPP II gives deeper first minimum and larger reaction cross

FIG. 10. Elastic-scattering cross sections for 6He + 12C at
38.3 MeV/nucleon in comparison with the OM results given by the
folded potential (obtained with M3Y interaction and G1p density)
with Pheno. DPP II and Micr. DPP and without DPP.

section than Micr. DPP and without DPP. Using Pheno. DPP II
slightly gives better fitting for large angles (above 15◦)
and gives enhancement in the reaction cross section as in
Refs. [4,11].

Referring to the work of Al-Khalili and Tostevin’s [11],
it was found that the real part of the DPP is repulsive in far
nuclear surface, whereas in the present work, the real part
of the DPP is repulsive in the whole range. This point needs
further investigation. However, the imaginary part of the DPP
is found to be attractive in the present work as in Al-Khalili
and Tostevin work.

The elastic-scattering data for 6He + 12C at 38.3 MeV/
nucleon [6] are calculated using the double folding model. The
folded potential has been obtained using M3Y NN interaction
and GO density with parameters Rc = 1.81 fm, Rv = 3.05 fm,
and Rm = 2.30 fm [28]. The data are reproduced, including the
breakup effect when the Pheno. DPP II and the Micr. DPP are
added to the bare potential. The results of these calculations
are presented in Fig. 10. The fitting parameters of the optical
potential with Pheno. DPP II and Micr. DPP and without DPP
are given in Table IV where the separation energy of the two
halo neutrons equals 0.97 MeV [23].

One can see that the results with adding both Pheno. DPP II
and Micr. DPP are better than that without adding DPP. Both

TABLE IV. Renormalization parameters of real and imaginary potentials, NR and NI , fitting parameters of the approximated
phenomenological and microscopic DPP, and reaction cross sections, obtained by fitting the experimental data for different reactions. The
other parameters of Pheno. DPP II are listed in Table V.

Reaction Energy (MeV/nucleon) DPP type NR NI Fitting parameters of DPP χ 2 σR (mb)

11Li + 12C 60.0 Without 1.0 0.5 47.8 1508
Pheno. II 1.0 0.43 V̄p = −2.0 MeV, W̄p = 0.21 MeV 52.30 1589

Micr. 1.0 0.36 Nrp = −0.02, Nip = 0.02 48.0 1503
6He + 12C 38.3 Without 1.0 0.55 29.74 1041

Pheno. II 1.0 0.36 V̄p = −0.61 MeV, W̄p = 0.46 MeV 30.49 1100
Micr. 1.0 0.34 Nrp = −0.02, Nip = 0.02 33.0 1004
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TABLE V. Calculated parameters of the Pheno. DPP II
for different reactions.

Reaction Energy Rs α

(MeV/nucleon) (fm) (fm)

11Be + 12C 38.4 6.319 3.211
11Li + 12C 60.0 6.319 3.241
6He + 12C 38.3 5.749 1.635

give good description at the large angles for the measured data,
which has not been achieved by renormalization of the folded
potentials only. This is also found in Ref. [6].

It is interesting that the renormalization factors of the
imaginary part of microscopic DPP is found to have same
value (Nip = 0.02) for the three reactions considered in this
work (see Tables III and IV).

VI. CONCLUSION

The optical potentials and cross sections of 11Be + 12C
elastic scattering at 38.4 MeV/nucleon are calculated within
the framework of the double folding model. The real and
imaginary parts of the optical potential are constructed by
a folding M3Y effective nucleon-nucleon interaction. The
density of 11Be nucleus is assumed to be composed of two
parts, a 10Be core and one valence neutron. Different types of
density distributions that have the same rms radius are used,
namely G, G1p, and G2s. The renormalization factors for the
real and imaginary microscopic potentials, NR and NI , are
introduced.

The results of the calculations of 11Be + 12C elastic
scattering show that the two densities G1p and G2s gives
approximately similar behavior so the form of the one valence

neutron density has a small effect on the obtained cross
sections. But G2s density can be considered relatively better
than G1p density.

The study of changing the renormalization factor NR shows
that the result without renormalization has lower fitting at
θc.m. < 11◦, whereas the result with NR = 0.6 has lower
fitting at θc.m. > 10◦. A reasonable agreement with most of
the experimental data is obtained with NR = 0.8. Therefore,
the real folding potential needs a suitable reduction that
gives an estimation of the breakup channel effects on the
elastic-scattering channel.

These results show that the single-channel calculation
with the folded potentials failed to reproduce the measured
data over the whole angular range. So, the breakup effect
is introduced by adding a complex DPP to the “bare”
potential. The DPP is taken in different forms that have been
obtained from phenomenological Woods-Saxon, semiclassical
approximation, microscopic (from the derivative of the folding
potential) methods. Also, the phenomenological DPP is
approximated and related to the semiclassical approximation
theory.

The results with introducing the DPP show that the
real folded potential does not need a renormalization and
the Feshbach theory is satisfied. Adding the DPP gives
reaction cross section larger than the folded potential alone
that may identify the breakup or neutron(s) removal cross
section.

The microscopic and approximated phenomenological DPP
succeeded to describe the breakup effect for studying dif-
ferent reactions. These DPPs give an explicit justification
for the long range of the polarization potential, whereas the
simple phenomenological DPP is a generalized description
and includes no structure information of the interacting
nuclei.
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