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Helium-3 microscopic optical model potential based on the Skyrme interaction
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A microscopic helium-3 optical potential is obtained by Green function method through nuclear matter
approximation and local density approximation based on the effective Skyrme interaction. The reaction cross
sections and the elastic scattering angular distributions are calculated by the microscopic optical potential for
nuclides in the mass range 12 � A� 208 with incident helium-3 energies from threshold up to 200 MeV. The
results of theoretical calculations are compared with the experimental data.
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I. INTRODUCTION

The optical model is one of the most fundamental theo-
retical models in nuclear reaction theory. It is applied widely
in the nuclear reaction calculations (the calculations of total,
nonelastic, elastic cross sections, and elastic-scattering angular
distributions, and the transmission coefficient of the compound
nucleus and the preequilibrium emission process, and so on).
The key point of the optical model is the optical model
potential. The phenomenological optical potential includes
many adjustable parameters, and it is obtained by adjusting
its parameters to fit the existing experimental data, so it cannot
predict the unknown data with certainty. The microscopic
optical potential (MOP) is derived theoretically based on the
nucleon-nucleon interaction (not the existing experimental
data). It has no free parameters and is usually applicable in a
wide range of mass number and energy. Thus, the derivation of
the microscopic optical potential is one of the most important
problems in nuclear theory and is of both theoretical and
practical interest.

At present, there are some microscopic optical potentials
[1–3] for nucleon and deuteron based on nucleon-nucleon
interaction, and they can reproduce the experimental data
quite well. For 3He, despite there are some optical potentials
constructed from phenomenological approach [4–6] and some
optical potentials constructed from a combined microscopic
and phenomenological approach [7,8], there is no optical
potential for 3He obtained from a microscopic approach yet.
Samaddar [7] and Sinha [8] developed the optical potentials
for 3He in terms of the optical potentials of its constituent
nucleons, however, both optical potentials are still obtained
by adjusting parameters based on existing experimental data
like phenomenological optical potentials in the end, and they
cannot reproduce the experimental data satisfactorily. In the
present paper we generate a microscopic optical potential
for 3He without free parameters based on Skyrme nucleon-
nucleon interaction.

In view of the many-body theory, the nucleon optical
potential is identified with the mass operator of the one-particle
Green function [9], which makes it possible to utilize the mass
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operator to get the nucleon microscopic optical potential. In
Refs. [1,2], the nucleon microscopic optical potentials are
obtained by Green function method through nuclear matter
approximation and local density approximation based on some
Skyrme interactions, and it is shown that the results calculated
by the nucleon microscopic optical potentials are comparable
to that calculated by phenomenological ones in fitting the
empirical data. Encouraged by the success of the nucleon
microscopic optical potential, the helium-3 microscopic op-
tical potential is given from the three-particle Green function
based on Skyrme interaction in this paper, and the nuclear
matter approximation and local density approximation are
used. The first-order and the imaginary part of second-order
mass operators of the three-particle Green function denote
the real and imaginary parts of the helium-3 microscopic
optical potential, respectively. The helium-3 microscopic
optical potential obtained is used to calculated the reaction
cross sections and the elastic scattering angular distributions in
the mass range 12 � A � 208 with incident helium-3 energies
from threshold up to 200 MeV, and the calculated results are
compared with experimental data.

In Sec. II, the general formulation of the MOP for 3He
is presented. The calculated results and analysis are given in
Sec. III. Finally, in Sec. IV a summary is given.

II. THEORETICAL MODEL

The Hamiltonian of the system composed of the incident
particle and the target nucleus, which only considers the two-
body interaction, can be expressed as

H = H0 + H1, (1)

where

H0 =
∑

i

(ti + Ui), (2)

H1 = 1

2

∑
i �=j

Vij−
∑

i

Ui (3)

with H0 being the single-particle Hamiltonian, H1 being the
residual interaction, and Ui being the single-particle mean
field.
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The three-particle Green function is expressed as

iG(α1α2α3, β1β2β3; t1 − t2) = 〈φ0|T
[
Uη(∞,−∞)ξα3 (t1)ξα2 (t1)ξα1 (t1)ξ+

β1
(t2)ξ+

β2
(t2)ξ+

β3
(t2)

]|φ0〉
〈φ0|Uη(−∞,+∞)|φ0〉

= 〈φ0|T
[
Uη(−∞,+∞)ξα3 (t1)ξα2 (t1)ξα1 (t1)ξ+

β1
(t2)ξ+

β2
(t2)ξ+

β3
(t2)

]|φ0〉L, (4)

where |φ0〉 is the eigenstate of H0, T is the time-ordering
symbol, ξα1 , ξα2 , and ξα3 are the annihilation operators in
interaction representation, ξ+

β1
, ξ+

β2
, and ξ+

β3
are the creation

operators in interaction representation, L denotes that only
the linked diagrams are reserved. Uη(∞,−∞) is the time-
evolution operator expressed as

Uη(∞,−∞) =
∞∑

n=0

(−i

h̄

)n 1

n!

∫
dτ1

∫
dτ2 · · · · · ·

×
∫

dτn exp[−η(|τ1| + |τ2| + · · · · · · + |τn|)]
× T {H1(τ1)H1(τ2) · · · · · · H1(τn)}, (5)

where η is the infinitesimal imported in adiabatic approxima-
tion.

The three-particle Green function satisfies the Dyson
equation

iG(α1α2α3, β1β2β3; ω)

= iG(0)(α1α2α3, β1β2β3; ω)

+ i

h̄

∑
ρλθµνδ

iG(0)(α1α2α3, ρλθ ; ω)[Uρλθ,µνδ

−M(ρλθ, µνδ; ω)]iG(µνδ, β1β2β3; ω), (6)

where Uρλθ,µνδ is mean field, and M(ρλθ, µνδ) is the mass
operator which can be expanded into

M(ρλθ, µνδ; ω) = M (1)(ρλθ, µνδ; ω)

+M (2)(ρλθ, µνδ; ω) + · · · . (7)

For the scattering process, the mass operator M(α1α2α3,
α1α2α3; ω) is identified with the microscopic optical potential
for 3He.

The three-particle Green function can be expanded into
perturbation series:

iG(α1α2α3, β1β2β3; t1 − t2)

= iG(0)(α1α2α3, β1β2β3; t1 − t2)

+ iG(1)(α1α2α3, β1β2β3; t1 − t2)

+ iG(2)(α1α2α3, β1β2β3; t1 − t2) + · · · . (8)

As the contribution of the higher-order terms is quite small, it
is considered only up to the second order in this paper. The
corresponding Feynman diagrams include one zeroth-order
diagram, nine first-order diagrams given in Fig. 1, and 96
second-order diagrams.

As studying the helium-3 optical potential, 3He is consid-
ered as a cluster and the nucleon-nucleon direct interactions in

3He are not considered. Since the three Feynman diagrams in
Fig. 1(b) describe the direct interactions of the three nucleons
in 3He, only the Feynman diagrams in Fig. 1(a) contribute to
the first-order term of the three-particle Green function. By
performing the Fourier transformation, the first-order term of
the three-particle Green function can be expressed as

iG(1)(α1α2, β1β2; ω)

= i

h̄
iG(0)

α1α2α3
(ω)

[
Uα1β1 −

∑
ρ

Vα1ρ,β1ρnρ

]

× iG
(0)
β1α2α3

(ω)δα2β2δα3β3

+ i

h̄
δα1β1δα3β3 iG

(0)
α1α2α3

(ω)

[
Uα2β2 −

∑
ρ

Vα2ρ,β2ρnρ

]

× iG
(0)
α1β2α3

(ω)

+ i

h̄
δα1β1δα2β2 iG

(0)
α1α2α3

(ω)

[
Uα3β3 −

∑
ρ

Vα3ρ,β3ρnρ

]

× iG
(0)
α1α2β3

(ω), (9)

FIG. 1. First-order diagrams of the three-particle Green function.
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where

nρ =
{

1, below the Fermi surface

0, above the Fermi surface,
(10)

Vαρ,βρ = 〈αρ|V |βρ〉A, (11)

where A denotes antisymmetrization and V is the two-body
nucleon-nucleon interaction.

From the Dyson equation, the first-order term of the three-
particle Green function can be also expressed as

iG(1)(α1α2α3, β1β2β3; ω)

= i

h̄
iG(0)

α1α2α3
(ω)

[
Uα1α2α3,β1β2β3

−M (1)(α1α2α3, β1β2β3)
]
iG

(0)
β1β2β3

(ω). (12)

The Hartree-Fock mean field Uα1α2α3 is expressed as

Uα1α2α3 = M (1)
α1α2α3

(13)

so M (1)
α1α2α3

gives the real part of the MOP for 3He. By
comparing Eqs. (9) and (12), it can be obtained:

Uα1α2α3 = Uα1 + Uα2 + Uα3 , (14)

M (1)
α1α2α3

=
∑

ρ

Vα1ρ,α1ρnρ +
∑

ρ

Vα2ρ,α2ρnρ +
∑

ρ

Vα3ρ,α3ρnρ.

(15)

In the right-hand side of Eq. (15), each term is just the
contribution of the real part of the microscopic optical potential
for each nucleon [1,2] in 3He.

Under the mean field approximation, 78 of the second-
order Feynman diagrams can be offset. The residual second-
order Feynman diagrams are given in Fig. 2. The Feynman
diagrams in Fig. 2(b) describe the direct interactions among the
three nucleons in 3He, and the Feynman diagrams in Fig. 2(c)
describe the indirect interactions which can make helium-3
breakup, so the Feynman diagrams in Fig. 2(b) and 2(c) can be
ignored. Only the Feynman diagrams in Fig. 2(a) contribute to
the second-order term of the three-particle Green function.

By performing Fourier transformation, the second-order
term of the three-particle Green function can be expressed as

iG(2)(α1α2α3, β1β2β3; ω)

= −δα1β1δα3β3 iG
(0)
α1α2α3

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα2λ,δρVδρ,β2λ

ω − εα1 − εα3 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α1β2α3

(ω)

− iG(0)
α1α2α3

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα1λ,δρVδρ,β1λ

ω − εα2 − εα3 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
β1α2α3

(ω)δα2β2δα3β3

− δα1β1δα2β2 iG
(0)
α1α2α3

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα3λ,δρVδρ,β3λ

ω − εα1 − εα2 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α1α2β3

(ω), (16)

where

ω = εα1 + εα2 + εα3 . (17)

Here the energy of each nucleon in 3He is one third of the
energy of 3He, namely,

εα1 = εα2 = εα3 = ω

3
. (18)

From the Dyson equation, the second-order term of the
three-particle Green function can be also expressed as

iG(2)(α1α2α3, β1β2β3; ω)

= − i

h̄
iG(0)

α1α2α3
(ω)M (2)(α1α2α3, β1β2β3; ω)iG(0)

β1β2β3
(ω).

(19)

The second-order mass operator of the three-particle Green
function can be obtained by comparing Eq. (16) with Eq. (19):

M (2)
α1α2α3

(E)

= 1

2

∑
ρδλ

Vα1λ,δρVδρ,α1λ

εα1 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

+ 1

2

∑
ρδλ

Vα2λ,δρVδρ,α2λ

εα2 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

+ 1

2

∑
ρδλ

Vα3λ,δρVδρ,α3λ

εα3 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

= M (2)
α1

(
E

3

)
+ M (2)

α2

(
E

3

)
+ M (2)

α3

(
E

3

)
. (20)
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FIG. 2. The residual second-order Feynman diagrams of the
three-particle Green function.

The imaginary part of the second-order mass operator
M (2)

α1α2α3
(E) is considered as the imaginary part of the micro-

scopic optical potential for 3He. According to the formula of
the principal value integral

1

x + iη
= P

(
1

x

)
− iπδ(x), (21)

the imaginary part of the MOP for 3He can be obtained as
follows:

W = Im M (2)
α1α2α3

(E) = −π

2

∑
ρδλ

Vα1λ,δρVδρ,α1λnλ(1 − nδ)

× (1 − nρ)δ(εα1 − ερ − εδ + ελ)

− π

2

∑
ρδλ

Vα2λ,δρVδρ,α2λnλ(1 − nδ)(1 − nρ)

× δ(εα2 − ερ − εδ + ελ)

− π

2

∑
ρδλ

Vα3λ,δρVδρ,α3λnλ(1 − nδ)(1 − nρ)

× δ(εα3 − ερ − εδ + ελ)

= Im M (2)
α1

(
E

3

)
+ Im M (2)

α2

(
E

3

)
+ Im M (2)

α3

(
E

3

)
, (22)

where Im M (2)
α1

(E
3 ), Im M (2)

α2
(E

3 ), and Im M (2)
α3

(E
3 ) are the con-

tributions of the imaginary parts of the MOP for the three
nucleons [1,2] in 3He, respectively.

An important conclusion can be gained from Eqs. (15)
and (22) that, as the indirect interactions of the three nucleons
in 3He is ignored, the helium-3 microscopic optical potential is
the sum of the microscopic optical potentials for its constituent
nucleons.

Since the extended Skyrme force, which is density-
dependent two-body interaction, is applied widely and suc-
cessful in many aspects, it is adopt to express the two-body
interaction in Eq. (11). There are many sets of Skyrme
interactions, but they can be expressed in a unified form as

V12( �R, �r) = t0(1 + x0Pσ )δ(�r) + 1
6 t3(1 + x3Pσ )ρα( �R)δ(�r)

+ 1
2 t1(1 + x1Pσ )( �k′2δ(�r) + δ(�r)�k2)

+ 1
2 t4(1 + x4Pσ )( �k′2ρ( �R)δ(�r) + δ(�r)ρ( �R)�k2)

+ t2(1 + x2Pσ ) �k′ · δ(�r)�k
+ t5(1 + x5Pσ ) �k′ · ρ( �R)δ(�r)�k
+ iW0(�σ1 + �σ2) · �k′ × δ(�r)�k, (23)

where

�r = �r1 − �r2, �R = 1
2 (−→r1 + −→r2 ) (24)

and the relative momentum operators

�k = 1

2i
( �∇1 − �∇2) (25)

acting on the wave function on the right and

�k′ = − 1

2i
( �∇1 − �∇2) (26)

acting on the wave function on the left. The quantities Pσ

and σi represent the spin exchange operator and the Pauli spin
matrices, respectively.
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TABLE I. Extended Skyrme force GS2 parameters.

t0
MeV · fm3

t1
MeV · fm5

t2
MeV · fm5

t3 t4
MeV · fm8

t5
MeV · fm8

α

GS2 −1177 670 −49.7 11054 −775 0 1

W0

MeV · fm5
x0 x1 x2 x3 x4 x5

GS2 105 0.124 0 0 1 1 0

It is shown [2] that the nucleon microscopic optical potential
obtained from the extended Skyrme interaction GS2 is more
reasonable than those obtained from other Skyrme forces. In
this paper GS2, the parameters of which are listed in Table I,
is used.

In the nuclear matter, the wave function of nucleon α in
Eq. (11) is given by the plane wave

ψα(�r) = 1√
�

ei �kα ·�rχσα
χτα

, (27)

where χσα
and χτα

are the spin and isospin wave functions,
respectively, and � is the volume.

When the distribution of the protons and neutron in 3He is
considered, the MOP for 3He can be obtained by folding [10]
the microscopic optical potentials of its constituent nucleons
in the ground state of helium-3. In the relative coordinate
representation, the microscopic optical potential for 3He can
be expressed as

VHe3(
⇀

R) =
∫ ∫

|ψ(
⇀

ξ 1,
⇀

ξ 2)|2
[
Vn

(
⇀

R +1

3

⇀

ξ 2 +1

2

⇀

ξ 1

)

+Vp

(
⇀

R +1

3

⇀

ξ 2 −1

2

⇀

ξ 1

)

+Vp

(
⇀

R −2

3

⇀

ξ 2

)]
d

⇀

ξ 1 d
⇀

ξ 2, (28)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⇀

R = 1
3 (

⇀
r1 + ⇀

r2 + ⇀
r3)

⇀

ξ 1 = ⇀
r1 − ⇀

r2

⇀

ξ 2 = 1
2 (

⇀
r1 + ⇀

r2)− ⇀
r3

(29)

with
⇀
r1,

⇀
r2,

⇀
r3 indicating the position of the nucleons in 3He

and
⇀

R indicating the position of the centroid of 3He. Vn

and Vp are the microscopic optical potentials for the neutron
and the protons in 3He, respectively, and the energy of each
nucleon in 3He is one-third of the incident helium-3 energy.

The expressions of Vn and Vp are given in Ref. [1]. ψ(
⇀

ξ 1,
⇀

ξ2)
is the ground state wave function of 3He, which is given by the
wave function of three-dimensional harmonic oscillator,

ψ(
⇀

ξ 1,
⇀

ξ 2) =
(

β2

3π2

) 3
4

e− 1
4 βξ 2

1 − 1
3 βξ 2

2 , (30)

where

β = 1

1.882
. (31)

Then the microscopic optical potential for 3He can be
expressed as

V (R) = (2π )2
∫ [(

β2

3π2

) 3
4

e− 1
4 βξ 2

1 − 1
3 βξ 2

2

]2

×
[
Vn

((
R2 + 1

9
ξ 2

2 + 2

3
Rξ2µ2 + 1

4
ξ 2

1

+
(

R2 + 1

9
ξ 2

2 + 2

3
Rξ2µ2

) 1
2

ξ1µ1

) 1
2
)

+Vp

((
R2 + 1

9
ξ 2

2 + 2

3
Rξ2µ2 + 1

4
ξ 2

1

−
(

R2 + 1

9
ξ 2

2 + 2

3
Rξ2µ2

) 1
2

ξ1µ1

) 1
2
)

+Vp

((
R2 + 4

9
ξ 2

2 − 4

3
Rξ2µ2

) 1
2
)]

× ξ 2
1 ξ 2

2 dξ1dµ1dξ2dµ2, (32)

where −1 � µ1 � 1,−1 � µ2 � 1.
The local density approximation [11,12] is used to obtain

the MOP for finite nuclei as in Refs. [1,2], and the densities of
the neutrons and protons in a spherical nucleus are expressed
by Negele’s empirical formula [11]:

ρk(r) = ρ0k

1 + exp[(r − c)/a]
, k = N or Z, (33)

where

ρ0k
= 3k

4πc3(1 + π2a2/c2)
, (34)

c = (
0.978 + 0.0206A

1
3
)
A

1
3 , a = 0.54. (35)

The spin-orbit couple potential for 3He is considered as
the sum of the spin-orbit couple potentials for its constituent
nucleons:

VSO(r) = V n
SO + V

p1
SO + V

P2
SO, (36)

where V n
SO, V

p1
SO, and V

p2
SO are the nucleon spin-orbit potentials

which are obtained in Refs. [2,13].

III. CALCULATED RESULTS AND ANALYSIS

The radial dependence, the volume integral per nucleon, and
the root mean square (rms) radii of the helium-3 microscopic
optical potential are calculated. And the reaction cross sections
and elastic scattering angular distributions are also calculated
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FIG. 3. Radial dependence of 3He MOP for 40Ca. (a) The real
parts. (b) The imaginary parts.

by the MOP for nuclides in the mass range 12 � A � 208 with
incident energies from threshold up to 200 MeV.

The radial dependence of the real and imaginary parts of
the helium-3 microscopic optical potential for 40Ca and 208Pb
at incident energies from 20 to 120 MeV is shown in Figs. 3
and 4. In Figs. 3(a) and 4(a), the absolute value of the real
part decreases with increasing radius and incident energy. In
Figs. 3(b) and 4(b), the absolute value of the imaginary part
increases with increasing incident energy, and the contribution
of the imaginary part of the MOP changes from the dominant
surface absorption into the volume absorption as the incident
energy increases. For the same incident energy, the contribu-
tion of the volume absorption of the imaginary part increases
with increasing mass number of the target nucleus.

The volume integral per nucleon of the MOP for 3He is
expressed as

JV = − 1

AHe3AT

∫
V (r)d�r,

(37)

JW = − 1

AHe3AT

∫
W (r)d�r

FIG. 4. Radial dependence of 3He MOP for 208Pb. (a) The real
parts. (b) The imaginary parts.

and the rms radii is expressed as

〈
R2

V

〉1/2 =
[∫

V (r)r2d�r∫
V (r)d�r

]1/2

,

(38)〈
R2

W

〉1/2 =
[∫

W (r)r2d�r∫
W (r)d�r

]1/2

The energy dependence of the volume integral per nucleon
and the rms radii for 12C, 27Al, 40Ca, 58Ni, 116Sn, and 208Pb is
shown in Figs. 5 and 6.

Figure 5 shows the volume integral per nucleon of the real
and imaginary parts of the MOP decreases with increasing
mass number, and the volume integral per nucleon of the
real part JV is linearly dependent on the incident energy and
decreases as the incident energy increases, while the volume
integral per nucleon of the imaginary part JW increases with
increasing energy.

As shown in Fig. 6, the rms radii of the real and imaginary
parts of the MOP increase when the mass number increases,
and keep basically as a constant.
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FIG. 5. The volume integral per nucleon of 3He MOP for different
nuclei against the incident energy E3He. (a) The real parts. (b) The
imaginary parts.

The comparisons between the calculated results of 3He
reaction cross sections and the experimental data [14] for
12C, 16O, 28Si, 40Ca, 58Ni, 60Ni, 112Sn, 116Sn, 118Sn, 120Sn,
124Sn, and 208Pb are given in Fig. 7. It is shown that the shape
of the calculated results curve of reaction cross sections for
12C and 16O are similar to the experimental data, while the
magnitudes are larger than those of experimental data. The
calculated results for 28Si, 40Ca, 58Ni, 60Ni, 112Sn, 116Sn, 118Sn,
120Sn, 124Sn, and 208Pb are in agreement with the experimental
data. Figure 7 also shows there is a general trend that the
reaction cross sections increase with increasing mass number
of the target nucleus and that the reaction cross sections for
heavy nuclei increase with increasing incident energy from
threshold up to 200 MeV, while for light nuclei the reaction
cross sections increase first, and then decrease with increasing
incident energy.

The elastic scattering angular distributions of 3He from
natural targets C, Mg, Al, Si, Ca, Y, and In as well as 56Fe and
63Cu at incident energy of 29 MeV were measured [4]. The
calculated results of elastic scattering angular distributions for
12C, 24Mg, 27Al, 28Si, 40Ca, 89Y, and 115In corresponding to

FIG. 6. The root mean square radii of MOP for 3He scattering
by different nuclei against 3He energy. (a) The real parts. (b) The
imaginary parts.

natural targets as well as for 56Fe and 63Cu are compared with
the experimental data in Fig. 8. It is shown that the calculated
results for 12C, 24Mg, 27Al, 28Si, and 40Ca are in reasonable
agreement with the experimental data for angles less than
50◦, while larger than the experimental data for angles greater
than 50◦, where the curve shapes of present calculated results,
however, are similar to ones of experimental data. The reason
for the disagreement is light nuclei have a certain nuclear
structure effect, and the nuclear structure effect may be strong
at low energy. For 56Fe, 63Cu, 89Y, and 115In, the calculated
results are in good agreement with the experimental data.

The experimental data of differential cross sections relative
to Rutherford cross sections for elastic scattering of 3He
from 40Ca, 58Ni, 90Zr, and 116Sn at incident energy of
109.2 MeV were given in Ref. [15]. The comparison between
the calculated results from the MOP and the experimental data
is shown in Fig. 9. The figure shows the calculated results for
40Ca, 58Ni, 90Zr, and 116Sn are in good agreement with the
experimental data for the angle smaller than 50◦. For the angle
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FIG. 7. Comparison of the theoretical values (solid line) of the
3He reaction cross section for different nuclei with experimental data
(symbols) [14]. Different data sets are offset by factors of 2, 4, 6.

greater than 50◦, however, the magnitudes of the calculated
results are larger than those of the experimental data.

The calculated results from the MOP are also compared
with the experimental data [16] of differential cross sections

FIG. 8. Comparison of the theoretical values (solid line) of the
3He elastic scattering angular distribution for different nuclei at
incident 3He energy of 29 MeV with experiment data (symbols) [4].
The results are offset by factors of 10.

relative to Rutherford cross sections for the elastic scattering of
119 MeV 3He from 12C, 27Al, 59Co, 58,60,62,64Ni, 89Y, 90,92Zr in
Fig. 10. The comparison shows that a very good agreement is
obtained for every nuclide for the angle smaller than 50◦, and

FIG. 9. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at incident 3He energy of 109.2 MeV
for different nuclei compared with experimental data (symbols) [15].
The results are offset by factors of 10.
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FIG. 10. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at incident 3He energy of 119.0 MeV
for different nuclei compared with experimental data (symbols) [16].
The results are offset by factors of 10.

for the angle greater than 50◦, the magnitudes of the calculated
results are larger than those of the experimental data.

The calculated results of the differential cross sections
relative to Rutherford cross sections for same target nucleus at
different incident 3He energies are compared with experimen-
tal data. The comparison between the calculated results and
experimental data [4,5,15,17–20] for 40Ca at incident energies
from 18.8 to 109.2 MeV is given in Fig. 11. The present
calculated results are in good agreement with experimental
data for all energy points as the angle less than 50◦. For the
larger degrees, the shapes of present calculated results curve
are similar to those of the experimental data, but the values are
inconsistent with the experimental data.

FIG. 11. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at different incident 3He energy compared
with experimental data (symbols) [4,5,15,17–20] for 3He + 40Ca
reaction. The results are offset by factors of 10.

The calculated results of the differential cross sections
relative to Rutherford cross sections for 58Ni at incident
energies from 21.9 to 119.0 MeV are compared with the
experimental data [5,15,16,18,21–23] in Fig. 12. The calcu-
lated results are in good agreement with the experimental
data for the angle less than 50◦. For the larger degrees,
the shapes of present calculated results curve are similar to
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FIG. 12. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at different incident 3He energy compared
with experimental data (symbols) [5,15,16,18,21–23] for 3He + 58Ni
reaction. The results are offset by factors of 10.

ones of experimental data, but the magnitudes are larger than
those of the experimental data at the incident energies above
83.5 MeV.

FIG. 13. Calculated elastic scattering angular distributions in
the Rutherford ratio (solid line) at incident 3He energy of
130 MeV compared with experimental data (symbols) [24] for
3He + 208Pb reaction.

The calculated results of differential cross sections relative
to Rutherford cross sections for the elastic scattering of
130 MeV 3He from 208Pb are compared with experimental
data [24] in Fig. 13. The calculated results are in reasonable
agreement with the experimental data.

IV. SUMMARY

The helium-3 microscopic optical potential is obtained by
Green function method. The radial dependence, the volume
integral per nucleon and the root mean square (rms) radii
of the helium-3 microscopic optical potential are calculated.
The reaction cross sections and elastic scattering angular
distributions for nuclides in the mass range 12 � A � 208
with incident energies from threshold up to 200 MeV are
calculated by the helium-3 microscopic optical potential, and
the calculated results are compared with the experimental
data. Good agreement is generally obtained for the reaction
cross sections, and in most cases, the calculated elastic
scattering angular distributions are in reasonable agreement
with experimental data.
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