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Quantum scattering theory on the momentum lattice
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A new approach based on the wave-packet continuum discretization method recently developed by the present
authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and
few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of
the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice
in the momentum space. The solution of the few-body scattering problem can be found in the approach from
linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed
approach is illustrated by the solution of numerous two- and three-body scattering problems with local and
nonlocal potentials below and well above the three-body breakup threshold.
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I. INTRODUCTION

For the last couple of decades, many different methods
have been formulated to solve the quantum mechanical
scattering problems with a few particles in continuum for
precise quantitative treatment of numerous atomic, nuclear,
and hadronic processes. Such “exact” formulations in the field
of atomic and nuclear processes have been addressed mainly to
go beyond the well-known distorted-wave Born approximation
(DWBA) approach or to justify the specific employment
of the respective approximation schemes (e.g., the coupled-
channel approaches.). In principle, the rigorous Faddeev and
Merkuriev-Faddeev equations for three-body scattering and
the generalized Faddeev-Yakubovsky four- and few-body
equations do solve the basic scattering problem. However,
their practical implementation on realistic cases (in atomic
and nuclear physics) often meets with such serious difficulties
caused by the presence of complicated optical-model input
potentials, long-range Coulomb interactions, effective many-
body forces, etc., that to date only a rather limited class of
practical cases has been treated on the basis of exact few-body
scattering equations.1 These difficulties relate mainly to the
account of three- or four-body breakup channels in elastic and
inelastic electron-atom, electron-molecule, or hadron-nucleus
and nucleus-nucleus collisions, especially in the case of
charged particles, where long-range Coulomb interactions
make the quantitative treatment even more involved.

Thus, the development of alternative practically effective
approaches toward solving the few-body scattering problems
in atomic and nuclear reaction studies is still of great
importance. Our interest here is on methods that make use of
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1Although the treatment of fully realistic NN and 3N interactions

for 3N - and 4N -scattering cases has been realized for last two decades
[1–4].

a basis of square-integrable functions (i.e., of the L2 space),2

which historically have been developed for atomic physics
purposes [5–10] and adapted to nuclear physics processes
[11,12]. Such methods allow one to represent operators and
wave functions by matrices and vectors on the chosen basis
subspace and formulate the scattering problems in terms of
matrix equations rather than solving the initial exact integral
or differential ones in the momentum or coordinate spaces. In
general, the employment of only L2-type basis in the scattering
problem makes the solution of few-body scattering problems
to be quite similar to the treatment of bound-state problems. As
for the latter, the modern few- and many-body techniques make
it possible to treat very precisely bound-state problems with
many tens or even hundreds of particles. So we believe that
the development of L2-type techniques is a very promising
way for treating scattering problems with few particles in
continuum most effectively and with the use of modern
personal computers instead of powerful supercomputers.

Furthermore, as was mentioned by Wigner [13] and
Messiah [14], an incorporation of continuous spectrum (scat-
tering) states into rigorous quantum mechanical formulation is
possible in terms of L2 (or normalizable) wave functions only.
Indeed, the conventional scattering states do not belong to the
Hilbert space, and the basic properties of Hamiltonian (even
Hermitian property) could not be established using such non-
normalizable states [14]. Thus, to operate with nonvanishing
at infinity and non-normalizable continuum wave functions,
one should proceed in the following way, according to the
Wigner idea [13]. One has to divide the whole continuous
spectrum of the Hamiltonian into nonoverlapping energy
intervals of small width � (i.e., discretize the continuum) and
construct the so-called eigendifferentials, i.e., integrals of the
continuum wave functions over each interval. Then, all the
continuum wave function properties can be proved for the set
of eigendifferentials; and after passing to the � → 0 limit, one

2We do not refer here to the applications of the very numerous
variational methods to scattering problems, but rather to the so-called
direct methods only, where the scattering wave functions (including
their asymptotic parts) are expanded directly into L2-basis functions.
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can extend these properties to the non-normalizable scattering
states [13].

Keeping in mind this Wigner’s discretization procedure,
we developed a new approach to general quantum scattering
theory [15–20] that uses directly the above eigendifferential
states as the L2 basis in which framework the few-body
scattering problems can be formulated in the Hilbert space. We
renamed them stationary wave packets because the name looks
now more physical and clear for understanding. The approach
developed—the wave-packet continuum discretization method
(WPCD)—combines both the advantages of the above L2

techniques and accurate direct solution methods of the rigorous
few-body equations. Indeed, on the one hand, the WPCD
method uses matrix representations for the scattering theory
operators and allows us to reduce the solution of the initial
scattering problem to solving matrix equations in L2 wave-
packet subspace. On the other hand, these matrix equations3

correspond to some regularization of the exact integral
scattering equations, because integral kernel singularities are
averaged and smoothed over energy (or momentum) bins. So,
from this point of view, the WPCD method can be considered
as an effective quadrature technique for the solution of integral
scattering equations in the momentum space.

This “duality” also allows us to obtain diagonal matrix
approximations for two- and few-body channel resolvents,
which behave properly as functions of energy, using the
direct explicit relationship between the above L2 wave-packet
functions and corresponding exact scattering wave func-
tions. By further replacing these energy-dependent discretized
resolvents by a respective matrix with elements averaged
over each energy bin, one gets fully energy-discretized (i.e.,
histogram-like) representations for other scattering operators
and wave functions in the momentum space as well [15–20].
This makes it possible to formulate the novel completely
discrete formalism for a treatment of the quantum scattering
on the momentum lattice. In this formalism, all the scattering
operators take the form of finite matrices, while their energy
and momentum dependences are averaged over lattice cells.4

It is argued that such a purely discrete lattice representa-
tion of the scattering amplitude can describe real scattering
experiments more adequately than the traditional continuous
representation because of finite energy and angular resolutions
of all instruments used in measurements for such experiments.
So, the main idea behind the present wave-packet technique
is to operate with some properly averaged quantities (wave
functions, operators, etc.) instead of handling exact quantities

3It should be stressed that the matrix equations describing the
scattering processes in our approach are of different type than
the matrix equations derived from the conventional quadrature
discretization of, e.g., the Lippmann-Schwinger integral equation,
because in our case the matrices represent the scattering operators
themselves.

4Contrary to this discretization procedure, which is specific to the
lattice representation, in conventional discretization methods one
simply takes the momentum variables (in the integral equation kernel)
to be in some fixed grid points.

linked to the continuous spectrum, which have complicated
energy singularities in the few-body case.

As has been previously demonstrated [18–20], the general
wave-packet technique can be straightforwardly applied to
three- and many-body scattering problems by constructing
respective three- and many-body wave-packet bases. So, this
technique makes it possible to greatly facilitate the solution
of the respective few-body scattering problems. Moreover, the
approach leads to quite universal finite-dimensional formula-
tion of any scattering problem on the purely L2-type basis. We
recently demonstrated the high efficiency of this discretization
technique applied to the scattering of a composite particle off
a nuclear target [15,20], showing that it is a good alternative
to the traditional coupled-channel approach. However, in that
work, we addressed mainly the detailed comparison with the
results of conventional approaches [mainly the continuum-
discretized coupled-channel (CDCC) method [21–24]] used
in the field, and thus we omitted there almost all the details of
the wave-packet technique. So, in the present paper, we detail
the whole approach and introduce a more general basis for
continuum discretization—a discrete momentum-bin basis for
few-body scattering calculations. Eventually we demonstrate
here the effectiveness of the technique by considering a few
tests in the field of two- and three-body scattering above the
breakup threshold.

The present paper is organized as follows. In Sec. II,
we introduce the generalized stationary wave-packet basis,
study its properties, and define the details of the discretization
procedure. In Sec. III, the discrete analogs of the basic
scattering operators and the finite-dimensional approximation
for the scattering amplitude are derived. The validity of the
method for a nonlocal two-body interaction is tested in Sec. IV.
In Sec. V, the three-body elastic scattering problem with
separable pairwise interactions both below and above the
breakup threshold is studied and compared with published
results. In Sec. VI, we extend our method to solving the general
three-body problem and introduce the three-body lattice basis.
The summary of the results attained is presented in Sec. VII.

II. GENERALIZED STATIONARY WAVE PACKETS AND
THEIR BASIC PROPERTIES

First of all, we construct the basis for discretization of a two-
body continuous spectrum. The two-body system Hamiltonian
is assumed to be in conventional form

h = h0 + v, (1)

where h0 is the free Hamiltonian and v is the short-range
interaction potential. We assume that the potential v is
spherically symmetrical. Further we will consider the h0

eigenstates |ψLM
0q 〉 ≡ |ψL

0q, YLM〉 corresponding to the given
values L of the angular momentum L and its projection M onto
the z axis (here YLM are the usual spherical functions given in
the coordinate or momentum representation). Because values
L and M are conserved, we will mainly discuss the radial parts
of the wave functions |ψL

0q〉 in what follows.
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A. Stationary wave packets (eigendifferentials)

Let us confine the continuous spectrum of h0 (at each
partial wave L) within the maximal value Emax and divide
the interval [0, Emax] into a finite number of nonoverlapping
energy bins [Ei−1, Ei]Ni=1 (with E0 = 0 and EN = Emax).
Here we assume that the value Emax is sufficiently large to
provide a proper solution of the discussed problem (for details,
see the next subsection). Each such energy bin corresponds
to the momentum (or wave number) interval [qi−1, qi] on
momentum axis q, where q = √

2µE and µ is the reduced
mass. Consider further a complete set of the h0 continuum
states |ψL

0q〉 (plane waves), which are normalized according to
the Dirac δ function on the momentum value q:〈

ψLM
0q

∣∣ψL′M ′
0q ′ 〉 = δ(q − q ′)δLL′δMM ′ . (2)

Now let us define a set of free stationary wave packets (WPs) as
integrals of the plane waves (corresponding to the free motion)
over the above momentum bins:

∣∣xL
i

〉 = 1√
Bi

∫ qi

qi−1

dqf (q)
∣∣ψL

0q

〉
, i = 1, . . . , N, (3)

where f (q) is some weight function and Bi are normalization
factors, directly interrelated to each other:

Bi =
∫ qi

qi−1

dq |f (q)|2. (4)

The main advantage of the “packetizing procedure” defined
in Eq. (3) is that wave-packet functions belong to L2 space,
i.e., they are normalizable in a usual sense (similar to
the bound-state functions) and are vanishing at infinity in
contrast to the initial plane waves. Thus, wave-packet functions
belong to a Hilbert space. Different choices of weight function
lead to different sets of WPs. In our previous papers [16–20],
the basis of the energy packets |Xi〉 was used for which the
weight functions and normalization factors are defined as

f (q) =
√

q

µ
, Bi = q∗

i

µ
di ≡ Di, (5)

where Di ≡ Ei − Ei−1 are the energy interval widths, di ≡
qi − qi−1 are the momentum bin widths, and q∗

i = 1
2 (qi−1 +

qi) are the bin midpoints. Explicit formulas for the scattering
operators on the energy-packet representation can be found in
Refs. [16–20].

So, the main focus in the present paper is the momentum
packet representation which is more convenient for the few-
body continuum discretization, where the momentum packets
(q packets) |xL

i 〉 with unit weight functions are used. In this
case, the normalization factor Bi in Eq. (3) is just equal to the
bin width di :

Bi = di, f (q) = 1. (6)

Let us consider further the basic properties of the WP
|xL

i 〉. The overlapping between WP functions can be calculated
using the definition (3) and the orthogonality property (2) of
the initial plane waves:

〈
xL

i

∣∣xL
j

〉 = 1√
BiBj

∫ qi

qi−1

∫ qj

qj−1

dq dq ′f †(q)f (q ′)δ(q − q ′).

The δ function under the integral is not vanishing only if both
intervals i and j coincide (they are nonoverlapping), i.e., when
i = j . So, one finds the relation

〈
xL

i

∣∣xL
j

〉 = δij

1

Bi

∫ qi

qi−1

dq|f (q)|2.

Using the definition (4), we conclude that the set |xL
i 〉Ni=1 is

orthonormalized:〈
xL

i

∣∣xL
j

〉 = δij , i, j = 1, . . . , N. (7)

We will call the linear subspace spanned by the set of WP
{|xL

i 〉Ni=1} as the wave-packet subspace (WPS). The projector
onto the WPS has the evident form

pL =
N∑

i=1

∣∣xL
i

〉〈
xL

i

∣∣. (8)

Further we will use the projections of scattering operators
onto the WPS and denote them by corresponding gothic letters
similar to the projector pL.

Using definition (3), one gets the projective rule for the
wave-packet basis

pL

∣∣ψL
0q

〉 =

⎧⎪⎨
⎪⎩

f (q)√
Bk

∣∣xL
k

〉
, q ∈ [qk−1, qk],

0, q > qN.

(9)

Thus the projection of a plane wave is proportional to the
single WP function, corresponding to that interval to which the
on-shell momentum value q belongs. Below we will denote
this interval with the index k.

The property in Eq. (9) allows us to find in closed form the
eigenvalues for the projection of any operator R, which has
an explicit functional dependence of h0. Indeed, the spectral
expansion for such an operator takes the form

R(h0) =
∞∑

L=0

∫ ∞

0
dq

∣∣ψL
0q

〉
R

(
q2

2µ

) 〈
ψL

0q

∣∣.
Now let us apply the above projection operators pL onto the
WPS from the right and from the left. As a result, one obtains
the following diagonal form for the projection of the operator
R for the fixed partial wave L [using Eq. (9)]:

R ≡ pLR(h0)pL =
N∑

i=1

∣∣xL
i

〉
Ri

〈
xL

i

∣∣, (10)

where the corresponding eigenvalues Ri are defined as

Ri ≡ 〈
xL

i

∣∣R(h0)
∣∣xL

i

〉 = 1

Bi

∫ qi

qi−1

dqR

(
q2

2µ

)
|f (q)|2. (11)

In particular, the free Hamiltonian eigenvalues in WP basis are
equal to

〈
xL

i

∣∣h0

∣∣xL
i

〉 ≡ ε∗
i = 1

Bi

∫ qi

qi−1

dq |f (q)|2 q2

2µ
. (12)

For the q packets, these eigenvalues are defined by the simple
formula

ε∗
i = (q∗

i )2

2µ

(
1 + (di)2

12(q∗
i )2

)
. (12a)
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The most useful property of the WP basis for solving the
scattering equations is the finite-dimensional representation
for the resolvent of the free Hamiltonian g0(E) = [E + i0 −
h0]−1, that is,

g0(E) ≡ pLg0(E)pL =
N∑

i=1

∣∣xL
i

〉
gi(E)

〈
xL

i

∣∣. (13)

Here the corresponding complex-valued eigenvalues gi(E)
have the definition

gi(E) = 1

Bi

∫ qi

qi−1

dq ′ |f (q ′)|2
E + i0 − q′2

2µ

. (14)

For q packets, these integrals can be easily calculated analyti-
cally:

gi(E) = µ

qdi

{
ln

∣∣∣∣q − qi−1

q − qi

∣∣∣∣ + ln

∣∣∣∣ q + qi

q + qi−1

∣∣∣∣
− iπ [θ (q − qi−1) − θ (q − qi)]

}
, (15)

where q = √
2µE and the combination of the Heaviside θ

functions5means that the imaginary part of the eigenvalues
does not vanish only in a single interval with i = k to which
the respective on-shell momentum value q belongs, i.e., q ∈
[qk−1, qk]. Because the integrand in Eq. (14) has a singularity
at q ′ = q, we refer to this interval as a singular one. Although
the eigenvalue (15) has logarithmic singularities if q is equal
to one of the singular bin endpoints, the finite-dimensional
(f.-d.) representation (13) for the free resolvent with eigenval-
ues (15) can be used directly to obtain scattering observables.
We assume here that energy E does not coincide with any
energy-bin endpoint [16]. Further (in Sec. II C) we will
introduce some averaging (on energy) procedure and derive
the averaged f.-d. representation for the free resolvent which
has no singularities at all on the real energy axis.

Using this finite-dimensional packet analog (13) for the free
resolvent, one can build easily the f.-d. scheme for solution
of the general scattering problem. Below we will restrict
our formulation basically to the q-packet basis, because the
formalism based on the energy packet basis has been discussed
in our previous papers [15,16,18–20].

We should mention that WP states can be constructed not
only for the free Hamiltonian h0 but also for any Hamiltonian
h1 using the same discretization procedure, that is,

∣∣zL
i

〉 = 1√
Ai

∫ qi

qi−1

dq w(q)
∣∣ψL

q

〉
, i = 1, . . . , N, (3a)

where the |ψL
q 〉 are eigenstates of the continuous spectrum of

h1. To distinguish these scattering wave packets from the free
ones, we denote them by another letter. The properties of the
scattering WPs are absolutely the same as those of the free
WPs. Jointly with bound states of h1 (if they exist), the set of
{|zL

i 〉}Ni=1 states form a basis in a Hilbert space in which any

5We use here the Heaviside θ function which is defined as θ (q) ={
1, q � 0
0, q < 0

.

operator commuting with Hamiltonian h1 has a diagonal f.-d.
representation [16].

B. Behavior of the q packets in the coordinate and
momentum spaces

It is easy to show that the q-packet basis functions |xL
i 〉 are

vanishing at large distances in the coordinate space in contrast
to the exact plane waves |ψL

0q〉 and they approximately coincide
with the latter in some inner area.

The radial part of a free wave function in the coordinate
representation has the form

ψL
0q(r) =

√
2

π
qjL(qr), (16)

where jL is a spherical Bessel function. For simplicity, we
consider at first the s-wave case, when an explicit relation
between the initial plane wave and the wave-packet functions
can be derived. Let us put the form (16) into the definition of
free wave packets in Eq. (3):

x0
i (r) = 1√

di

∫ qi

qi−1

√
2

π

sin(qr)

r
dq, qr 	 1.

One gets immediately from this definition an exact relation for
the exact q packets and initial plane waves, i.e.,

x0
i (r) =

√
diψ

0
0q∗

i
(r)

sin(dir/2)

dir/2
, (17)

where q∗
i is the bin midpoint. It is clear from Eq. (17) that the

q packets x0
i (r) nearly coincide with the exact free solutions

ψ0
0q∗

i
(r) in the region r 
 ri , where

ri = 2

di

. (18)

Thus, the “packetizing” procedure in Eq. (3) of initial plane
waves leads to the additional decreasing factor in the WP
function, which provides normability of the WP states.

For nonzero angular momentum L, the relation similar to
Eq. (17) can be derived using the asymptotic form of the
free-motion wave functions of Eq. (16), i.e.,

xL
i (r) = 1√

di

∫ qi

qi−1

√
2

π

sin
(
qr − Lπ

2

)
r

dq, qr 	 1.

So by repeating the above derivation for the s-wave case, one
finds that the WP function nearly coincides with the exact
free-motion wave function in the bin midpoint momentum q∗

i

over the region 1
q∗

i


 r 
 ri .6

Thus, one can use the above q-packet states |xL
i 〉 instead

of the exact plane waves ψL
0q in integral kernels of scattering

operators if the range of the interaction v is less than rmin =
min

i
ri .

6Let us mention that this double inequality makes sense for most
bins, because in practice we use meshes with di 
 q∗

i . Only on the
first bin, where d0 = 2q∗

0 , the WP function differs strongly from the
initial plane wave. But this fact does not corrupt the whole scheme.
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Now the natural question arises: does the q-packet set
|xL

i 〉Ni=1 form a complete basis (for the fixed partial wave)?
In the full coordinate space, of course not. It is clear, however,
that when we replace the exact unit operator IL, which can be
written as

IL ≡
N∑

i=1

Ii + Ir =
N∑

i=1

∫ qi

qi−1

∣∣ψL
0q

〉〈
ψL

0q

∣∣dq

+
∫ ∞

qN

∣∣ψL
0q

〉〈
ψL

0q

∣∣dq, (19)

by the wave-packet projection operator pL, we are making
herewith two approximations:

(i) The infinite continuous spectrum is truncated with
the maximal value qN , and the residual integral Ir is
neglected.

(ii) The exact partial spectral projectors Ii are replaced by
WP partial projectors |xL

i 〉〈xL
i |.

Surely, these two assumptions are not valid for the full
Hilbert space. But keeping in mind practical applications of
the method, one can compare the mean values of operators
I and pL in some L2 normalized state |�〉 with an effective
range r0. To satisfy the conditions

〈�|pL|�〉 ≈ 〈�|
N∑

i=1

Ii |�〉, 〈�|It |�〉 ≈ 0, (20)

one has to choose sufficiently small widths di and sufficiently
high maximal momentum qN values:

di 
 1

r0

 qN, i = 1, . . . , N. (21)

With these restrictions, one can take for the practical real-
ization the proper conditions for the momentum bin partition
[qi−1, qi]Ni=1. Then one can check the convergence of the results
with increasing the wave-packet basis dimension, when the bin
widths become smaller, and the maximum value qN becomes
higher.

As we approximate infinite spectral integrals by the discrete
finite sums, the WP method seems very similar to the
techniques for evaluating integrals (also with singularities)
by constructing quadratures [25,26]. Quadrature methods also
lead to discretization of integrals and use some effective
momentum or energy meshes. In the quadrature language,
WP mesh points are the bin midpoints and WP weights
are just the bin widths. But the essential differences of the
present WP technique from the previous quadrature methods
is the incorporation of the specific L2 WP basis and the
representation of scattering operators themselves by matrices
in that basis, instead of representing them by the values of
the kernels at the momentum mesh points. In particular, this
basis WP representation leads to a simple analytical diagonal
form for the free (or channel, in the few-body case) resolvent
matrix.

In Fig. 1, the coordinate behaviors of the free wave-packet
functions for cases of broad, intermediate, and narrow bins are
given (for L = 0). It is evident that these L2-type functions
are not vanishing at a very far asymptotic region up to

FIG. 1. Coordinate behavior of the dimensionless s-wave WP
function rxi(r) for different values of the bin width di (in ratio
to the momentum value q). (a) di/q = 0.25, (b) di/q = 0.1, and
(c) di/q = 0.05.

qr ∼ 200. Thus, the wave-packet basis is very suitable for
the expansion of continuous spectrum wave functions. This
long-range behavior of the basis functions plays a crucial
role in the three-body scattering, especially above the breakup
threshold, because it provides a proper overlapping between
basis functions in different Jacobi-coordinate sets.

The most interesting picture arises in momentum space,
where the q packets are represented just by the step-like
functions

xL
i (q) = θ (q − qi−1) − θ (q − qi)√

di

, i = 1, . . . , N. (22)

Such a particular discretization of the energy spectrum leads
to a discrete momentum dependence for the scattering wave
functions and the operator kernels. From this point of view the
above wave-packet representation is the discrete momentum
representation. On the other hand, if the momentum takes
discrete values only, a direct analogy with the solid state
physics arises. Indeed, the momentum space in the WP scheme
becomes a lattice, which is one dimensional in the two-body
and multidimensional in the few-body scattering. Further, the
integral operators are represented in this scheme by their
matrices, whose elements are integrals of the operator kernels
over momentum lattice cells. By such an integration, the kernel
singularities are averaged over momentum cells and smoothed.

Thus, one can treat the wave-packet formalism developed
just as some finite-dimensional lattice representation for
solving singular integral equations in quantum scattering
problems.

Now we will turn to the concrete discretization procedure,
which will be used in solving scattering equations.

C. Details of the discretization procedure

The discretization procedure suggested in the WPCD
method [15–20] consists of the following steps:
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(i) All scattering wave functions (for free and total Hamil-
tonians) are represented by their expansions in the
wave-packet basis.

(ii) The respective operators are represented by their f.-d.
projections onto the WPS.

(iii) The packetized objects are substituted into the scatter-
ing integral equations which become now the matrix
ones.

From first glance, such an expansion of the non-
normalizable (in the L2 space) scattering wave functions over
the finite set of L2 wave-packet functions seems nonconvergent
in principle. But this expansion has meaning because only the
inner parts of the scattering wave functions are required to find
the scattering observables for a short-range potential v. Indeed,
the scattering amplitude can be found from the well-known
formula

A(E) ∼ 〈
ψL

0q

∣∣v∣∣ψL(+)
q

〉
,

where |ψ (+)
q 〉 is the scattering wave function. It is clear that

the external part of this function (as well as that of the free
solution) is effectively cut off due to the vanishing potential v

beyond some radius r0. Thus, if the restrictions in Eq. (21) for
the WP basis are satisfied for the potential effective range r0,
the above discretization procedure looks rather rational.

In the wave-packet scheme, the spectrum of the projected
Hamiltonian is fully discrete and the momentum space is
a lattice. So to make the scheme fully self-consistent, it is
desirable to make the energy (which enters the resolvents
as a parameter) also discrete. Thus we define the averaged
discretization procedure in which the energy-dependent f.-d.
approximation for the free resolvent [Eq. (13)] is averaged
over energy inside the singular bin k (E ∈ [Ek−1, Ek]):

g
(k)
0 = 1

Dk

∫ Ek

Ek−1

g0(E) dE =
N∑

i=1

∣∣xL
i

〉
g

(k)
i

〈
xL

i

∣∣, (23)

where the energy-averaged eigenvalues are defined by the
integral

g
(k)
i ≡ 1

Dk

∫ qk

qk−1

gi(q)
q

µ
dq. (24)

Explicit formulas for the q-packet case now are the following:

g
(k)
i = 1

Dkdi

[
Q

(+)
ki − Q

(−)
ki

] − iπ

Dk

δik, (25)

where

Q
(±)
ki =

k∑
k′=k−1

i∑
i ′=i−1

(−1)k−k′+i−i ′ [qk′ ± qi ′ ] ln |qk′ ± qi ′ |.

III. FORMULATION OF THE SCATTERING PROBLEM IN
THE LATTICE APPROXIMATION

Now one can formulate how to solve realistic scattering
problems in the wave-packet approaches. In general, we start
with the f.-d. representation for the free resolvent operator
[Eq. (13) or (23)] and then we derive f.-d. approximations

for the scattering integral equations and all basic scattering
operators.

A. Scattering wave function and the Möller wave operators

Let us apply the averaged-on-energy discretization pro-
cedure to the Lippmann-Schwinger (LS) equation for the
scattering wave function:∣∣ψL(+)

q

〉 = ∣∣ψL
0q

〉 + g
(+)
0 (E)v

∣∣ψL(+)
q

〉
. (26)

By projecting the equation onto the WP basis, the following
f.-d. equation for the lattice approximation |zL(+)

k 〉 of the wave
function can be found:7∣∣zL(+)

k

〉 = ∣∣xL
k

〉 + g
(k)
0 v

∣∣zL(+)
k

〉
, E ∈ [Ek−1, Ek], (27)

where

v = pLvpL =
N∑

i,j=1

∣∣xL
i

〉
vij

〈
xL

j

∣∣ (28)

is the lattice approximation for the potential. The solution of
Eq. (27) is assumed to be expanded on the q-packet basis:

∣∣zL(+)
k

〉 =
N∑

i=1

o
(k)
i

∣∣xL
i

〉
. (29)

It is clear that the expansion coefficients o
(k)
i can be found as

the the kth column of the following matrix

o(k) = (
1 − g(k)

0 v
)−1

. (30)

Here and below we will use bold letters to denote matrices of
corresponding operators in the lattice approximation.

It is seen from Eq. (29) that the full matrix o built from
all these columns for k = 1, . . . , N can be recognized as the
matrix of the operator:

o =
N∑

i=1

∣∣zL(+)
i

〉〈
xL

i

∣∣, (31)

which is the nothing else but the wave-packet approximation
for the Möller wave operator [27]

�(+) =
∫ ∞

0
dq

∣∣ψL(+)
q

〉〈
ψL

0q

∣∣. (32)

The scattering amplitude AL(E) can be found now from the
well-known formula

AL(E) = µ

q

〈
ψL

0q

∣∣v∣∣ψL(+)
q

〉
, (33)

which being rewritten in the lattice approximation takes the
form

AL(E) =
〈
xL

k

∣∣v∣∣zL(+)
k

〉
Dk

, E ∈ [Ek−1, Ek]. (34)

7We should mention that this state is not exactly the WP projection
of the scattering wave function (i.e., |zL(+)

k 〉 �= pL|ψL(+)
q 〉), because

|ψL(+)
q 〉 is found with the complete interaction operator v, whereas

the solution |zL(+)
k 〉 corresponds to the projected operator v.
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In the same way, it is easy to construct fully discrete lattice
analogs for all other scattering integral operators.

B. Total resolvent operator

To find the f.-d. approximation for the total resolvent
operator g(ζ ) = [ζ − h]−1, we apply the above discretization
procedure to the basic resolvent identity

g(ζ ) = g0(ζ ) + g0(ζ )vg(ζ ),

which is reduced, as a result, to the f.-d. equation

g(ζ ) = g0(ζ ) + g0(ζ )vg(ζ ), (35)

where all the operators are projected onto the WPS. Finally, one
gets the following matrix form for the lattice approximation
of the total resolvent:

g(ζ ) = [(g0(ζ ))−1 − v]−1. (36)

It can be shown that Eq. (36) is the lattice f.-d. projection of the
exact resolvent ḡ(ζ ) = [ζ − h0 − v]−1, which corresponds to
the Hamiltonian with the projected interaction operator v (of
the finite rank N ) given in Eq. (28). Using formula (36), it is
easy to find different types of states for the Hamiltonian with
the f.-d. interaction operator v, viz., the bound, resonance, and
continuum states. In particular, as can be seen from Eq. (36),
the transcendental equation in respect of ζ

det ||g−1
0 (ζ ) − v|| = 0 (37)

determines the bound-state energies of the system when ζ is
real and negative, or the resonance-state energies when ζ be-
longs to the nonphysical Riemann sheet. [It is straightforward
to find a continuation of g0(ζ ) to this sheet using formulas (13)
and (14)].

In this paper our point of interest is a scattering problem
where ζ is real and positive, so in this case we will use the above
average discretization procedure. Then Eq. (35) is replaced by
the equation

g(k) = g
(k)
0 + g

(k)
0 vg(k), (38)

where energy E ∈ [Ek−1, Ek] now is a completely discrete
parameter. The solution of the above matrix equation is similar
to Eq. (36), that is,

g(k) = [(
g(k)

0

)−1 − v
]−1

. (39)

C. Energy-averaged lattice approximation for the
transition operator

Consider the transition operator t(E), which satisfies the
LS equation

t(E) = v + t(E)g0(E)v. (40)

The off-shell t-matrix elements are usually defined as

tL(q1, q2; E) = µ√
q1q2

〈
ψL

0q1

∣∣t(E)
∣∣ψL

0q2

〉
. (41)

Let us apply the energy-averaged discretization procedure
to Eq. (40), which is reduced to the f.-d. analog of the LS

equation:

t(k) = v + t(k)g
(k)
0 v, E ∈ [Ek−1, Ek], (42)

whose explicit solutions can be written in a straightforward
matrix form as

t(k) = [
(v)−1 − g(k)

0

]−1
. (43)

Thus, the lattice analog for the off-shell t-matrix elements
takes the form of a three-dimensional histogram [according to
the projection rule of Eq. (9)]

tL(q1, q2; E) ≈ µ t
(k)
i1i2√

q∗
i1
di1q

∗
i2
di2

,
q1(2) ∈ [qi1(2)−1, qi1(2) ],

E ∈ [Ek−1, Ek],
(44)

where we defined the matrix elements of the operator t(k) as
usual

t
(k)
ij ≡ 〈

xL
i

∣∣t(k)
∣∣xL

j

〉
, i, j = 1, . . . , N. (45)

The partial phase shift δL(E) can be extracted easily from
the on-shell t-matrix element according to the well-known
relation

− eiδL(E) sin δL(E)

π
≈ µt

(k)
kk

q∗
k dk

≡ t
(k)
kk

Dk

, E ∈ [Ek−1, Ek]. (46)

It should be emphasized that the lattice approximated
transition operators t(k) satisfy the proper unitarity relation.
Indeed, expression (43) can be rewritten in the form

[t(k)]−1 = v−1 − g(k)
0 . (47)

Using the Hermitian conjugated equation to Eq. (47), one
obtains8

t(k)([t(k)]−1 − [t(k)†]−1)t(k)† = t(k)
([

g(k)
0

]† − g(k)
0

)
t(k)†.

Simplifying, one gets easily

t(k)† − t(k) = t(k)
([

g(k)
0

]† − g(k)
0

)
t(k)†. (48)

It is clear from Eq. (48) that a discontinuity of the diagonal
element of t(k) is related to a discontinuity of the free resolvent
matrix

Imt
(k)
ii =

N∑
j=1

Img
(k)
j

∣∣t (k)
ji

∣∣2
. (49)

Then, using Eq. (25), one derives a relation between the off-
shell and half-shell lattice t-matrix elements

Imt
(k)
ii = −π

∣∣t (k)
ki

∣∣2

Dk

. (50)

The elastic S-matrix element is related to the above t-matrix
element as

S(k) = 1 − 2π i
t

(k)
kk

Dk

. (51)

Substituting Eq. (50) into the latter relation, one obtains
that |S(k)| = 1. Thus, we have just demonstrated that the S

matrix defined from the lattice approximation according to

8For the Hermitian operator v.
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Eq. (51), is exactly unitary. This feature is very important
for practical applications and provides a stable numerical
procedure.

IV. ILLUSTRATIVE EXAMPLE: LATTICE SOLUTION FOR
THE SCATTERING PROBLEM WITH A NONLOCAL

POTENTIAL

The WPCD method with energy-packet formalism was
tested previously for many different cases of interaction
potentials (local, nonlocal, energy-dependent, and complex-
valued) and for the case of charged particle scattering [15–20].
It is important to stress here that the WP technique for
solving scattering problems with any interaction potential is
completely universal, i.e., the numerical procedure is the same
for all types of interaction. This fact is in sharp contrast to
conventional numerical routine in the coordinate space. It
should be kept in mind also that the momentum-space LS
equations need some special regularization procedure, since
the integral kernel (i.e., the resolvent and the interaction
potential) has some singularities just on the real axis. In the
framework of the WP approach, all such momentum-space
singularities are averaged on every bin. So the respective
matrix kernels in the WP basis have a regular behavior as
functions of the energy. Such an averaging will be especially
important in the solution of the three- and few-body scattering
problems well above the three-body threshold where the
integral kernels have complicated moving singularities (see
Sec. V).

As a numerical example demonstrating the advantage of
the above lattice representation, we consider neutron-nucleus
scattering with the optical complex-valued nonlocal potential
of the Perey-Buck type [28], i.e.,

U (r, r′) = V
(

1
2 |r + r′|) · W (|r − r′|), (52)

where V (x) is a usual complex Woods-Saxon optical model
potential of the argument x = 1

2 |r + r′|

V (x) = V0

e( x−R
as

) + 1
+ i

4Vd · e
( x−R

ad
)

[
e

( x−R
ad

) + 1
]2

, R = r0A
1
3 , (53)

where A is the nucleus mass number, and the nonlocality W

is of the Gaussian type

W (|r − r′|) = exp[−(|r − r′|/β)2]

π3/2β3
, (54)

with the scale parameter β. The potential parameter values
used are V0 = −70 MeV, r0 = 1.25 fm, as = 0.65, Vd =
−7.0 MeV, ad = 0.65, and β = 1.0 fm for the Gaussian non-
locality. These values correspond to the neutron scattering off
56Fe target [28]. For simplicity, the neutron and nucleus mass
values are taken as 1 and 56 amu, correspondingly. To check the
accuracy of our method, we employ a direct numerical solution
of the Schrödinger equation (with the conventional Numerov
method) for local phase-shift equivalent potentials (LEPs) of
the Woods-Saxon type, which provide the same differential

FIG. 2. (Color online) Real s-wave phase shifts Re δ0 (top) and
inelasticity parameters η0 (bottom) for neutron scattering off 56Fe (for
the nonlocal optical-model potential of Perey and Buck) obtained with
WPCD on the equidistant grid for different basis dimension: N = 10
(dotted line), N = 20 (dashed line), and N = 40 (solid line). The
black circles correspond to the LEP results obtained by the direct
numerical solution of the Schrödinger equation.

cross sections as the initial local ones at two incident neutron
energies E = 7 and 26 MeV [28].9

Two different types of bin discretization partitions were
used to construct a q-packet basis for practical calculations:
the equidistant (uniform) grid (EG) and the Tchebyshev grid
(TG). In the EG, the maximal energy value Emax is fixed and
the bounded area [0, qmax] with qmax = √

2µEmax is divided
into bins of equal width d:

qi = id, i = 1, . . . , N, d = qmax

N
. (55)

In Fig. 2, the s-wave real phase shifts and inelasticity
parameter η0 ≡ | exp(2iδ0(E))| with respect to increasing basis
dimension N are displayed. The value Emax = 200 MeV
used in this calculation allows us to represent accurately the
scattering phase shifts and inelasticity parameters in a rather
wide energy range from zero energy up to 100 MeV. It is
clear from the figure that despite the rather large bin width
(∼10 MeV), the simple lattice-like basis with the dimension
N = 20 is quite sufficient to obtain the converged results. Also
our results nearly coincide with those for the direct numerical
solution with the LEP interaction.

The TG allows us to transform a finite interval onto the
[0,∞) semiaxis. The distribution has the form

qi = qmid

[
tan

(
2i − 1

2N

π

2

)]t

, i = 1, . . . , NL, (56)

9The parameters of the LEP Woods-Saxon potentials [in notation
of Eq. (53)] are V0 = −40.31 MeV, r0 = 1.32 fm, as = 0.62, Vd =
−3.94 MeV, and ad = 0.65 for E = 7 MeV; V0 = −34.80 MeV,
r0 = 1.31 fm, as = 0.62, Vd = −3.34 MeV, and ad = 0.65 for E =
26 MeV.
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FIG. 3. (Color online) Real s-wave phase shifts Re δ0 (top) and
inelasticity parameters η0 (bottom) for neutron scattering off 56Fe with
the nonlocal interaction obtained with WPCD on the Tchebyshev grid
for different basis dimensions: N = 10 (dotted line), N = 20 (dashed
line), and N = 40 (solid line). The black circles correspond to the
LEP results.

where qmid = √
2µEmid is the common scale parameter, and

the parameter t defines a spareness of the distribution (the
higher t values lead to the smaller q1 and the higher values
of qmax ≡ qN ). It is clear that for the TG with fixed Emid and
t values, the maximal energy is not fixed now and increases
when the basis dimension N is growing. The interesting
property of the TG is that its mesh points are distributed
“symmetrically” in the logarithmic scale with respect to qmid,
i.e.,

qi

qmid
= qmid

qN−i+1
, i = 1, . . . , N. (57)

Thus, this distribution provides a nearly complete q-packet
basis in which short-range and long-range components assist
as well.

In Fig. 3, the convergence of the s-wave partial phase shifts
and inelasticity parameter with increasing TG basis dimension
N is given. We found that the optimal grid parameters here are
t = 0.5 and E0 = 20 MeV. As in the EG basis, dimension
N = 20 is quite enough to provide the converged results for a
wide energy interval from zero to 100 MeV.

It should be stressed that these two completely different
types of discretization distribution lead to nearly coinciding
results. This fact proves that the converged results of the dis-
cretization technique do not depend on the partition parameters
and correspond to the initial exact scattering integral equation
solution.

The structure of the TG allows us also to check the
convergence with respect to the basis dimension for partial
phase shifts at fixed energy E. It is convenient to use the
common grid scale parameter equal to the energy value
searched for, i.e., Emid = E, because the midpoint energy of
the central bin (with the index k = 1

2N + 1) would nearly
coincide with Emid in this case (for even N ). In Table I, the
S-wave phase shifts and inelasticities for different N0 at two
energies Elab = 7 and 26 MeV are given. It is obvious that the

TABLE I. Real s-wave phase shifts Re δ0 (deg) and inelasticity
parameters η0 for neutron scattering off 56Fe obtained on the
Tchebyshev grid for different basis dimensions N . The LEP data
correspond to direct numerical solution of the Schrödinger equation
for local potentials.

N Elab = 7 MeV Elab = 26 MeV

Re δ0 η0 Re δ0 η0

10 195.56 0.561 184.64 0.682
20 285.03 0.502 175.76 0.727
40 283.28 0.529 174.07 0.741
60 284.34 0.534 173.80 0.745
80 284.90 0.534 173.71 0.745

100 285.10 0.534 173.67 0.745
LEP 285.23 0.538 174.42 0.754

q-packet method allows us to obtain the results with almost
any required accuracy. The results for the LEPs are in good
agreement with WPCD results found with the initial nonlocal
interactions.

Finally, in Fig. 4, we display the differential cross section
for the neutron scattering off 56Fe at Elab = 7 MeV calculated
by means of the WPCD technique with the TG of dimension
N = 100 taken for all the partial waves (up to Lmax = 10)
required for the convergence of the partial wave expansion. To
compare, the differential cross section for the LEP is presented
on the same figure. Both curves are almost indistinguishable,
which proves the high accuracy of the WP technique for the
nonlocal interactions.

Thus, we have demonstrated the efficiency of the wave-
packet approach for the solution of the typical optical-model
scattering problems with complex-valued nonlocal potentials.

FIG. 4. (Color online) Differential cross section for neutron
scattering off 56Fe at Elab = 7 MeV calculated with nonlocal potential
on the Tchebyshev grid with N = 100 (solid line) and obtained by
the direct numerical solution of the Shrödinger equation with the LEP
(dotted line).
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V. SOLUTION OF THE THREE-BODY SCATTERING
PROBLEM WITH SEPARABLE INTERACTIONS

As another nontrivial numerical illustration, we consider
here the scattering problem (below and above the three-body
breakup threshold) for three identical particles interacting
via separable pairwise interactions. In this case (if all three
particles are bosons or if they are fermions with the total spin
3/2), the Faddeev equations are reduced to a one-dimensional
integral equation, which is formally similar to a two-body
LS equation with a complex energy-dependent potential, the
kernel of which has logarithmic singularities above the breakup
threshold [29]. Thus, on the other hand, this three-body
problem can be considered as a test for the extended two-body
scattering problem with general complex-valued nonlocal and
energy-dependent interaction potential.

To solve the three-body equations above the breakup
threshold in a conventional way [29], one needs to either shift
the path of integration into the complex momentum plane
(where the kernel becomes regular) or solve the equation at
complex energies and then continue analytically the solution
to the real energy axis [30]. Below we will demonstrate that
the lattice representation approach allows us to replace such an
equation with a corresponding matrix equation and to solve it
immediately on the real energy axis without any deformation
of the path of integration.

A. Definitions

We consider the system of three identical particles with
mass m interacting by means of the separable potential

v = λ|ϕ〉〈ϕ|. (58)

the two-body t matrix for such a potential has also a separable
form

t(E) = |ϕ〉τ (E)〈ϕ|, (59)

where

τ−1(E) = λ−1 − J (E) ≡ λ−1 − 〈ϕ|g0(E)|ϕ〉, (60)

and g0(E) is the free two-particle resolvent. If a bound state
with energy Eb < 0 exists (and we consider just this case), then
the binding energy Eb defined by the equation λ−1 = J (Eb) is
a convenient parameter replacing λ.

The function τ (E) is the analytical function with a single
pole at E = Eb, and its residue at this pole, R(Eb), being equal
to

R(Eb) = −
[

dJ

dE

]
E=Eb

, (61)

defines the normalization of the bound-state wave function
|ψb〉 as

|ψb〉 =
√

R(Eb)g0(Eb)|ϕ〉. (62)

More definitely we will use the two-parameter Yamaguchi
potential with the form factor:

〈p|ϕ〉 ≡ ϕ(p) = (p2 + β2)−1. (63)

In this case, one gets the following explicit formulas for τ (E)
and R(Eb):

τ−1(E > 0) = −π2m

β

(
1

(β + pb)2
− 1

(β − ip)2

)
,

p =
√

mE, pb =
√

−mEb, (64)

R(Eb) = β
(
b2 + p2

b

)3
pb

π2m
.

The elastic scattering amplitude 2 → 2 can be found, as is
well known [29], from the Faddeev integral equation for the
function F (q, q′; E) ≡ 〈q, ϕ|g0(E)U (E)g0(E)|q′, ϕ〉, where
U is the transition operator,

F (q, q′; E) = 2Z(q, q′; E) + 2
∫

Z(q′, q′′; E)

× τ

(
E − 3(q′′)2

4m

)
F (q′′, q′; E) d3q ′′. (65)

So the on-shell amplitude can be defined from the relation

A(E, cos θ ) = R(Eb)F (q0, q′
0; E),

q0 = q ′
0 =

√
4

3
m(E − Eb), cos θ = q0 · q′

0

q0q
′
0

, (66)

where q0 and q′
0 are the initial and final c.m. momenta.

The factors of 2 in Eq. (65) correspond to the case of
three identical bosons; while for three fermions in quartet spin
channel, these factors should be replaced by −1. The kernel
function Z(q, q′; E) in Eq. (65) is defined as

Z(q, q′; E) = ϕ(q′ + q/2)ϕ(−q − q′/2)

E − q2/m − q ′2/m − qq ′/m
. (67)

After the partial-wave expansion of the functions F and
Z in Eq. (65), one gets the one-dimensional integral Faddeev
equation in the Lth partial wave

FL(q, q ′; E) = 2ZL(q, q ′; E) + 2 × 4π

∫
ZL(q ′, q ′′; E)

× τ

(
E − 3(q ′′)2

4m

)
FL(q ′′, q ′; E)(q ′′)2dq ′′,

(68)

which takes the form of the two-body LS equation in
which ZL(E) can be considered as the effective E-dependent
potential, and the function τ (E − 3q2/4m) plays the role of
the free resolvent.

For the Yamaguchi potential, one gets an explicit formula
for the kernel function ZL. The function is regular at E <

0 and has the logarithmic singularities at E > 0. In s-wave
scattering, the singular part of Z0 takes the form [29]

Z
sing
0

(
q, q ′; E

) = m

qq ′
1(

Em+β2− 3
4q2

)(
Em+β2− 3

4q ′2)

× ln

(
Em− 3

4q2
)−(q ′+q/2)2(

Em− 3
4q2

)−(q ′−q/2)2
. (69)

Note that the singular part of Z0 for any form factor ϕ is
proportional to the same logarithm as in Eq. (69).
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FIG. 5. (Color online) Part of the (q, q ′) plane where the
singularities of the Faddeev kernel of Eq. (68) for qE = √

Em = 1
are located. The logarithmic singularities of Z0 lie on the elliptic arcs
Q1(q), Q2(q), Q3(q); the region � where the imaginary part of Z0

is different from zero is between these arcs and inside the rectangle

(q, q ′) < qs =
√

4
3 qE . The vertical line at q = q0 corresponds to the

pole of the “propagator” τ (E − 3q2/4m) for mEb = −0.5. The grid
lines reflect the lattice discretization cells.

The area of singularities for the kernel of the integral
equation (68) is shown in Fig. 5. The factor τ (E − 3q2/4m) as

a function of q has a simple pole at q = q0 =
√

4
3m(E − Eb)

(for any energy E > Eb). The position of singularities of Z0

is determined by zeros of the numerator and denominator
under the logarithm symbol in Eq. (69). Above the three-
body breakup threshold (E > 0), we introduce two values of

momentum: qE = √
Em and qs =

√
4
3qE . From Eq. (69) it

is obvious that there are no singularities of Z0 when q > qs

or q ′ > qs , otherwise the singularities lie on the arcs of two
ellipses (Q1,Q2) and Q3 (see Fig. 5), the imaginary part of Z0

being different from zero only in the region � between these
two arcs.

So, it is clear that the direct numerical solution of Eq. (68)
is not a simple problem on the positive real axis of q due to
the noted singularities of the kernel. However, the application
of the lattice approximation leads to the discretization of q

and q ′ variables and averaging of Z0 and τ functions over the
cells of the constructed lattice in the (q, q ′) plane, i.e., to some
effective regularization of the kernel in Eq. (68).

B. Lattice approximated solution

The discretization procedure (defined in Sec. II C) being
applied to the Faddeev equation (68) results directly in its
matrix analog

F(E) = 2Z(E) + 2 × 4πZ(E)τ (E)F(E). (70)

Here we use the basis of s-wave q packets |x0
i 〉 defined

in Eq. (3), so that the matrix elements in Eq. (70) are

equal, i.e.,

Zij (E) = 〈
x0

i

∣∣Z0

∣∣x0
j

〉

= 1√
didj

∫ qi

qi−1

∫ qj

qj−1

Z0(q, q ′; E)dq dq ′, (71)

and τ is the diagonal matrix with elements

τi(E) = 1

di

∫ qi

qi−1

τ

(
E − q2

4m/3

)
dq. (72)

The matrix elements in Eq. (72) can be replaced by values of
τ calculated in the midpoints q∗

i of the ith interval. So, we can
use the following approximation for τi(E):

τi(E) � τ̃i(E) =

⎧⎪⎨
⎪⎩

τ (E − 3q∗
i

2/4m), i �= k,

− iπ

dk

2m

3q0
Rb(Eb), i = k,

(73)

where index k denotes the “singular” interval to which the pole
of the function τ (q) = τ (E − 3q2

i /4m) belongs. However, to
check carefully the quality of this midpoint approximation
(73), we also calculated the same matrix elements directly
by applying the 48-point Gaussian quadrature on each bin,
taking into account the possible singularity of the integrands.
The comparison between the exact values for the matrix
elements τi and their approximated values τ̃i is shown in
Fig. 6. From the figure it is evident that the midpoint
approximation gives very accurate representation for all matrix
elements (bin projections) of τi(E).

Regarding the matrix elements Zij , one has to keep in
mind that the singularities of the integrand Z0(q, q ′, E) are
logarithmic, so they can be integrated in common sense.
Thus, the following simple approximation can be used for
all intervals:

Re Zij (E) ≈ Re Z̃ij (E) = Re Z0(q∗
i , q∗

j ; E)
√

didj . (74)

0.01 0.1 1 10 100
q*

i

-200
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τ i

FIG. 6. (Color online) Comparison between the midpoint values
τ̃i (circles) and exact matrix elements τi (solid line) considered as
functions of midpoint momentum q∗

i . The imaginary part of τi is
shown by the dashed line. The difference between exact and midpoint
values for the imaginary part is almost invisible.
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ImZ̃ij (E) =

⎧⎪⎨
⎪⎩

− πm

q∗
i q∗

j

√
didj(

Em + β2 − 3
4q∗

i
2)(Em + β2 − 3

4q∗
j

2) , (q∗
i , q∗

j ) ∈ �,

0, (q∗
i , q∗

j ) ∈ �,

(75)

which is nonzero for the lattice cells that belong to the region
�. In fact, such an approximation means a replacement of
the smooth boundary (the arcs) for the � region by the step-
like one. The comparison between the exact diagonal matrix
elements Zii and approximate ones [given by Eqs. (74) and
(75)] calculated at E = 30 (in units 2m = 1) when choosing
N = 200 equidistant momentum bins is shown in Fig. 7. A
similar accuracy is reached also for the nondiagonal matrix
elements Zij (E).

Thus it is evident from the above comparisons that the
construction of f.-d. matrix kernel on the q-packet basis can
be done immediately and in a very simple way just on the real
axis (i.e., without any contour deformation).

C. Calculations of phase shifts and inelasticity parameters

After having solved Eq. (70), the complex partial phase
shift for an elastic 2 → 2 scattering can be found from the
relation

e2iδ0(E) = 1 − 2π i
2m

3q0dk

RB(EB)Fkk(E), q0 ∈ [qk−1, qk].

(76)

In Figs. 8 and 9, we present the energy dependence of the
real phase shift δ(E) and the inelasticity parameter η(E)
obtained from our lattice calculations [solution of the matrix
equation (70)] for the elastic s-wave scattering in the three-
boson system. In this illustrative calculation, the Yamaguchi

0 1 2 3 4 5 6
q

i
*
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-2
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10
12
14

10
6   Z

ii

FIG. 7. (Color online) Diagonal matrix element Zii as function
of midpoint momentum q∗

i for the uniform EG with the width value
d = 0.079 and E = 30. The exact integrals over momentum bins
(real part, diamonds; imaginary part, circles) are compared with their
midpoint approximations (real part, solid line; imaginary part, dashed
line). The vertical lines correspond to positions of the logarithmic
singularities of the initial function Z0(q∗

i , q∗
i , E).

potential parameters 2m = 1, Eb = −1.5, β = 5 were used.
The calculations were carried out with the approximate values
for matrix elements (73)–(75) found with the simple midpoint
way. This allowed us to reduce the computational effort and
time enormously (by one to two orders of magnitude).

As is well known [29], the main difficulty in performing the
Faddeev three-body calculations above the breakup threshold
in momentum space is the appearance of moving singularities
in the integral kernel Z0 at E > 0, which correspond to
three-body breakup of the system. To describe properly these
singularities, it is necessary to cover the whole region � in the
(q, q ′) plane [i.e., the rectangle (q, q ′) < qs] by the sufficiently
dense lattice. Therefore, to optimize the numeric treatment, we
used a combined grid for different q intervals: the EG: qi =
qs(i/N1), i = 1, . . . , N1 was used in the “singular” region
0 < q < qs ; and the TG: qi = q0[tan ( 2i−1

2N2

π
2 )], i = 1, . . . , N2

turned out to be preferable10 in the regular region q > qs .
To check the reliability and accuracy of our approach, we

compared the s-wave phase shifts and inelasticity parameters
for the quartet nd scattering (with the Yamaguchi pairwise
potential) obtained in the WP approach with the respective
results obtained by the conventional approaches [31,32] to the

10This choice is related to the fact that TG is more suitable for the
high momenta region than EG, because the Tchebyshev distribution
(58) of a rather small dimension (being constructed to transform a
finite interval onto an infinite one) contains intermediate and very
high momenta values as well.
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FIG. 8. (Color online) Energy dependence of the real s-wave
phase shift for the elastic 2 → 2 scattering in the model three-
identical-boson system calculated by means of the momentum-
packet discretized Faddeev equation (70) for different dimensions
N = 60–400 of the wave-packet basis. The model parameters are
2m = 1, Eb = −1.5, β = 5.
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FIG. 9. (Color online) Same as in Fig. 8, but for the inelasticity
parameter.

numerical solution of Eq. (65). In the Table II, we present
the convergence of our wave-packet results and data from
Ref. [31] at three energies: Elab = 0.5, 14.1, and 50 MeV.
The parameters of the Yamaguchi potential were chosen to be
the same as in Ref. [31] (they were fitted to the values of the
deuteron binding energy Eb = −2.226 MeV and the triplet
scattering length at = 5.41 fm). The value of h̄2/m is equal to
41.4594 MeV fm2.

Thus, one can see from Figs. 8 and 9 and Table II
that the wave-packet discretization method with momentum
lattice allows one to solve the Faddeev equations above the
three-body threshold straightforwardly at real energy, i.e.,
without any contour deformation. It simplifies drastically the
whole solution algorithm. The proper analytical behavior of
the discretized (matrix) kernel in Eq. (70) is ensured in this
case by the fact that we employed in our lattice discretization
the matrix elements of the exact function Z0 which includes
explicitly all the singularities of the initial integral kernel. For
local (or arbitrary nonlocal) pairwise interactions, it would
seem that the most economic and straightforward way is to
use a separable expansion of the input interaction (just as it
was done in numerous previous works) and then to apply the

TABLE II. Comparison of our wave-packet real phase shifts Re
δ (deg) and inelasticity parameters η with those calculated by Sloan
[31] and by Larson and Hetherington [32] for s-wave quartet nd

scattering with the Yamaguchi pairwise potential at three energies.

N Elab = 0.5 MeVa Elab = 14.1 MeV Elab = 50 MeV
Re δ

Re δ η Re δ η

48 144.83 71.9 1.035 39.1 0.923
96 145.92 72.9 0.998 37.7 0.909
192 145.04 72.5 0.985 37.2 0.889
512 145.08 72.1 0.980 37.1 0.885
1024 145.10 72.0 0.978 37.1 0.884
Ref. [31] 145.1 71.9 0.978 37.0 0.884
Ref. [32] 145.1 71.9 0.975 36.9 0.891

aAt this energy, η = 1.0.

above direct lattice discretization (with a trivial extension) to
the resulting one-dimensional integral equations.

However, we found that it is much more advantageous in the
general case to employ another way for the solution, namely,
the direct lattice discretization of two-dimensional three-body
integral equations (Faddeev or Lippmann-Schwinger) and
three-dimensional four-body Yakubovsky equations using the
respective two- or three-dimensional momentum-packet bases
along two or three Jacobi coordinates (i.e., the two- or
three-dimensional lattice; see the next section).

VI. SOLUTION OF THE GENERAL THREE-BODY
SCATTERING PROBLEM

Here we will briefly describe how the wave-packet tech-
nique can be applied to the general three- or few-body
scattering problem with any type of interaction potential
including local, nonlocal, etc., ones by introducing the two-
dimensional momentum lattice.

A. Lattice representation for the channel resolvent

Let us consider the general three-body scattering problem
for particles 1, 2 and 3, interacting via pair short-range
potentials vi (i = 1, 2, 3). It is convenient to use three Jacobi
coordinate sets corresponding to three channel Hamiltonians
Hi (i = 1, 2, 3) which define asymptotic motions in the
system. In the general case, the respective wave-packet basis
should be constructed independently for each Jacobi set [18].

The channel Hamiltonian H1 has the form of the direct sum
of the two-body sub-Hamiltonians

H1 ≡ h1 ⊕ h1
0, (77)

where sub-Hamiltonian h1 defines the interaction in the
{23} subsystem (i.e., including the potential v1), and the
sub-Hamiltonian h1

0 corresponds to the free relative motion
of this subsystem (its center of mass) and the spectator
particle 1. The eigenfunction of the three-body Hamiltonian
H1 corresponding to the given value of the total angular
momentum � and its projection M can be written in the
form

〈p′, q′|ψl
p, ψL

0q,�M〉 ≡ ψl
p(p′)ψL

0q(q ′)Y�M
lL (p̂′, q̂′), (78)

where p′ and q′ are the relative and c.m. Jacobi momenta;
ψl

p(p′) and ψL
0q(q ′) are the radial wave functions correspond-

ing to the sub-Hamiltonians h1 and h1
0 with angular momenta

l and L, respectively. The Y�M
lL (p̂′, q̂′) are six-dimensional

spherical harmonics given by the convolution of the spherical
functions Ylµ1 (p̂′) and YLµ2 (q̂′).

Now we introduce the WP bases for two-body sub-
Hamiltonians h1 and h1

0. Assume further that there are
Kl

b bound states (for a fixed partial wave l) in the {23}
subsystem with corresponding bound-state wave functions

{|zl
n〉}K

l
b

n=1 and eigenenergies {εl∗
n }Kl

b

n=1. Let us define the partition
[εl

i−1, ε
l
i ]

Kl

i=Kl
b+1

of the continuous spectrum of h1 (with cor-

responding momentum bins [pl
i−1, p

l
i]

Kl

i=Kl
b+1

) and construct
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the set of scattering wave packets from the respective exact
scattering wave functions |ψl

p〉 [similar to Eq. (3)]:

∣∣zl
i

〉 = 1√
Al

i

∫ pl
i

pl
i−1

dp w(p)
∣∣ψl

p

〉
, (79)

where Al
i and w(p) are normalization factors and the weight

function, respectively. The full lattice basis {|zl
i〉}Kl

i=1 for the
h1 sub-Hamiltonian includes the bound-state functions and
the scattering wave packets. Free wave packets [Eq. (3)]
corresponding to the h1

0 sub-Hamiltonian are constructed
with the use of the partition [qL

j−1, q
L
j ]NL

j=1 in the continuous
spectrum of the h1

0.
Now one can build the three-body wave-packets (3WP) just

as products of two types of wave-packet states (for the above
two sub-Hamiltonians) whose angular parts are combined with
the total angular momentum value � as in Eq. (78):

∣∣Z�M
S

〉 ≡ ∣∣zl
i , x

L
j ,�M

〉
, i = 1, . . . , Kl, j = 1, . . . , NL,

(80)

where S = i, l, j, L is the multi-index. Further, we will omit
the index M. The properties of the 3WP constructed in this
way are the same as those of the two-body wave packets, viz.,
they form an orthonormal set, and any operator functionally
dependent of the channel Hamiltonian H1 has the diagonal
projection onto the subspace spanned on this basis. It allows
us to construct an analytical f.-d. approximation for the three-
body channel resolvent G1(E) ≡ [E + i0 − H1]−1.

Indeed, the exact three-body channel resolvent is the
convolution of the two-body subresolvents g1(E) and g0(E):

G1(E) = 1

2π i

∫ ∞

−∞
dε g1(ε)g0(E − ε). (81)

Using spectral expansions for the two-body resolvents and
performing the integration, one gets an explicit expression
for the exact channel resolvent G1 as a sum of two terms
G1(E) = GBC

1 (E) + GCC
1 , where the bound-continuum part

takes the form

GBC
1 (E) =

∑
l,L

Kl
b∑

n=1

∫ ∞

0
dq

∣∣zl
n, ψ

L
0q,�

〉〈
zl
n, ψ

L
0q,�

∣∣
E + i0 − εl∗

n − q2

2M

, (82)

where M is the reduced mass in the {23} + 1 channel. The
continuum-continuum part of G1 takes the form

GCC
1 (E) =

∑
l,L

∫ ∞

0
dp

∫ ∞

0
dq

∣∣ψl
p, ψL

0q,�
〉〈
ψl

p, ψL
0q,�

∣∣
E + i0 − p2

2µ
− q2

2M

,

(83)

where µ is the reduced mass in the {23} subsystem.
Projecting further the exact channel resolvent onto 3WP

basis defined in Eq. (80), one can find the following analytical
formulas for the diagonal f.-d. approximation of the G1

operator:

GBC
1 =

∑
l,L

Kl
b∑

n=1

NL∑
j=1

GBC
nljL

∣∣zl
n, x

L
j ,�

〉〈
zl
n, x

L
j ,�

∣∣,
(84)

GCC
1 =

Kl∑
i=Kl

b+1

NL∑
j=1

GCC
iljL

∣∣zl
i , x

L
j ,�

〉〈
zl
i , x

L
j ,�

∣∣,

where the matrix elements GBC
nljL and GCC

iljL are defined as
integrals over the respective momentum bins:

GBC
nljL = 1

BL
j

∫ qL
j

qL
j−1

|f (q)|2dq

E + i0 − εl∗
n − q2

2M

, (84a)

GCC
iljL = 1

Al
iB

L
j

∫ pl
i

pl
i−1

∫ qL
j

qL
j−1

|w(p)|2|f (q)|2dp dq

E + i0 − p2

2µ
− q2

2M

. (84b)

These matrix elements depend, in general, on the spectrum
partition parameters (i.e., pl

i and qL
j values) and the total

energy only and do not depend explicitly on the interaction
potential v1. When the wave-packet expansions of the three-
body amplitude is convergent, the final result turns out to be
independent upon the particular spectral partition parameters.
The integrals in Eqs. (84) and can be taken in a closed form,
which gives a convenient analytical f.-d. representation for the
three-body channel resolvent G1. We have calculated these
matrix elements for the case of energy packets (the explicit
formulas can be found in Ref. [18]).

The representation (84) for the channel resolvent is a basic
feature of the wave-packet approach since it allows us to
drastically simplify the solution of the general three-body
scattering problem. In particular, this representation has been
used to solve the f.-d. analog for the Faddeev equations for
the Faddeev components of the total scattering wave function
[18]. Alternatively, this representation has been used also to
solve some particular three-body scattering problems with
employment of the three- or few-body Lippmann-Schwinger
equations [19,20], e.g., for composite projectile scattering off
a nuclear target (see below) or for electron-atom and electron-
molecule scattering above the first ionization threshold, etc.11

B. Application to solving three-body integral equations with
noncompact kernels

To illustrate the effectiveness of the lattice approximation
in the three-body scattering problem, we consider here the
scattering of composite two-fragment particle {23} off a heavy
target-nucleus 1. For simplicity, we assume that the fragments
have equal masses and there is only one s-wave bound state
|z0

1〉 with the binding energy ε0∗
1 in the {23} subsystem.

11The WP technique for the two-body Coulomb interaction is given
in Ref. [17]. The generalization of the approach to the few-body
scattering problems with charged particles will be considered in our
next paper.
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In the conventional treatment, the system Hamiltonian can
be written in the form [22]

H = H1 + v2 + v3, (85)

where H1 is the channel Hamiltonian defined in Eq. (77),12

and v2(3) are optical-model potentials of fragment-target
interactions.

Since there are no bound states in each projectile fragment-
target subsystem due to the complex optical-model interac-
tions, the total scattering wave function can be uniquely found
from the single three-body Lippmann-Schwinger equation
(according to Ref. [22])

|��(E)〉 = ∣∣��
1 (E)

〉 + G1(E)V̄1|��(E)〉, (86)

where V̄1 ≡ v2 + v3 is the “external” interaction, and
|��

1 (E)〉 ≡ |z0
1, ψ

�
0q0

,�〉 is the outgoing wave function for the
projectile in its bound state. The on-shell momenta is defined
as q0 =

√
2M(E − ε0∗

1 ).
The main problem with solution of Eq. (86) is that its kernel

is noncompact [22] (so it has no finite Hilbert-Schmidt norm)
and includes a δ function. So the direct numerical solution
requires some nontrivial special numerical techniques for solv-
ing singular equations. In practice, most of authors prefer to
use a coupled-channel method (on the base of the Schrödinger
differential equation) to find the elastic and breakup scattering
amplitudes. On the contrary, in the wave-packet approach,
we can use just the integral equation framework (86) because
there is no problem with the compactness of the three-body
kernel in Eq. (86).13 We apply the discretization procedure to
this equation using the 3WP basis corresponding to the channel
Hamiltonian H1. After this discretization, the integral equation
(86) takes the f.-d. form

|�̂�(E)〉 = ∣∣Z�
S0

〉 + G1(E)V|�̂�(E)〉, (87)

where |Z�
S0

〉 ≡ |z0
1, x

�
k0

,�〉 is the wave-packet state corre-
sponding to the initial wave function |��

1 〉 (the index k0

being defined by the energy conservation rule: E ∈ [E�
k0−1 +

ε0∗
1 , E�

k0
+ ε0∗

1 ]), and the wave packet projection of the channel
resolvent G1 is calculated by the explicit formulas (84). The
external interaction V can be found here in the matrix form

V ≡
∑
S,S ′

∣∣Z�
S

〉
VS,S ′

〈
Z�

S ′
∣∣, (88)

where the matrix elements VS,S ′ ≡ 〈z0
i , x

�
j ,�|v2 + v3|z0

i ′ ,

x�
j ′ ,�〉 are calculated in the lattice basis analytically or

numerically.
It was shown previously [18–20] that the interaction wave

packets |z0
i 〉 jointly with the bound-state function |z0

1〉 can be
approximated with very high accuracy by variational functions
obtained from the diagonalization of the sub-Hamiltonian h1

12We neglect here for simplicity the Coulomb interaction, but in its
presence the lattice formalism remains in principle the same (see
Refs. [15,20]).
13In this case, the δ function singularity in the kernel is integrated

(smeared) over the respective bin and gives a finite contribution to
the matrix element of the kernel.

in some L2 basis {|φn〉}. So, they can be represented by the
following expansions in the chosen basis:

∣∣z0
i

〉 =
K∑

n=1

Oin|φn〉, i = 1, . . . , K0. (89)

In the calculations presented here, the Gaussian bases have
been used in the expansion (93). However in the general
three-body scattering problem (including the rearrangement
channels), the basis of exact free q packets is more preferable
for diagonalization of the sub-Hamiltonian h1.

Finally, the elastic scattering amplitude is determined
formally by the expression

A�
el ≈ [(V−1 − G1)−1]S0,S0

D�
k0

, (90)

where the bold letters denote matrices of the respective
operators in 3WP basis and D�

k0
is the bin width of the h1

0
continuous spectrum discretization. It should be emphasized
here that the three-body breakup amplitude can be found
immediately as a nondiagonal (off-shell) matrix element of
the same matrix [V−1 − G1]−1 in the 3WP basis [18,20]. The
above matrix is in essence a finite-dimensional analog of the
exact transition operator.

It is important to note that the above integral formulation
of the initial three-body scattering problem has evident
advantages over the coupled-channel differential approaches
(i.e., those based on the Schrödinger equation formulation)
traditionally used for solving such problems. Consider, for
example, the CDCC method [15,21–24], which is based on
the discretization of the {23} subsystem internal continuum
only. This partial discretization procedure allows one to
reduce the initial three-body Schrödinger equation to the two-
body coupled-channel problem still in differential equation
framework in which matching with asymptotic outgoing waves
are taken along the center-of-mass coordinate only. However,
in the integral WPCD approach, the outgoing boundary
conditions along both Jacobi coordinates are considered sym-
metrically owing to the proper approximation for the channel
resolvent. Moreover, the closed channels of the {23} subsystem
are included into the integral WPCD scheme in the same way
as the opened ones, while in the CDCC the direct inclusion of

θ

σ
Ω

 (

FIG. 10. (Color online) Differential cross section for the FVA
model calculated within the CDCC (dotted curve), the FEM (dash-
dotted curve), and the lattice approximation (solid curve) methods.
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the closed-channel effect leads to numerical instabilities, and
a special R-matrix coupled-channel technique [24] is required
in this case. Finally, thanks to the integral formulation of the
problem, the WPCD scheme can be generalized directly to
include the rearrangement (e.g., the stripping, etc.) channels
in the system, while in the CDCC scheme such generalization
is rather nontrivial.

The detailed comparison between two methods of the
continuum discretization has been discussed in Ref. [15]. In the
present work, we compare for illustrative purposes in Fig. 10
the differential cross sections for the Farell-Vincent-Austern
(FVA) model [21,22] (traditionally used as a test for the
composite particle scattering problem) calculated within the
WPCD and CDCC approaches. As an independent test, we
display here the results of the direct solution of the three-
body Schrödinger equation with proper three-body boundary
conditions found in Ref. [22] within the finite element method
(FEM). It is clear from Fig. 10 that the WPCD and FEM
results are very close to each other, while the CDCC result
differs a little bit from them at backward angles. These
discrepancies are very likely related to fact that FEM and
WPCD approaches both include accurately the closed-channel
contributions, which are neglected in the CDCC framework.

C. Application to the general Faddeev equations

When rearrangement channels cannot be neglected, the
general Faddeev formalism should be used to solve the full
three-body scattering problem of 2 → 2 or 2 → 3 type. So,
in the Faddeev approach, we introduce three sets of 3WPs
{Z(a)

S }, a = 1, 2, 3, related to three channel Hamiltonians
Ha .14 Further, we apply the complete discretization procedure
directly to the system of three Faddeev equations (e.g., for
the wave function with the initial state |�01〉 defined by the
channel Hamiltonian H1):

|ψ (a)〉 = |�01〉δa1 + Gava

∑
b �=a

|ψ (b)〉, a = 1, 2, 3. (91)

Now, in the wave-packet approach, we replace each Faddeev
component |ψ (a)〉 with its projection onto 3WP basis in the
channel (a):

|ψ̂ (a)〉 =
∑

S

Oa
S

∣∣Z(a)
S

〉
, a = 1, 2, 3, (92)

and then one replaces exact channel resolvents Ga = (E −
Ha)−1 with their f.-d. 3WP analogs given in Eq. (84).
Finally, one gets the following f.-d. equations for the Faddeev
components of the “packetized” wave function:

|ψ̂ (a)〉 = ∣∣Z(1)
S0

〉
δa1 + Gava

∑
b �=a

|ψ̂ (b)〉, a = 1, 2, 3, (93)

where |Z(1)
S0

〉 is the 3WP state corresponding to the initial state
|�01〉. One of the main advantages of the momentum-lattice
scheme here is that the transformation between functions in
the different Jacobi sets can be expressed by a f.-d. matrix

14We omit in this subsection partial wave indices.

of the “permutation operator” Pab ≡ ∑
S,S ′ |Z(a)

S 〉P ab
S,S ′ 〈Z(b)

S ′ |,
i.e.,

〈ψ̂ (b)|ψ̂ (a)〉 =
∑
S,S ′

Oa∗
S Ob

S ′P
ab
S,S ′ , P ab

S,S ′ ≡ 〈
Z

(a)
S

∣∣Z(b)
S ′

〉
, (94)

in contrast to the direct solving of the Faddeev equations in the
momentum space, where time-consuming multidimensional
interpolations for scattering solution taken in different Jacobi
coordinates are required in each step of the iteration. Using
the expansion of the scattering packets |Z(a)

S 〉 on the free-
packet basis similar to Eq. (89), one can express the above
permutation matrix Pab in terms of the overlap matrix for free
three-body packets in different Jacobi coordinates P 0ab

kj,k′j ′ ≡
〈xk, xj , (a)|xk′ , xj ′ , (b)〉 which do not depend on the interaction
and can be calculated easily (each matrix element can be found
through a one-dimensional numerical integration [33]).

Thus, the wave-packet approach can provide direct solu-
tions for the general Faddeev equations for any two-body
interactions at the real energy and without any deformation
of the integration path. In recent work [18], we successfully
applied the WPCD approach with three-body wave packets
expressed via Gaussian basis for solving the Faddeev equation
below the breakup threshold. Very recently, we performed
calculations of the nd elastic scattering up to 30 MeV with
local Malfliet-Tjon NN potentials [33] which used the free
momentum lattice basis for the representation of the three-
body wave packets and obtained very good agreement (both
below and above the breakup threshold) with the benchmark
results found with the traditional Faddeev calculations. So, the
WP technique with momentum lattice representation looks
quite universal and convenient for practical applications to
general three-body scattering problems.

VII. SUMMARY

In the present work, we have developed the general
continuum discretization technique based on the analytical
lattice representation for the basic scattering operators. The
new technique continues investigations of L2-type methods in
atomic [5–10] and nuclear [11,21–24] physics and employs
effectively stationary wave packets as a very convenient
L2 basis for the reformulation of scattering problems in
terms of the discretized matrix analogs of the scattering
integral equations (of the three-body Lippmann-Schwinger
and Faddeev type). The main advantages of the wave-packet
technique are following:

(i) Instead of the direct solution of the scattering equations
in the coordinate or momentum space, we use purely
matrix equations which include a matrix representation
in the lattice basis for all the scattering operators. So,
the method allows us to use any complicated interaction
potentials, i.e., nonlocal or tensor ones, with the same
general framework as simple local interactions.

(ii) As the method uses the f.-d. approximations for three-
body channel resolvents with a proper behavior in
complex energy plane, the WP technique is applicable
in the same way both below and above three- or
few-body breakup thresholds.
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(iii) The reduction from the initial integral scattering equa-
tions to their matrix analogs in the lattice basis can
be considered as some effective regularization of these
equations owing to averaging their kernel singulari-
ties over lattice cells. Therefore the solution can be
constructed directly at the real energy without any
deformation of the integration path into the complex
momentum plane.

(iv) The wave-packet solutions have been shown to con-
verge to the respective exact solutions of the integral
equations with compact and noncompact kernels.

(v) The long-range Coulomb interaction can be included
by introducing the special Coulomb wave-packet basis.
The general calculation scheme remains to be the same
as for the short-range interaction [17].

(vi) Due to the use of the integral version of the scattering
theory, one can directly generalize the lattice technique
to the solution for the few-body scattering problems
(when the number of particles is more than three),
the analytical finite-dimensional representation for the

channel resolvents in the lattice bases being easily
derived.

Thus, to summarize all these arguments, one can conclude
that the WP technique can be applied favorably to numerous
problems in nuclear, atomic, and molecular physics where
it greatly facilitates many precise calculations. Also, this
technique can be applied advantageously to other branches
of the quantum physics, e.g., to the direct numerical solving of
the relativistic two- and three-body Bethe-Salpeter equations
with appropriate smoothing of the complex singularities in
their kernels.
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