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We introduce an iterative importance truncation scheme that aims at reducing the dimension of the model
space of configuration interaction approaches by an a priori selection of the physically most relevant basis states.
Using an importance measure derived from multiconfigurational perturbation theory in combination with an
importance threshold, we construct a model space optimized for the description of individual eigenstates of a
given Hamiltonian. We discuss in detail various technical aspects and refinements of the importance truncation,
such as perturbative corrections for excluded basis states, threshold extrapolation techniques, and different
iterative model-space update schemes. We apply the idea of the importance truncation in the context of the
no-core shell model (NCSM) for the ab initio description of nuclear ground states. In a series of benchmark
calculations for closed- and open-shell nuclei up to 16O, we compare the ground-state energies obtained in the
importance truncated NCSM to the full NCSM. All calculations show an excellent agreement of importance
truncated and full NCSM for all cases where the latter is feasible. The results demonstrate that the importance
truncated NCSM, while preserving most of the advantages of the full NCSM, gives access to much larger Nmaxh̄�

spaces and heavier nuclei. In this way we are able to perform importance truncated NCSM calculations for nuclei
such as 12C and 16O up to Nmax = 22.
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I. INTRODUCTION

Configuration interaction (CI) approaches play an impor-
tant role in the description of quantum many-body systems
in many different areas of modern physics, ranging from
atomic and molecular physics and quantum chemistry to
condensed matter and nuclear physics. Well-known examples
for CI-type methods from the different fields include the full
and truncated configuration interaction methods for the many-
electron problem in molecular physics and quantum chemistry
[1], the exact diagonalization approaches for Heisenberg- or
Hubbard-type problems in condensed matter theory [2,3],
and the diagonalization shell model or general configuration-
mixing approaches in nuclear structure physics [4,5].

The basic framework of all these methods is the same:
within a model space spanned by a set of many-body states,
the eigenstates of the Hamiltonian are determined through
a large-scale numerical solution of the matrix eigenvalue
problem. The many-body states forming the basis of the model
space are often Slater determinants of a set of single-particle
states. The basic parameter which determines the difficulty
and computational cost of such calculations is the dimension
D of the many-body model space, i.e., the linear size of
the Hamilton matrix. If the full eigenspectrum is required,
then exact numerical diagonalizations are routinely performed
for dimensions up to D ∼ 105 nowadays. Often only a few
eigenstates are of interest, such that Lanczos-type algorithms
provide a very efficient tool and expand the domain of tractable
model-space dimensions to D ∼ 109 [4,5] and possibly 1010

through massive parallelization [6].
We consider applications that require only one or a few

low-lying eigenstates. In those cases, the model space often
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contains a significant number of basis states that contribute to
the basis expansion of the target eigenstates with extremely
small or vanishing amplitudes. If these basis states would be
omitted from the outset, the target eigenstates obtained by a
solution of the eigenvalue problem in the truncated space and
all observables derived from them would change only a little.
The diagonalization in the truncated space gives a variational
approximation to the full eigenstates, whose quality is directly
controlled by the threshold on the amplitudes used to identify
the important basis states. To exploit this idea, we need a way
to estimate the amplitudes of the individual basis states without
actually solving the full eigenvalue problem. This can be done
in the framework of many-body perturbation theory, using
the amplitudes for the first-order perturbative correction of
an initial approximation for the target states as an importance
measure [7,8]. This is the concept of the importance truncation
scheme discussed in this paper.

We will focus on the nuclear many-body problem in the
framework of a large-scale shell-model approach. However,
all of the conceptual developments are generic and can be
applied to any CI-type many-body method for other quantum
systems as well. For the nuclear many-body problem, we aim
at an exact ab initio solution for a Hamiltonian including a
realistic nuclear interaction. In this context, the no-core shell
model (NCSM) is the most successful CI-type method at
present [5,9–13]. The model space of the NCSM is spanned
by Slater determinants constructed from harmonic-oscillator
single-particle states with an upper limit on the unperturbed
excitation energy of the many-body basis states of Nmaxh̄�. A
unique advantage of the Nmaxh̄� truncation is the possibility
to separate intrinsic and center-of-mass degrees of freedom
and thus to obtain translationally invariant intrinsic states. The
NCSM is able to provide a complete description of the ground
and low-lying excited states including all relevant observables,
such as energies, transition matrix elements, form factors, and
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densities. It has been applied very successfully to nuclei up
to mass A ∼ 13 using realistic Hamiltonians involving two-
and three-nucleon interactions, e.g., the modern interactions
derived within chiral effective field theory [14–16]. A similar
set of observables and nuclei is accessible in Green’s function
Monte Carlo calculations [17–19] which, however, are re-
stricted to certain classes of local interactions. Coupled-cluster
methods, which have recently been used in connection with
chiral two-nucleon interactions, have provided predictions also
for heavier closed-shell nuclei [20,21].

The range of applicability of the NCSM is limited solely by
the combinatorial growth of the model space with particle num-
ber A and energy truncation Nmaxh̄�. For 16O the model-space
dimension reaches the order 109 already for Nmax = 8, which is
typically not sufficient to obtain results that are converged with
respect to Nmax. Since the model-space dimension is its only
crucial limitation, the NCSM provides the optimal framework
for implementing the importance truncation idea [7]. As we
will discuss in detail, the importance truncated no-core shell
model (IT-NCSM) obtained in this way extends the NCSM to
a much larger domain in A and Nmax.

This paper is organized as follows. In Sec. II we discuss
the general elements of the importance truncation scheme that
can be employed in any CI-type calculation. In Sec. III we
combine these elements with the NCSM and discuss the basic
properties of the IT-NCSM. In Secs. IV and V we present a
series of large-scale benchmark calculations in the IT-NCSM
for ground states of different closed- and open-shell nuclei up
to 16O and compare them to the results of the full NCSM.
Throughout this work we restrict ourselves to a regime in
which full NCSM calculations are still possible to some extent
so that a detailed assessment of the importance truncation is
possible.

II. IMPORTANCE TRUNCATION SCHEME

A. Concept

Consider a quantum many-body system whose ground
and excited states are determined by solving the eigenvalue
problem of the Hamiltonian in a large model space. The
nuclear shell model is a typical example: the model space is
spanned by a set of Slater determinants of harmonic-oscillator
single-particle states, and the lowest few eigenvalues and
the corresponding eigenvectors of the Hamilton matrix are
determined. Similar configuration interaction (CI) methods
are used throughout many fields of physics and chemistry.

In all of these methods the many-body model space is
constructed in a combinatorial fashion with some global
truncation. In the no-core shell model in nuclear physics, the
model space is spanned by all possible Slater determinants con-
structed from harmonic-oscillator single-particle states with
total excitation energies up to Nmaxh̄�. In a full configuration
interaction calculation in quantum chemistry, the model space
is spanned by all Slater determinants that can be constructed
from a given finite set of single-particle orbitals.

These global truncations do not account for the specific
features of the Hamiltonian and the physical properties of
the state one is interested in. As a result, the model space

contains a substantial number of basis states that are irrelevant
to the description of a specific eigenstate, e.g., the ground
state. The basic goal of the importance truncation scheme is
to identify the important configurations for the description of
one or a set of target states using the information provided
by the Hamiltonian. Only the important states are selected to
construct a new, greatly reduced model space in which the
eigenvalue problem is eventually solved. These importance
selection ideas were pioneered in quantum chemistry in the
1970s, leading to a number of different computational schemes
(see Sec. II G). The crucial ingredient is an a priori measure
for the importance of individual basis states. One possible
framework to construct a simple importance measure is
low-order multireference or multiconfigurational perturbation
theory as discussed in the following section. Though the
following is applicable to all types of configuration interaction
approaches, we will employ the language of the nuclear shell
model for convenience.

B. Multiconfigurational perturbation theory

We start from a full model space Mfull spanned by
a set of many-body basis states |�ν〉, for example, the
harmonic-oscillator Slater determinants of the shell model
with some model-space truncation. Furthermore we assume
a reference state |�ref〉 being a zeroth-order approximation
for the eigenstate of the Hamiltonian we are interested in,
e.g., the ground state. In general, the reference state can be a
superposition of basis states from a subspace Mref of the full
model space, i.e.,

|�ref〉 =
∑

ν∈Mref

C(ref)
ν |�ν〉. (1)

This initial approximation can be obtained, e.g., from a previ-
ous CI calculation for a smaller space. In the simplest case, the
reference space can be one dimensional, and the reference
state is given by a single basis state |�0〉 corresponding
to, e.g., the ground state of a closed-shell nucleus in an
independent-particle shell model.

Now we would like to use many-body perturbation theory
to estimate the leading corrections to the reference state |�ref〉
resulting from states outside of the reference space. Formally
this requires the use of multireference or multiconfigurational
perturbation theory (MCPT) as it is widely applied in quantum
chemistry [22,23].

For setting up the perturbation series, we have to split
the full Hamiltonian H into an unperturbed part H0 and a
perturbation W . Since we want to start from the reference state
|�ref〉 as an unperturbed state, the unperturbed Hamiltonian has
to be chosen such that

H0|�ref〉 = εref|�ref〉, (2)

with an eigenvalue εref given by the expectation value with the
full Hamiltonian H

εref = 〈�ref|H |�ref〉. (3)
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Formally, we can write the unperturbed Hamiltonian which
satisfies the eigenvalue relation as

H0 = εref|�ref〉〈�ref| +
∑

ν /∈Mref

εν |�ν〉〈�ν |. (4)

For simplicity, contributions from states within Mref which
are orthogonal to |�ref〉 have been left out, since they will not
contribute later on.

The unperturbed energies εν for basis states outside of the
reference space Mref which enter into the definition of the
unperturbed Hamiltonian (4) can be chosen freely. This choice
of the unperturbed energies—and thus of the partitioning of
the Hamiltonian—has an impact on the convergence behavior
of the perturbation series and a number of different possibilities
have been studied in this respect [22]. In the simplest Møller-
Plesset-type formulation of MCPT, the unperturbed energies
are defined as

εν = εref + �εν, (5)

where �εν is the excitation energy of the basis state |�ν〉
computed at the level of the independent-particle picture,
i.e., using the single-particle energies of the underlying
basis. When using a harmonic-oscillator basis, the single-
particle energies are just the harmonic-oscillator energies
ea = h̄�(2na + la + 3/2). When working with a Hartree-Fock
single-particle basis, these are the Hartree-Fock single-particle
energies.

Alternatively, in an Epstein-Nesbet partitioning, the unper-
turbed energies of states outside of the reference space are
defined via the expectation value of the full Hamiltonian

εν = 〈�ν | H |�ν〉, (6)

which appears to be a more natural choice but does not
guarantee better convergence [22]. For the present application,
computational efficiency is the prime concern, therefore the
simple Møller-Plesset-type partitioning of Eq. (5) is more
appropriate and will be used eventually (see Sec. III E).

Once the unperturbed Hamiltonian is fixed, the perturbation
W is defined via

W = H − H0, (7)

and we can easily write out the lowest orders of the Rayleigh-
Schrödinger perturbation series. For the energy, the zeroth-
and first-order contributions read

E(0) = 〈�ref|H0|�ref〉 = εref,
(8)

E(1) = 〈�ref|W |�ref〉 = 0,

as a direct consequence of our definition of the unperturbed
Hamiltonian. The second-order contribution to the energy
assumes the well-known form

E(2) = −
∑

ν /∈Mref

|〈�ν |W |�ref〉|2
εν − εref

(9)

= −
∑

ν /∈Mref

|〈�ν |H |�ref〉|2
εν − εref

,

where we have used the fact that all matrix elements of H0

between |�ref〉 and the basis states |�ν〉 /∈ Mref outside the
reference space vanish by construction.

For the many-body states, the zeroth-order contribution is
just given by the initial reference state

|�(0)〉 = |�ref〉. (10)

The first-order correction is given by

|�(1)〉 = −
∑

ν /∈Mref

〈�ν |W |�ref〉
εν − εref

|�ν〉
(11)

= −
∑

ν /∈Mref

〈�ν |H |�ref〉
εν − εref

|�ν〉.

In all of these expressions, we can insert the expansion (1) of
the reference state |�ref〉 in terms of the basis states. Obviously,
all these relations reduce to ordinary many-body perturbation
theory when dealing which a reference state that is given by a
single basis state, i.e., for |�ref〉 = |�0〉.

In the following, MCPT serves two important purposes:
(i) it provides an efficient way to assess the importance of
individual basis states outside of the reference space Mref

and will thus be the main ingredient in the importance
truncation scheme, and (ii) it allows for a direct computation
of corrections to the energy obtained by an initial shell-model
calculation in a limited reference spaceMref , induced by states
outside of this simple space.

C. Perturbative importance measure

The central element of the importance truncation scheme
is an a priori measure for the relevance of individual basis
states |�ν〉 for the description of a specific eigenstate of
the Hamiltonian. The target state is represented by an initial
approximation, the reference state |�ref〉, that carries the
correct quantum numbers. Based on this reference state,
multiconfigurational perturbation theory provides a natural
framework for assessing the importance of basis states outside
of the reference space Mref .

A simple yet efficient importance measure can be con-
structed from expression (11) for the lowest-order correction
to the unperturbed, i.e., reference state |�ref〉. The amplitudes
of the individual basis states |�ν〉 /∈ Mref in the perturbative
correction (11) provide a dimensionless measure for the
relevance of those states. Thus we can use the perturbative
amplitudes to define an a priori importance measure:

κν = −〈�ν |H |�ref〉
εν − εref (12)

= −
∑

µ∈Mref

C(ref)
µ

〈�ν |H |�µ〉
εν − εref

.

Only those basis states with an importance measure |κν | larger
than a threshold value κmin are included in the importance-
truncated model space. This space is tailored for an optimal
description of the target state for the given Hamiltonian. In
contrast to truncation schemes based on global energy cuts,
the importance truncation criterion is directly governed by the
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Hamiltonian and the target state. The importance threshold
κmin controls the size of the model space and will later be
varied to investigate the dependence of the observables on the
truncation.

By construction, the importance measure κν characterizes
the basis states with regard to their relevance for the description
of the eigenstate. This is not the only possible choice. One can
define a corresponding importance measure for identifying
the basis states that are most relevant to the description of the
energy. Using the contributions of the individual basis states
to the lowest order correction to the energy [Eq. (9)], we can
define the energy-based importance measure as

ξν = −|〈�ν |H |�ref〉|2
εν − εref

. (13)

Since we are aiming at an optimum approximation to the eigen-
state, which is then used for computing various observables
other than the energy, the state-based importance measure κν

is conceptually superior and will be used in the following. In
practice, both measures lead to very similar results, though
the dimensionless state-based importance measure is easier to
handle (see Sec. III E).

It is important to note that for a two-body Hamiltonian, the
importance weight κν (as well as ξν) vanishes whenever the
basis state |�ν〉 differs from all of the states in the reference
space by more than two single-particle states. If we start
from a single Slater determinant as the reference state, |�ref〉,
then only 1p-1h and 2p-2h excited states with respect to this
determinant can yield nonzero matrix elements for H and
thus nonvanishing κν . To directly access 3p-3h and 4p-4h
excited states, the second-order perturbative corrections to
the amplitude would have to be used. This shows that the
construction of the importance truncation via perturbation
theory naturally entails a hierarchy of np-nh states. Only 1p-1h
and 2p-2h excitations of |�ref〉 contribute to the leading-order
correction, 3p-3h and 4p-4h excited states first appear in the
next-to-leading-order, and so on. To avoid the computationally
demanding evaluation of higher orders of perturbation theory,
we embed the first-order importance measure [Eq. (12)] into
an iterative scheme for the construction of the importance
truncated space as discussed in Sec. II D.

Although we focus on the description of a single eigenstate,
the concept of the importance truncation can easily be gener-
alized to the simultaneous description of several eigenstates.
Starting from a set of a few reference states |�(n)

ref 〉 providing an
initial approximation for, e.g., the lowest few eigenstates of the
Hamiltonian, we construct separate importance measures κ (n)

ν

for each reference state. A basis state |�ν〉 is included in the
combined importance truncated space if one of the importance
measures κ (n)

ν exceeds the threshold κmin, i.e., if the basis state
contributes with a sizable amplitude to at least one of the target
states. In this way, we obtain a model space tailored for the
simultaneous description of all target states. The dimension
of this importance truncated space scales linearly with the
number of target states, which does not pose a problem as long
as we restrict ourselves to a few eigenstates.

D. Iterative model-space construction

Since the importance measure of Eq. (12) constructed
within lowest-order perturbation theory can only be used to
extend the reference space by 1p-1h and 2p-2h excitations,
we adopt an iterative procedure to construct the importance
truncated model space for a given threshold κmin. Here we
discuss a simple and universal update scheme applicable to
any CI-type problem. More specialized update schemes can
be devised for specific models spaces—we will come back to
this question in the context of the NCSM in Sec. III D.

Assume we start from a single basis state |�0〉 as an initial
approximation for the target state, e.g., the ground state of a
closed-shell nucleus. In the first iteration, we use this state
as reference state |�[1]

ref 〉 = |�0〉 and employ the importance
measure to construct all 1p-1h and 2p-2h excitations of the
reference state with |κν | � κmin. Within this new model space
M[1](κmin) consisting of up to 2p-2h excitations, we solve the
eigenvalue problem and obtain an improved approximation for
the target state, that is,

|�[1]〉 =
∑

ν∈M[1](κmin)

C[1]
ν |�ν〉, (14)

with amplitudes C[1]
ν defined by the eigenvector.

The improved state |�[1]〉 obtained in the first iteration
is used to construct a new reference state |�[2]

ref 〉 for the
second iteration. To accelerate the evaluation of the importance
measure, we typically do not use the full eigenstate, but project
onto a reference space M[2]

ref spanned by the basis states
|�ν〉 ∈ M[1](κmin) with amplitudes C[1]

ν above a reference
threshold, |C[1]

ν | � Cmin. The new reference state is thus defined
as

∣∣�[2]
ref

〉 = N
[2]
ref

∑

ν∈M[2]
ref

C[1]
ν |�ν〉, (15)

with a normalization constant N
[2]
ref . Typically the reference

threshold Cmin can be chosen up to ten times larger than the
importance threshold κmin without affecting the results; we will
discuss the threshold dependencies in detail later on. As in the
first iteration, the importance measure is used to construct all
1p-1h and 2p-2h excitations with |κν | � κmin on top of |�[2]

ref 〉.
Since the new reference state already contains up to 2p-2h
excitations with respect to the initial Slater determinant, the
model space M[2](κmin) consists of up to 4p-4h excitations.
From the solution of the eigenvalue problem, we obtain a new
approximation of the target state

|�[2]〉 =
∑

ν∈M[2](κmin)

C[2]
ν |�ν〉, (16)

with new amplitudes C[2]
ν . This improved state again defines a

new reference state, and the previous steps are repeated.
This scheme is used for a fully adaptive update of the

whole model space; i.e., in each iteration, the importance of all
basis states is reassessed using the most recent reference state.
In this way, the impact of the coupling to higher order np-nh
states is included when selecting states with lower np-nh
orders. This relaxation can have sizable effects.
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E. A posteriori corrections

Beyond the definition of the importance measure, perturba-
tion theory can be used to construct a posteriori corrections to
the CI energies E(κmin), which account for contributions from
basis states that are not included in the importance truncated
model spaceM(κmin). We distinguish two types of corrections:
(i) those accounting for states that were discarded because
of an importance measure below the threshold and (ii) those
accounting for configurations that would only be generated in
the next iteration of the update cycle described in Sec. II D
because of their np-nh order.

An estimate for the energy contribution of basis states with
nonvanishing importance measure |κν | < κmin, i.e., those that
were excluded from the importance truncated space M(κmin)
for given threshold κmin, can be obtained from the second-order
energy correction of Eq. (9). One can simply add the individual
energy contributions of the basis states |�ν〉 /∈ M(κmin):

�excl(κmin) = −
∑

ν /∈M(κmin)

|〈�ν |H |�ref〉|2
εν − εref

. (17)

This amounts to adding the energy-importance measures ξν

defined in Eq. (13) for the excluded configurations. Evaluating
this correction during the construction of the importance trun-
cated space does not generate any additional computational
effort, since the time-consuming matrix element has to be
computed anyway for the importance measure κν .

Generally, the correction �excl(κmin) provides only a rough
estimate for the contribution of excluded states to the energy,
since only the coupling to the reference state |�ref〉 is
considered but not the coupling to the majority of other basis
states in M(κmin). The primary use of this correction relies
on the formal property that �excl(κmin) has to vanish in the
limit κmin → 0. This makes it a unique tool for stabilizing
the extrapolation of the CI energy E(κmin) to the vanishing
importance threshold κmin → 0. This constrained threshold
extrapolation is discussed in detail in Sec. III F.

The effect of higher order np-nh states that would only
be generated in the next iteration of the model-space update
can also be assessed via the second-order energy correction
of MCPT. Assume we have performed two iterations of the
importance-update cycle starting from a single Slater determi-
nant as the initial reference state. The importance truncated
space M[2](κmin) then contains up to 4p-4h excitations with
respect to the initial reference state. To estimate the effect of
5p-5h and 6p-6h configurations, we can either perform a third
iteration to construct M[3](κmin) and solve the CI problem or
we can apply MCPT on top of the eigenstate |�[2]〉 obtained
in the second iteration. Based on the second-order energy
contribution given by Eq. (9), we define the energy correction
as

�PT = −
∑

ν /∈Mref

|〈�ν |H |�ref〉|2
εν − εref

, (18)

where the reference state is given by the full eigenvector of
the second iteration, |�ref〉 = |�[2]〉, and the sum runs over all
5p-5h and 6p-6h configurations. The computational effort for
evaluating this correction is almost the same as that for a full

iteration of the model-space update because of the complexity
of the reference state. Reference thresholds and extrapolation
techniques can be employed to speed up the calculations also
in this case.

Simpler methods for estimating the effects of higher order
np-nh configurations are used in the context of truncated
CI calculations in quantum chemistry [1]. Because of their
additional benefit of restoring size extensivity in truncated CI
calculations, they are commonly referred to as size-extensivity
corrections [24,25]. The simplest class of corrections are the
single- or multireference Davidson corrections [24], which
exist in a number of different formulations. In the language
of quantum chemistry, a correction to the energy obtained in
the second iteration corresponds to a multireference situation,
where the eigenvector of the first iteration |�[1]〉 defines the
reference state and the second iteration includes singles and
doubles excitations on top of this reference state. Of the
different forms of multireference Davidson (MRD) corrections
available, we use the so-called Davidson-Silver or Siegbahn
form [25–27], which can be constructed in the context of
perturbation theory,

�MRD = �E21
1 − C2

21

2C2
21 − 1

, (19)

where E21 = E[2] − E[1] is the difference of the CI energies
obtained in the second and the first iteration, and

C2
21 =

∑

ν∈M[1]

∣∣C[2]
ν

∣∣2
(20)

is the total weight with which the configurations in M[1],
i.e., those that were already present in the first iteration,
contribute to the eigenstate after the second iteration. Ob-
viously the evaluation of the MRD correction does not
involve any additional computational effort. For each value
of the importance threshold κmin we can extract the correction
�MRD(κmin) using the energies and amplitudes of the two last
iterations. Eventually the MRD correction is also extrapolated
to vanishing threshold κmin → 0.

F. Properties of the importance truncated CI

At this stage we can already identify a few general
properties of the importance truncated CI, which do not depend
on the details of the physical system or the model space under
consideration.

First of all, it is a strictly variational approach. Since we
always determine energies from a solution of an eigenvalue
problem of the Hamiltonian in a restricted space, the lowest
eigenvalue always provides an upper bound for the exact
ground-state energy. Moreover, the Hylleraas-Undheim the-
orem [28] applies, i.e., the energy of all states is guaranteed to
drop monotonically with decreasing κmin and is bounded from
below by the exact eigenvalue Eexact

n in the full model space:

Eexact
n � En(κmin) � En(κ ′

min) for κmin < κ ′
min, (21)

where En(κmin) is the nth energy eigenvalue obtained in the
importance truncated space M(κmin). One can view the whole
importance truncated CI scheme as a variational calculation
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with an iteratively improved linear trial state. The set of
states from which the trial state is constructed as a linear
superposition is selected using the importance measure based
on a previous approximation of the target state.

Second, the iterative construction of the importance trun-
cated model space will recover the full model space in the
limit (κmin, Cmin) → 0 after n/2 iterations, where n � A is the
maximum np-nh excitation possible in the full model space,
when starting with a single basis determinant as the initial
reference. As we will discuss in the context of the NCSM,
more elaborate choices of the reference state will guarantee
that this holds even after a single iteration. Together with
the monotonous behavior of the energy, this limiting property
provides the foundation for an a posteriori extrapolation of the
energies for different importance thresholds toward κmin → 0.

Third, the importance measure of Eq. (12) is constructed
to identify states based on their contribution to the expansion
of the eigenstates and not on their effect on the energies. Thus
the importance truncation using κν is tailored to generate an
optimal approximation for the eigenstates in a limited model
space. The energy can be computed from the eigenstates
just like any other observable of interest. Therefore, from
the conceptual point of view, all observables are accessible
with the same precision as the energy. From a practical point
of view, the sensitivity of any observable on the importance
truncation can be probed easily through a variation of the
importance threshold. If necessary, extrapolation strategies
similar to the ones discussed for the energy can be adopted
for other observables as well.

Finally, an interesting and nontrivial question that was
raised in Refs. [29,30] and addressed in detail in Ref. [8]
concerns the size extensivity of importance truncated CI
calculations. In simple terms, size extensivity requires that
the energy obtained in a many-body calculation for a system
composed of two noninteracting subsystems is equal to the
sum of the energies obtained in separate calculations for
the individual subsystems. Whereas full CI is size extensive,
a truncation of the space at some fixed np-nh excitation
level destroys size extensivity [8,25]. Therefore, importance
truncated CI calculations based on very few iterations of the
model-space update discussed in Sec. II D can violate size
extensivity. As discussed in detail in Ref. [8] a computa-
tionally simple way to restore approximate size extensivity
are Davidson-type corrections as given by Eq. (19). In most
cases the effect of these corrections is already small after
two iterative updates of the importance truncated space (see
Sec. IV B). After a sufficiently large number of iterations,
i.e., once the model-space updates have converged, these
size-extensivity corrections [Eq. (19)] vanish altogether. This
is in line with the fact that after A/2 iterations at most the
importance truncated CI recovers the full model space in the
limit (κmin, Cmin) → 0 and thus would be manifestly size ex-
tensive. Although the limit of vanishing thresholds is realized
only through an extrapolation, we can nevertheless presume
that the importance truncated CI provides an approximately
size-extensive result after convergence of the model-space
updates and threshold extrapolation simply because it provides
an approximation of full CI without any explicit np-nh
truncation.

G. Comparison with other methods

The idea of an importance selection was pioneered in
quantum chemistry. Already in the late 1960s and early 1970s,
perturbative importance measures and thresholds were used
to facilitate large-scale CI calculations [31,32]. In a set of
seminal papers, Buenker and Peyerimhoff [33–35] introduced
a configuration-selecting multireference double-excitation CI
approach (MRD-CI), which is one of the benchmark methods
in quantum chemistry to date. It starts from a multiconfig-
urational reference space and adds individual singles and
doubles excitations employing a selection criterion based
on the energy-lowering capability of the new configuration.
The latter can be quantified either by using the perturbative
second-order energy contribution of Eq. (13) or by explicitly
evaluating the change of the energy eigenvalue obtained from
adding the respective configuration. A threshold value on this
energy lowering is used to select the important configurations,
which are then included in the model space. Already in the
initial applications of this MRD-CI scheme in Refs. [33–35],
powerful threshold extrapolation techniques were employed
to correct for the effects of excluded configurations (see
Sec. III F). Moreover, size-extensivity corrections as discussed
in Sec. II E can be considered.

Essentially all conceptual elements of the IT-CI scheme
are already present in the MRD-CI (although we learned
of the MRD-CI only after Ref. [7] was published). One
difference, however, lies in the iterative setup we adopt for
the IT-CI which allows for a systematic improvement of
the importance truncated space. Whereas the MRD-CI is
typically implemented as a one-step calculation, the idea of
an iterative improvement of the model space has also been
used in quantum chemistry. An example is the CIPSI method
[36–38], which uses a CI calculation for a limited model
space of important configurations and supplements it with a
second-order perturbative correction for singles and doubles
excitations on top of the CI model space. The CI space is then
iteratively enlarged by including those singles and doubles that
contribute to the first-order perturbed states with amplitudes
larger than a threshold value. Also, this CIPSI scheme contains
many of the relevant ideas employed in the IT-CI.

Since these early formulations, a large number of
new implementations and variations of the aforementioned
importance-selection ideas have been developed [1,39,40] and
are being used for the ab initio description of highly correlated
problems in quantum chemistry.

In nuclear physics, the use of importance-selection tech-
niques is not developed as far as it is in quantum chemistry.
However, there are some schemes, particularly in the context
of the valence-space shell model, that employ similar ideas.
Among those is the Monte Carlo shell model (MCSM) of
Otsuka et al. [41]. It uses the lowering of the energy eigenvalue
caused by adding a test configuration to a set of reference states
as a criterion for the relevance of this configuration. However,
the crucial element of this method is that the test configurations
are generated through an imaginary time evolution of the
reference set implemented via an auxiliary-field Monte Carlo
scheme. Because of this stochastic sampling, the individual
configurations are no longer simple shell-model basis states
but rather more complex states already containing information
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on the Hamiltonian. For the final diagonalization, typically
supplemented by an angular momentum projection, a small
number of those MCSM configurations is sufficient to capture
the relevant physics.

Another importance sampling scheme has been proposed
by Andreozzi et al. [42] in connection with an iterative
method for the solution of the eigenvalue problem [43].
Here the approximations of the eigenvalues obtained during
the iterative solution are used to apply an energy threshold
criterion to discard irrelevant states. Horoi et al. have devised
a truncation scheme based on the diagonal matrix elements of
the Hamiltonian and applied it in sd- and fp-shell calculations
[44].

III. IMPORTANCE TRUNCATED NO-CORE SHELL
MODEL

As the primary application, the importance truncation
scheme is studied here in connection with the no-core shell
model (NCSM) [7]. Applications of the importance truncation
in nuclear CI approaches based on a different definition of the
full model space have been presented in Ref. [8].

A. Model space

The NCSM is based on an expansion of the many-nucleon
state in a basis of Slater determinants of harmonic-oscillator
single-particle states. The model space of the full NCSM
is restricted solely with regard to the maximum number of
harmonic-oscillator excitation quanta, Nmax, in the many-body
basis state. In other words, all harmonic-oscillator Slater
determinants with unperturbed excitation energies of up to
Nmaxh̄� are included in the model space.

The combination of harmonic-oscillator basis and Nmaxh̄�

truncation has a unique advantage. Only this model space
allows for an exact separation of the center-of-mass and
intrinsic component of the many-body state for all Nmax.
Therefore, one can guarantee that the intrinsic part of the
state is free of spurious center-of-mass contaminations. Any
other single-particle basis, e.g., a Hartree-Fock basis, or a
different model-space truncation, e.g., a truncation at the level
of the single-particle states as in other CI methods, will destroy
this property and induce center-of-mass contaminations of the
eigenstates which can severely affect intrinsic observables.

The dimension of the Nmaxh̄� model space grows factori-
ally with Nmax and particle number A. Therefore, full NCSM
calculations are computationally feasible only for relatively
light nuclei or in very small spaces. Model-space dimensions
of the order of 109 are used routinely with present NCSM
codes [6,45]. For 16O this allows calculations in an 8h̄� space,
which for most realistic Hamiltonians is not sufficient to reach
convergence. The dimension of the 10h̄� model space is
larger than 1010 and thus just beyond the reach of the full
NCSM at present. For heavier nuclei, the situation becomes
progressively worse.

The importance truncation can be used to efficiently
reduce the dimension of the Nmaxh̄� model space to a
tractable size. Note that the Nmaxh̄� space already reflects

a simplistic importance selection of the individual many-body
basis states. Based on the perturbative arguments of Sec. II C,
the amplitudes of basis states with large unperturbed excitation
energies will be suppressed by the energy denominator in
Eq. (12). Precisely those states are discarded through the
Nmaxh̄� truncation. However, the numerator of Eq. (12), and
thus the full Hamiltonian, is not considered in this simplified
picture. The Nmaxh̄� model space is not adapted to the
specific properties of the Hamiltonian or the target states
under consideration. By using the importance truncation in
combination with the Nmaxh̄� model space, we also include
these aspects.

B. Hamiltonian

For the following discussion, we use a translationally
invariant Hamiltonian composed of intrinsic kinetic energy
Tint = T − Tc.m. and a realistic two-nucleon interaction VNN :

Hint = Tint + VNN = 2

A

1

2µ

A∑

i<j

q2
ij +

A∑

i<j

vij , (22)

where qij = 1
2 (pi − pj ) is the relative two-body momentum

operator, and µ = mN/2 is the reduced mass.
In principle any two-body interaction can be used as input.

In this work we restrict ourselves to unitarily transformed
interactions derived in the framework of the unitary correlation
operator method (UCOM). Starting from the Argonne V18
potential, a unitary transformation is used to account for short-
range central and tensor correlations leading to a phase-shift
equivalent effective interaction with improved convergence
properties. The conceptual details of the UCOM approach
are discussed in Refs. [46–48]. Further details regarding the
calculation of matrix elements of the VUCOM interaction and
the determination of the optimal correlation functions are
discussed in Ref. [49].

For all of the following calculations, we use the standard set
of correlation functions introduced in Ref. [49] with a triplet-
even tensor correlator with range parameter Iϑ = 0.09 fm3.
This value was chosen such that experimental binding energies
for 3H and 4He are roughly reproduced in full NCSM calcula-
tions. Though improved correlation functions are available
[50], a number of different many-body calculations exist
for this first-generation VUCOM interaction. Calculations for
light nuclei in the NCSM and other methods [51] show that
VUCOM exhibits good convergence properties and provides a
realistic description of a number of observables. Studies of
heavier nuclei in Hartree-Fock plus second-order many-body
perturbation theory demonstrate that this interaction provides
reasonable binding energies throughout the whole nuclear
mass range without the explicit inclusion of a three-body
interaction [52]. Therefore the VUCOM interaction provides a
realistic test bed for the many-body methods investigated here.

We emphasize that all of the following calculations use the
Hamiltonian (22) without further transformations, i.e., there is
no additional Lee-Suzuki similarity transformation as in the
ab initio NCSM [9–12,14,53,54]. Here the term NCSM solely
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refers to a CI-type calculation specifically using an Nmaxh̄�

model space.

C. Implementation

The implementation of an importance truncated NCSM
differs from a conventional NCSM code. The computationally
most demanding part is the construction of the importance
truncated space itself. Because of the reduction of the model-
space dimension, the subsequent computation of the Hamilton
matrix and the solution of the eigenvalue problem are simpler
than in a full NCSM approach.

For generating the importance truncated space for a given
reference state |�ref〉, we use an algorithm motivated by the
structure of the importance measure of Eq. (12). We loop
over all basis states |�µ〉 ∈ Mref contained in the reference
state |�ref〉 and create all 1p-1h and 2p-2h excitations of
each of them. To avoid creating duplicates, we discard any
newly created determinant |�ν〉 that has a nonvanishing
matrix element of the Hamiltonian with any of the states in
Mref that were processed previously. This update scheme,
which is also used in importance selecting CI approaches in
quantum chemistry [33,36,40], is much more efficient than
the simple scheme employed in Ref. [7]. There, explicit loops
over all possible np-nh excitations of the independent-particle
shell-model state |�0〉 were used to generate candidate states
for evaluating the importance measure. Though duplicates
are excluded from the outset, this scheme becomes less
efficient already at the 3p-3h order, and it eventually limited
the calculations in Ref. [7] to states up to the 4p-4h level.
Therefore, all results presented here are based on the refined
implementation without any explicit limitation of the np-nh
level of the states considered.

Evidently, the cost for the model-space update grows
quadratically with the number of basis states in the reference
|�ref〉. Therefore, as discussed in Sec. II D, we introduce
an additional reference threshold and define the reference
state |�ref〉 using the dominant components of the previous
eigenstate. Typical reference thresholds Cmin are of the order of
10−4 which leads to reference states composed of typically 105

basis determinants. We always check that a further lowering
of the reference threshold does not produce sizable effects.

Eventually we obtain a list of basis states spanning the
importance truncated model space including their importance
weights. The typical dimensions we deal with are of the
order 107. These problems can be handled by conventional
Lanczos- or Arnoldi-type algorithms; in addition to simple
Lanczos implementations, we use the implicitly restarted
Arnoldi algorithm of the ARPACK library [55]. The many-body
matrix elements of the Hamiltonian are pre-computed and
stored in memory or on disk. Using the known importance
weights as initial pivots, one can obtain convergence of a
single target state after typically ten iterations. Eventually,
we obtain energy eigenvalues and amplitudes of the target
states. Since the eigenstates are—at no additional cost—given
in a simple shell-model representation, we can easily use them
for subsequent computation of various expectation values and
density distributions or form factors.

The time-consuming parts to the code, i.e., the construction
of the importance truncated space and the computation of the
Hamilton matrix, can be easily parallelized with practically
no communication overhead and perfect scaling. We use a
hybrid OpenMP plus MPI parallelization strategy to make
optimal use of the memory resources of modern multicore
architectures. Compared to a typical full NCSM, the particle
numbers and model-space sizes in the importance-truncated
NCSM are not limited by the available memory. Larger model
spaces or particle numbers only require more CPU time for
the construction of the importance truncated model space.

D. Iterative construction of model space: IT-NCSM(i) vs
IT-NCSM(seq)

We can use the universal update scheme described in
Sec. II D for the iterative construction of the importance
truncated Nmaxh̄� space for any given Nmax. For targeting
the ground state, we would start with a 0h̄� eigenstate as
the initial reference state—for a closed-shell nucleus this is
just the independent-particle shell-model determinant. In a
first iteration, the importance update is used to generate all
relevant 1p-1h and 2p-2h excitations within the Nmaxh̄� space
under consideration. Using the eigenstate in this importance-
truncated space as the reference state, a second iteration will
give access to all basis states up to the 4p-4h level with respect
to the initial 0h̄� state. Typically two or three iterations of the
importance update cycle are sufficient to obtain convergence,
i.e., a result that is not changed anymore by another importance
update. In the following, we will identify those calculations
with the label IT-NCSM(i), where i indicates the number of
iterations.

However, for the Nmaxh̄� space of the NCSM, there exists
a more efficient alternative. Typically we are interested in a
sequence of calculations for growing Nmax in order to assess
the convergence behavior with increasing model-space size.
We can combine this sequential increase of Nmax with the
importance update in an elegant way. Assume we start with
a complete NCSM calculation in a 0h̄� or 2h̄� space. Using
the eigenstate obtained in this small, say, 2h̄� space as the
reference state, we construct the importance truncated 4h̄�

space and solve the eigenvalue problem again. The resulting
eigenstate then defines the reference state for the construction
of the importance truncated 6h̄� space, and so on. We will
identify calculations based on this sequential update scheme
by IT-NCSM(seq) in the following.

This sequential scheme has an important conceptual ad-
vantage: the maximum np-nh excitation with respect to the
0h̄� space that is contained in an Nmaxh̄� space is of
order n = Nmax. Therefore in each step of sequence Nmax =
0, 2, 4, 6, . . . , the maximum np-nh order increases by 2, and
a single importance update at each step is sufficient to access
all np-nh orders that can appear. Thus, the sequential update
scheme recovers the complete Nmaxh̄� model space in the limit
(κmin, Cmin) → 0 and does not impose any explicit limitation
regarding the np-nh content of the space. We need to apply
the importance update only once for each value of Nmax; in
the iterative scheme, we would need i = Nmax/2 iterations
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FIG. 1. (Color online) Correlation between the importance mea-
sure κν and the amplitude Cν obtained by solving the eigenvalue
problem in an IT-NCSM(2) calculation of 16O with Nmax = 8 and
h̄� = 22 MeV. The panels correspond to the different np-nh orders
as indicated.

to formally achieve this. We will apply and compare both
schemes in Sec. IV.

E. Importance measure

As a first test of the reliability of the importance measure,
we can compare the perturbative estimate κν for the amplitude
of a given basis state |�ν〉 with the amplitude Cν resulting
from the diagonalization. Whereas the a priori importance
measure κν only includes the coupling to the states from the
reference space, the a posteriori amplitudes Cν are affected by
the mutual coupling of all states. Nonetheless, the κν provides
a reasonable estimate for the amplitudes Cν that is sufficient
to identify the important basis states.

This is illustrated in Fig. 1 for an importance truncated
NCSM calculation for 16O in an 8h̄� space using two iterations
of the importance update of the model space for an importance
threshold κmin = 5 × 10−5. The correlation plots relate the
importance measure κν of the individual basis states with the
corresponding amplitudes Cν in the final eigenstates. There is a
clear correlation between the two quantities which is sufficient
to predict which basis states are important for an adequate
representation of the final eigenstate. The scattering around
the diagonal reflects all couplings that are not accounted for in
the lowest order perturbative estimate.

As mentioned in Sec. II C, there are other options to define
an importance measure in the framework of multiconfigura-
tional perturbation theory. A natural alternative to the state-
based importance measure κν is the energy-based importance
measure χν defined in Eq. (13). One could also consider
an Epstein-Nesbet partitioning as discussed in Sec. II B to
set up the perturbative corrections and define a state-based
importance measure κEN

ν .
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FIG. 2. (Color online) Ground-state energy of 16O obtained
in IT-NCSM(2) calculations for Nmax = 8 and h̄� = 22 MeV as
function of the dimension D of the importance truncated space.
The different symbols correspond to different definitions of the
importance measure: the state-based importance measure κν (•),
the energy-based importance measure χν (�), and the state-based
importance measure κEN

ν defined in an Epstein-Nesbet partitioning
(�).

To assess the efficiency of the three measures, we perform
a series of calculations with different values of the respective
importance thresholds and plot the energy eigenvalue versus
the dimension of the importance truncated space as a para-
metric curve spanned by the importance thresholds κmin, χmin,
and κEN

min, respectively. Since the whole approach is variational,
the measure that leads to the lowest ground-state energy for a
given dimension D of the importance truncated space is most
efficient in selecting the D most important basis states.

An example of this analysis is shown in Fig. 2, again for the
ground state of 16O in an 8h̄� space. In all cases, the NCSM
ground state in a complete 2h̄� space was used as the reference
state for the construction of the importance truncated space.
The points obtained with all three definitions of the importance
measure essentially fall onto the same line; i.e., all measures
are able to identify the most important configurations with
the same efficiency. We therefore use the conceptually and
computationally simplest importance measure: the state-based
measure κν of Eq. (12) in all the following investigations.

F. Threshold dependence and extrapolation

The variation of the threshold κmin is an important probe for
the quality of the importance truncation and the basis for an
extrapolation to vanishing threshold κmin → 0 as it will be used
later on. To this end, all IT-NCSM calculations are performed
for a sequence of different values for κmin. For each threshold
value, the importance truncated space is different and the
eigenvalue problem has to be solved again. However, this can
be done at small computational cost. The importance truncated
space and the Hamilton matrix are initially determined for the
smallest κmin. After the solution of the eigenvalue problem for
this threshold, all basis states that are not part of space for
the next-larger importance threshold and the corresponding
matrix elements are removed, and the eigenvalue problem
is solved again. Hence, the time-consuming construction of
the importance truncated space and the computation of the
Hamilton matrix are done only once for a whole threshold
sequence.
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FIG. 3. (Color online) Threshold dependence of the energies and
the model space dimension for a IT-NCSM(2) calculation of 16O
with Nmax = 8 and h̄� = 22 MeV. (a) Energy eigenvalues and as
function of κmin without (•) and with (�) perturbative correction for
the excluded configurations. (b) Total dimension of the importance
truncated space (•) as well as the number of 2p-2h (◦), 3p-3h (�),
and 4p-4h-configurations (�) with varying κmin.

The dependence of the energy and of the model-space
dimension on the importance threshold κmin in IT-NCSM(2)
calculations for 16O with different Nmax is illustrated in
Fig. 3. The energy eigenvalue E(κmin) obtained in the impor-
tance truncated space decreases monotonically with decreas-
ing κmin as expected from the variational principle and the
Hylleraas-Undheim theorem. At the same time, the dimension
of the importance truncated space increases exponentially
with decreasing κmin. The number of configurations of higher
np-nh order in particular grows rapidly as the threshold is
lowered. This behavior reflects the mechanism behind the
importance truncation scheme: The configurations which are
most important for the description of the target state have
large κν and are included already for large thresholds. With
decreasing threshold κmin, basis states of lesser importance are
successively included. Their number increases dramatically,
but the effect on the state and the energy remains moderate,
facilitating approximations to estimate their effect on the
energy without including them explicitly in the model space.

The simplest approximate way to account for the excluded
basis states is the a posteriori energy correction �excl(κmin)
given by Eq. (17) on the basis of the second-order MCPT
contribution. The corrected energies E(κmin) + �excl(κmin) are
also depicted in Fig. 3(a). Although �excl(κmin) provides only
a rough estimate of the contribution of excluded states, the
κmin dependence of the corrected energy is much weaker
than the dependence of the uncorrected eigenvalues E(κmin);
if the correction were exact, we would expect the corrected
energies to be independent of κmin. In many cases, the corrected
energy at a single value of κmin can already serve as a good
approximation for the full results in the limit κmin → 0.

A more reliable way to recover the contribution of excluded
configurations is an a posteriori extrapolation of the energies

to vanishing importance threshold. Thanks to the smooth and
monotonic behavior of the energies E(κmin), one can attempt
a direct numerical extrapolation κmin → 0 as done in Ref. [7].
Since the general shape of the E(κmin) curve varies, we will
generally use polynomials in κmin fitted to a sufficiently large
number of different threshold values for the extrapolation.
Instead of E(κmin), one can extrapolate the perturbatively
corrected energy, E(κmin) + �excl(κmin), which shows a weaker
threshold dependence than the eigenvalues and, therefore,
allows a more stable extrapolation. The extrapolation can
be stabilized further by performing a simultaneous fit of
E(κmin) and E(κmin) + �excl(κmin). Since the perturbative
correction �excl(κmin) has to vanish in the limit κmin → 0,

both extrapolations should formally give the same value at
κmin = 0, independent of the absolute quality of the perturba-
tive estimate. The formal property E(0) = E(0) + �excl(0) is
used as a constraint in the simultaneous fit and reduces the
uncertainties of the threshold extrapolation significantly.

One can even go one step further and define a family
of energy curves Ẽλ(κmin) = E(κmin) + λ�excl(κmin) with a
control parameter λ. Independent of the choice of λ, the
formal property Ẽλ(0) = E(0) holds. Using this as a constraint
in a simultaneous χ2 fit of a set of curves for several
values of λ provides very robust extrapolation results. This
technique was pioneered by Buenker and Peyerimhoff in the
early applications of configuration-selecting CI approaches in
quantum chemistry [34]. It solely relies on the fact that the
correction �excl(κmin) is a monotonous function which goes to
zero (smoothly) as κmin → 0.

Examples of this type of threshold extrapolation in the
case of IT-NCSM(2) calculations for 16O in different Nmaxh̄�

model spaces are presented in Fig. 4. The starting points are
the energies E(κmin) and perturbative corrections �excl(κmin)
obtained for a sequence of importance thresholds in the range
from κmin = 3 × 10−5 to 14 × 10−5. Using this input, we
construct data sets for the corrected energies Ẽλ(κmin) for
λ = 0, 0.5, 1, 1.5, and 2 and simultaneously fit each of the
sets by a fourth-order polynomial under the constraint that
all curves meet at κmin = 0. The individual data sets and the
polynomial fits are shown in Fig. 4. It is evident that this
extrapolation scheme is most stable if the curves approach the
common Ẽλ(0) value more or less symmetrically. This is the
reason for the particular set of λ values adopted here.

We employ the following threshold extrapolation protocol
for the applications presented in Sec. IV. Using a sequence of
12 equidistant threshold values in the range κmin = 3 × 10−5

to 14 × 10−5, we perform a constrained simultaneous fit of
the corrected energies Eλ(κmin) for a sequence of at least five
different λ values using low-order polynomials. The set of
λ parameters is chosen such that the common point of all fit
curves at κmin = 0, which gives the final threshold-extrapolated
energy, is approached symmetrically. To assess the uncertainty
of the extrapolation, we drop the smallest and largest values
from the λ sequence and perform the simultaneous fit for the
remaining data sets. The variance of this set of extrapolations
defines an uncertainty interval for the threshold extrapolated
energy.

The exceptions are the very light nuclei, e.g., 4He, for which
a direct extrapolation of the energy eigenvalue E(κmin) without
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FIG. 4. (Color online) Threshold extrapolation of the ground-
state energy of 16O (h̄� = 22 MeV) obtained in IT-NCSM(2) for
different Nmax. Shown are the perturbatively corrected energies
Eλ(κmin) as function of κmin for λ = 0, 0.5, 1, 1.5, and 2 (data sets
from top to bottom within each panel). For λ = 0 (•) the original
energy eigenvalue E(κmin) is recovered, for λ = 1 (�) we obtain
the perturbatively corrected energy E(κmin) + �excl(κmin). The lines
show the results of a simultaneous constrained fit for all data sets
using fourth-order polynomials (see text).

using the perturbative correction �excl(κmin) provides a more
stable result. The reason is the κmin dependence of �excl(κmin),
which in very small spaces shows structures that interfere with
the polynomial extrapolation.

IV. APPLICATIONS AND BENCHMARKS: MAGIC NUCLEI

We employ the IT-NCSM now for the series of calculations
for the 0+ ground-state energies of various closed- and
open-shell nuclei in the p shell. The aim is to compare the
results to those of the full NCSM in different cases in order
to demonstrate the robustness of the importance truncation
scheme. All full NCSM calculations presented in the following
were performed with the ANTOINE code [45].

A. Helium-4

As the simplest benchmark, we study the ground-state
energy of 4He using the VUCOM interaction. In this case, full
NCSM calculations can be performed up to very large Nmaxh̄�

spaces such that convergence is observed. Furthermore, other
few-body methods, e.g., the hyperspherical harmonics basis
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FIG. 5. (Color online) Ground-state energy and model-space
dimension as functions of Nmax for 4He obtained within the IT-
NCSM(i) scheme for i = 1 (•), i = 2 (�), and i = 3 iterations (�)
using the VUCOM interaction for h̄� = 40 MeV. Panels (a) and (b)
show the ground-state energies on different scales, including the
uncertainty estimates for the threshold extrapolation. Panel (c) depicts
the maximum dimension of the importance truncated model space.
For comparison, the results of full NCSM calculations for the same
Hamiltonian are included (+).

expansion [51], have been employed and yield an independent
reference value for the ground-state energy.

First we consider the simple iterative scheme IT-NCSM(i)
for the construction of the importance truncated model space.
For fixed Nmax we perform up to three iterations of the
importance update starting with the Slater determinant of the
independent-particle model as the initial reference. In each
iteration we solve the eigenvalue problem for a sequence
of importance thresholds in the range κmin = 3 × 10−5 to
14 × 10−5 and extrapolate the eigenvalues E(κmin) to the limit
of vanishing threshold κmin → 0 as discussed in Sec. III F.
For very light nuclei such as 4He, the direct extrapolation of
E(κmin) without perturbative corrections for excluded config-
uration provides the most stable results. For the definition of
the reference state for the next iteration, a reference threshold
Cmin = 5 × 10−4 is used.

The threshold-extrapolated ground-state energies and the
dimensions of the maximum importance truncated model
spaces as functions of Nmax are depicted in Fig. 5. The
convergence with respect to the importance updates of
the model space is very fast. After two iterations, i.e., at the
IT-NCSM(2) level, we already obtain stable results which are
within 100 keV of the full NCSM result. The third iteration
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FIG. 6. (Color online) Ground-state energy, (a) and (b), and
model-space dimension (c) as functions of Nmax for 4He obtained
within the IT-NCSM(seq) scheme (•) using the VUCOM interaction for
h̄� = 40 MeV. For comparison, the results of full NCSM calculations
with the same Hamiltonian are included (+).

only lowers the ground-state energy a little further bringing
it into excellent agreement with the full NCSM, as seen in
Fig. 5(b). For 4He, this convergence pattern may be expected.
After two iterations, the importance truncated space contains
up to 4p-4h excitations; i.e., the full model space can be
generated in the limit of vanishing thresholds. The minimal
change in the third iteration is due to a relaxation of the
importance truncated space; i.e., through the reassessment
of the importance of all basis states with respect to a new
reference state, which includes all possible np-nh orders,
the importance truncated space is better adapted. Further
importance updates do not change the resulting energies any
more.

The agreement with the full NCSM demonstrates the
efficiency of the importance measure and the reliability of
the threshold extrapolation. The dimension Dmax of the largest
model space considered for the threshold extrapolation is up
to two orders of magnitude smaller than the dimension of the
full NCSM space, as illustrated in Fig. 5(c). Note that the
full NCSM dimension is obtained by exploiting all relevant
symmetries, including parity and time reversal, to reduce the
dimension of the eigenvalue problem—it corresponds to the
“effective dimension” used by the ANTOINE code. Thus this
substantial reduction of the model-space dimension by the
importance truncation goes beyond generic symmetries and
really exploits the specific properties of the Hamiltonian.

As an alternative to the simple iterative model-space update
at fixed Nmax, we can perform these calculations using the
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FIG. 7. (Color online) Ground-state energies of 4He obtained for
the VUCOM interaction as function of the oscillator frequency h̄� for
different Nmaxh̄� model spaces. Results of IT-NCSM(seq) calcula-
tions (solid symbols) are compared with full NCSM calculations
(crosses).

sequential model-space update IT-NCSM(seq) proposed in
Sec. III D. Starting from the 0h̄� space, we use the importance
measure to construct an importance truncated 2h̄� space. This
is used as the reference space to construct the importance
truncated 4h̄� space, and so on. As before, we use a reference
threshold of Cmin = 5 × 10−4 and a sequence of impor-
tance thresholds starting from κmin = 3 × 10−5. The results
for the ground-state energies of 4He are summarized in Fig. 6
and compared with the full NCSM. The IT-NCSM(seq)
scheme leads to the same excellent agreement with the full
NCSM as the IT-NCSM(3). However, the IT-NCSM(seq) is
computationally more efficient, since only one importance
update is needed for each value of Nmax.

The dependence of the ground-state energy obtained in the
IT-NCSM(seq) on the oscillator parameter h̄� is depicted in
Fig. 7. The comparison with the full NCSM results shows that
the excellent agreement persists for all frequencies h̄�. The
particular oscillator frequency h̄� = 40 MeV used in Figs. 5
and 6 corresponds to the minimum for the larger space.

In order to compare our results with other many-body
methods and with experiment, we perform an exponen-
tial extrapolation of the IT-NCSM(seq) energies for h̄� =
40 MeV. Since the calculations are practically converged with
respect to Nmax, the main purpose of the extrapolation is
to smooth out the fluctuations due to the uncertainties of
the threshold extrapolation. Using the five data points from
Nmax = 16 to 24, we obtain a 4He ground-state energy of
−28.52(10) MeV. This is in excellent agreement with the
value of −28.57 MeV obtained previously in the framework
of the hyperspherical harmonics approach using the same
VUCOM interaction [51]. The comparison with the experimental
binding energy of −28.29 MeV only reveals the rough nature
of the adjustment of the UCOM tensor correlator range Iϑ that
was used in Ref. [49] to fix the VUCOM interaction.

B. Oxygen-16

The ground state of 16O poses a more challenging problem.
At present, full NCSM calculations can be done routinely
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FIG. 8. (Color online) Ground-state energy and model-space
dimension as functions of Nmax for 16O obtained within the IT-
NCSM(i) scheme for i = 1 (•) and i = 2 (�) iterations using the
VUCOM interaction for h̄� = 22 MeV. In addition the IT-NCSM(2)
energies after inclusion of the multireference Davidson correction
are shown (�). Panels (a) and (b) show the ground-state energies on
different scales, including the uncertainty estimates for the threshold
extrapolation. Panel (c) depicts the maximum dimension of the
importance truncated model space. For comparison, the results of
full NCSM calculations for the same Hamiltonian are included (+).

for spaces up to Nmax = 8 with an effective dimension
of almost 0.6 × 109. For Nmax = 10 and 12, the effective
dimension grows to 1.4 × 1010 and 2.4 × 1011, respectively,
which is clearly beyond the reach of present NCSM codes. The
importance truncation is crucial in this domain and enables us
to treat model spaces of up to Nmax = 22 and beyond. This
limit is set by the available two-body matrix elements and not
by the IT-NCSM calculation itself.

As for 4He, we first consider the simple iterative IT-
NCSM(i) scheme using up to two iterations for each Nmax

to construct the importance truncated model space. We use
a set of 12 equidistant importance thresholds in the range
κmin = 3 × 10−5 to 14 × 10−5 as input for the simultaneous
threshold extrapolation as discussed in Sec. III F. The reference
threshold is set to Cmin = 5 × 10−4.

A summary of the IT-NCSM(i) results for the ground-state
energies of 16O up to Nmax = 18 is presented in Fig. 8,
selected numerical values are given in Table I. As for the
much lighter nucleus 4He, the convergence of the iterative
importance updates is excellent. Already after two iterations,
i.e., for IT-NCSM(2), the full NCSM energies up to Nmax = 8
are produced to an absolute accuracy of better than 600 keV.

TABLE I. Ground-state energies (in MeV) for 16O obtained for
the VUCOM interaction at h̄� = 22 MeV with different levels of the
IT-NCSM. For the IT-NCSM(i), results for i = 1 and 2 iterations are
shown. Furthermore IT-NCSM(2) results with the MRD correction
[Eq. (19)] and the perturbative correction [Eq. (18)] for the effect of
the next iteration are reported. For the IT-NCSM(seq), two different
reference thresholds have been used: (a) Cmin = 5 × 10−4 and (b)
Cmin = 3 × 10−4. Numbers in parentheses are uncertainty estimates
for the threshold extrapolation.

Nmax 8 12 16

E0 −46.69 −46.69 −46.69
IT-NCSM(1) −95.10(2) −103.24(2) −107.81(2)
IT-NCSM(2) −104.18(15) −116.32(15) −122.81(50)
IT-NCSM(2) + MRD −104.75(15) −117.22(15) −123.75(50)
IT-NCSM(2) + PT(3) −104.81(15) −117.62(15) –
IT-NCSM(seq) − (a) −104.49(10) −116.86(25) −123.14(70)
IT-NCSM(seq) − (b) −104.43(10) −117.12(25) −123.45(70)
Full NCSM −104.75 – –

Instead of performing a third iteration explicitly, we can
use computationally simpler estimates for the small correction
resulting from 5p-5h and 6p-6h configurations that are not
present in the IT-NCSM(2) model space. As discussed in
Sec. II E, the simplest a posteriori correction is the mul-
tireference Davidson correction (MRD) given by Eq. (19),
since it does not require any additional computation beyond
IT-NCSM(2). The MRD corrected IT-NCSM(2) energies are
also shown in Figs. 8(a) and 8(b). The contribution of
the MRD correction grows slightly with Nmax and reaches
about 1 MeV for Nmax = 18. As seen from Table I, the
IT-NCSM(2)+MRD energy is in excellent agreement with the
full NCSM. A computationally more demanding a posteriori
correction based on the explicit calculation of the second-order
energy contribution on top of the IT-NCSM(2) eigenstate
as defined by Eq. (18) yields very similar results. The IT-
NCSM(2)+PT(3) energies shown in Table I agree very well
with both, IT-NCSM(2)+MRD and full NCSM.

The good agreement with the full NCSM energies is
yet another indication of the efficiency of the importance
truncation scheme in selecting the relevant configurations and
of the reliability of the threshold extrapolation for recovering
the contribution of excluded configurations. The importance
truncated space is substantially smaller than the full NCSM
space, as seen in Fig. 8(c). For Nmax = 8, the importance
truncation reduces the dimension by two orders of magnitude;
for Nmax = 12, already by four orders of magnitude. This
dramatic reduction allows us to go to much larger values of
Nmax than ever possible in the full NCSM.

We can improve the efficiency even more by using the
sequential IT-NCSM(seq) scheme, which requires only one
importance update for each value of Nmax since it uses a
reference state constructed from the eigenstate in the Nmax − 2
space. In this way, all np-nh states that are possible in a given
Nmaxh̄� space are generated in the limit (κmin, Cmin) → 0.

The results of IT-NCSM(seq) calculations for the ground-
state energy of 16O for h̄� = 22 MeV and the sequence of Nmax

values starting from Nmax = 0 up to Nmax = 22 are presented
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FIG. 9. (Color online) Ground-state energy, (a) and (b), and
model-space dimension (c) as functions of Nmax for 16O obtained
within the IT-NCSM(seq) scheme using the VUCOM interaction for
h̄� = 22 MeV. Two different values of the parent threshold were
used: Cmin = 5 × 10−4 (•) and Cmin = 3 × 10−4 (�). For comparison,
the results of full NCSM calculations with the same Hamiltonian are
included (+).

in Fig. 9. We study two different values of Cmin, the threshold
used in the definition of the reference state, since this is the
only parameter left after the κmin → 0 extrapolation. The set
of κmin values used for the threshold extrapolation is the same
as before.

We observe an excellent agreement with the full NCSM
and with the IT-NCSM(2) of Fig. 8. The numerical results in
Table I reveal that the IT-NCSM(seq) energies are slightly
but systematically below the IT-NCSM(2) results. This is
due to the presence of 5p-5h and 6p-6h configurations in
the model space of the IT-NCSM(seq), which are excluded
from the IT-NCSM(2) space. States beyond the 6p-6h level
are suppressed by the importance truncation; i.e., they do
not have importance measures above the smallest threshold
κmin = 3 × 10−5 used in this calculation. The IT-NCSM(seq)
calculations for the two different reference thresholds Cmax

agree within the uncertainties of the κmin extrapolation, which
indicates that the values chosen here are sufficiently small to
capture all relevant components of the reference state.

The quality of the IT-NCSM(seq) compared to the full
NCSM is independent of the oscillator frequency h̄� of the
underlying basis. As shown in Fig. 10, both sets of calculations
are essentially on top of each other. The maximum deviations
are around 300 keV, with the IT-NCSM tending to higher
energies because of its variational character.
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FIG. 10. (Color online) Ground-state energies of 16O obtained
for the VUCOM interaction as function of the oscillator frequency
h̄� for different Nmaxh̄� model spaces. Results of IT-NCSM(seq)
calculations (solid symbols) are compared to full NCSM calculations
(crosses).

Based on the results of Fig. 9, we can attempt an extrapo-
lation Nmax → ∞. Close inspection of the Nmax dependence
reveals a nonexponential behavior for large Nmax which affects
the quality of the extrapolation. This is a property of the
VUCOM interaction used here and is not related to the IT-NCSM
itself. Similar calculations with other interactions, e.g., the
chiral N3LO potential after a similarity renormalization group
evolution used in Refs. [5,56], do not have this problem.
If we, nevertheless, use the energies for five consecutive
values of Nmax to perform an exponential extrapolation, the
extrapolated energy has a sizable dependence on the chosen
window in Nmax. When using the IT-NCSM(seq) energies
in the window 14 � Nmax � 22, we obtain −133.1 MeV; for
the range 12 � Nmax � 20, we obtain −132.4 MeV; and for
10 � Nmax � 18, we get −130.8 MeV. To arrive at a stable
extrapolation for the VUCOM interaction, one would have to go
to even larger Nmax or use different extrapolation strategies.

C. Center-of-mass contamination

An important advantage of the NCSM is the possibility
to exactly separate the intrinsic and the center-of-mass (c.m.)
component of the many-body states. Only in this way is a
nonspurious description of the translationally invariant intrin-
sic state of the nucleus—and all the observables derived from
it—guaranteed. As discussed in Sec. III A, this property relies
on the use of a complete Nmaxh̄� model space constructed
from a harmonic-oscillator single-particle basis. Any other
model-space truncation will destroy the formal separability
and lead to c.m. contaminations of the intrinsic states.

Since the importance truncation reduces the model space to
a subset of the full Nmaxh̄� space, it might induce a coupling
between intrinsic and c.m. motion and destroy the exact
separability. We have to check explicitly that the IT-NCSM
eigenstates still exhibit the separation between intrinsic and
c.m. motion.

A well-known tool for probing the presence and extent of
the coupling is an artificial shift of the excitation spectrum
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FIG. 11. (Color online) Intrinsic ground-state energy of 16O
obtained in the IT-NCSM(seq) at h̄� = 22 MeV using the modified
Hamiltonian Hβ . (a) Intrinsic energies for β = 0 (•) and β = 10
(�) compared to the full NCSM (+). (b) Energy difference δEint =
Eint(β = 10) − Eint(β = 0).

of the c.m. component of the many-body states. Following
Gloeckner and Lawson [57], this can be implemented by
adding a harmonic-oscillator Hamiltonian with respect to the
c.m. position Xc.m. and the c.m. momentum Pc.m.

Hc.m. = 1

2mA
P2

c.m. +
mA�2

2
X2

c.m. −
3

2
h̄�. (23)

The modified Hamiltonian

Hβ = Hint + βHc.m. (24)

is then used instead of the intrinsic Hamiltonian (22) at all
stages of the calculation. This procedure is used routinely in
valence-space shell-model and full NCSM calculations.

If intrinsic and c.m. motion are properly decoupled, then
this shift will not affect the intrinsic state whatsoever. The
intrinsic ground-state energy, defined via the expectation value
Eint(β) = 〈�β |Hint|�β〉 computed with the eigenstates |�β〉
obtained for Hβ , has to be completely independent of β. Any
dependence of Eint(β) on β signifies an unphysical coupling
of the intrinsic state to the c.m. state of the nucleus.

As an example for this check, we discuss the 16O ground-
state energy obtained in the IT-NCSM(seq) scheme. The
IT-NCSM(seq) is set up as described in Sec. IV B. Figure 11
depicts the intrinsic energies for a sequence of Nmax values
obtained for β = 0, i.e., with the intrinsic Hamiltonian used
in all previous calculations, and for β = 10. The intrinsic
energies of both calculations agree almost perfectly. As shown
in Fig. 11(b), the difference is always below 300 keV and
consistent with 0 within the uncertainty of the threshold
extrapolation. Evidently, the importance truncation does not
induce any noticeable coupling between intrinsic and c.m.
degrees of freedom, and thus the eigenstates are free of c.m.
contaminations.

The situation is completely different if we start from a
model space that is not based on the Nmaxh̄� truncation.
A well-known example is the core-plus-valence-space shell
model, where the model space is spanned by Slater de-
terminants generated by all possible occupations of a few
valence orbitals. A number of studies show the severity of the

problem. As discussed in Ref. [58], e.g., spurious admixtures
cause the ground-state energy of 16O to be overestimated
by several MeV. Similar effects are observed when using
the importance truncation idea with a no-core model space
defined through a truncation of the single-particle basis. These
IT-CI calculations, as discussed in Ref. [8], exhibit sizable
c.m. contaminations of the intrinsic states which also lead
to energy shifts of several MeV for the 16O ground state. A
detailed investigation of the c.m. contaminations in IT-CI and
coupled-cluster calculations will be presented elsewhere [59].

V. APPLICATIONS AND BENCHMARKS:
NONMAGIC NUCLEI

The IT-NCSM is not limited to doubly magic or closed-shell
nuclei. We can apply the same ideas and computational
techniques, in particular the IT-NCSM(seq) scheme, without
any changes to nonmagic or open-shell nuclei. In this section,
we demonstrate this flexibility and discuss the performance of
the IT-NCSM scheme for selected nonmagic even-even nuclei
from the p shell in comparison to the full NCSM. A systematic
study of p-shell nuclei with different unitarily transformed
realistic interactions will be presented in a forthcoming
publication.

A. Carbon-12

As a first step toward open-shell nuclei, we consider the
ground state of 12C in the IT-NCSM. The computational
complexity of this problem is similar to that of the 16O ground
state because of the incomplete filling of the p shell. The full
NCSM is typically limited to Nmax = 8, whereas the IT-NCSM
can be extended to Nmax = 22 and beyond.

Both schemes for constructing the importance truncated
space—the iterative IT-NCSM(i) and the sequential IT-
NCSM(seq) scheme—can be applied without change. For the
IT-NCSM(i) scheme, a natural choice for the initial reference
state is the ground state obtained from a 0h̄� calculation in the
full NCSM instead of the single Slater determinant that spans
the 0h̄� space for a magic nucleus. For the IT-NCSM(seq)
scheme, we start with a full NCSM calculation in a 0h̄� or 2h̄�

space in any case, so there is no technical difference between
closed- and open-shell nuclei. For brevity, we restrict ourselves
to the IT-NCSM(seq) scheme in this section. As in Sec. IV,
we employ a set of calculations with importance thresholds
in the range κmin = 3 × 10−5 to 14 × 10−5 for each Nmax. On
this basis, we perform a constrained threshold extrapolation
as described in Sec. III F making use of the second-order
perturbative estimate of the energy contribution of excluded
configurations.

The evolution of the ground-state energy and the model-
space dimension with Nmax obtained in the IT-NCSM(seq) for
the VUCOM interaction is depicted in Fig. 12. For the reference
threshold, we use two different values, Cmin = 3 × 10−4 and
5 × 10−4. The sensitivity of the ground-state energy to the
reference threshold is slightly larger than for the doubly magic
16O because of the absence of a single dominant basis state.
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FIG. 12. (Color online) Ground-state energy, (a) and (b), and
model-space dimension (c) as functions of Nmax for 12C obtained
within the IT-NCSM(seq) scheme using the VUCOM interaction for
h̄� = 24 MeV. Two different values of the parent threshold were
used: Cmin = 5 × 10−4 (•) and Cmin = 3 × 10−4 (�). For comparison,
the results of full NCSM calculations with the same Hamiltonian are
included (+).

However, the difference between the two sets of energies
remains well below 1 MeV.

As for 16O, the general rate of convergence is rather slow
and of nonexponential character for model spaces beyond
Nmax ≈ 14. To a large extent, this can be traced back to
the high-momentum behavior of the first-generation VUCOM

interaction. A rough extrapolation based on the five data
points in the range 14 � Nmax � 22 leads to an estimated
ground-state energy of −84.6(1.5) MeV, where the uncertainty
is determined by comparing with extrapolations for other
sets of five consecutive points. This is almost 8 MeV above
the experimental ground-state energy of −92.16 MeV [60].
Keeping in mind that the calculated ground-state energy of
16O was at least 5 MeV below the experimental value, this can
be interpreted as evidence of deficiencies in the spin-orbit part
of the first-generation VUCOM interactions, which in turn could
be related to missing three-body interactions.

Interestingly, a similar pattern has been observed for the
JISP16 interaction in the full NCSM calculations presented
in Ref. [6]. Although these NCSM calculations were limited
to Nmax � 8, the softness of the JISP16 interaction allows for
quantitative conclusions already in these small spaces. Based
on systematic extrapolations, the authors conclude that 12C is
overbound by approximately 2 MeV and 16O is overbound by
15–18 MeV. Hence the difference in the binding energies of
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FIG. 13. (Color online) Ground-state energies of 6He (a) and 8He
(b) as function of Nmax obtained within the IT-NCSM(seq) scheme
(•) using the VUCOM interaction for h̄� = 24 MeV. For comparison,
the results of full NCSM calculations with the same Hamiltonian are
included (+).

the two nuclei is of the same order as for the VUCOM interaction
although the JISP16 overbinds 16O significantly.

B. Helium-6 and helium-8

As a second example, we consider the neutron-rich helium
isotopes 6He and 8He. Whereas for 4He, one is able to reach
large Nmax with the full NCSM already, the few additional
neutrons in these isotopes significantly reduce the range of the
full NCSM, typically to Nmax � 16 for 6He and Nmax � 12 for
8He [61]. With the importance truncation, we can overcome
this limitation easily.

The IT-NCSM(seq) results for the ground states of 6He and
8He obtained with VUCOM at h̄� = 24 MeV with Cmin = 5 ×
10−4 are summarized in Fig. 13. As before, the IT-NCSM(seq)
energies show an excellent agreement with the results of full
NCSM calculations where the latter are feasible. For larger
Nmax the threshold extrapolation shows uncertainties of up
to 700 keV for 8He. If necessary, these uncertainties can be
reduced by considering lower κmin values for the threshold
extrapolation. The general convergence as a function of Nmax is
rather slow, particularly for 8He. In addition to the properties of
the VUCOM interaction discussed before, the structure of these
nuclei affects the convergence rate. Obviously, the description
of the neutron halo in an oscillator basis requires high-lying
single-particle states and thus large Nmax. Only through the
importance truncation are these large model spaces accessible.

Because of the slow convergence and the relatively large
uncertainties of the threshold extrapolation, an extrapolation
to Nmax → ∞ only provides a rough estimate. Using the
results for the five largest spaces, we obtain an extrapolated
ground-state energy of −27.4(1.0) MeV for 6He and of
−26.5(1.5) MeV for 8He. A systematic study including
a variation of the oscillator frequency is needed to pro-
vide more precise extrapolations. The comparison of these
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estimates with the experimental binding energies of −29.27
and −31.41 MeV [60] for 6He and 8He, respectively, con-
firms our observations regarding the deficiencies of the first-
generation VUCOM interactions. The systematic underbinding
of these open-shell systems could be remedied, e.g., by a
stronger spin-orbit component of the interaction. Again, the
NCSM studies with the JISP16 interactions presented in Ref.
[6] show a similar trend, though the absolute deviations are
smaller.

VI. CONCLUSIONS AND OUTLOOK

We have introduced an importance truncation scheme with
all its technical aspects as a new tool to facilitate ab initio nu-
clear structure calculations beyond the domain of conventional
CI approaches. Using an a priori importance measure derived
from multiconfigurational perturbation theory, we identify
the important configurations for the description of individual
target states such that the dimension of the eigenvalue problem
that needs to be solved is dramatically reduced. The effect of
excluded configurations can be reliably included by combining
a perturbative estimate of their energy contribution with
threshold extrapolation techniques.

In combination with the Nmaxh̄� space of the NCSM
the importance truncation provides a powerful tool to asses
all aspects of nuclear structure in light and medium-heavy
nuclei. The importance truncation approximately preserves a
crucial property of the NCSM: the decoupling of intrinsic
and center-of-mass degrees of freedom, which guarantees that
the intrinsic observables are free of unphysical center-of-mass
contaminations. We have discussed two schemes for setting
up the importance truncated space: the iterative IT-NCSM(i)
and the sequential IT-NCSM(seq) schemes. The latter is most
efficient since we have to construct the importance-truncated
space only once for each Nmax.

Moreover, the IT-NCSM(seq) scheme is conceptually supe-
rior, because in the limit of vanishing thresholds Cmin and κmin,

the complete Nmaxh̄� space is obtained without any truncation
regarding the np-np order at each step of the sequence of Nmax

values. Hence, the full NCSM results are recovered in the
limit (Cmin, κmin) → 0 at each Nmax. Based on this property,
we use a numerical a posteriori threshold-extrapolation to
obtain an approximation to the full NCSM with well-defined
error bounds. The stability of this extrapolation is greatly
enhanced by using information on the contribution of excluded
configurations from perturbation theory. Further improve-
ments of these extrapolation techniques, e.g., along the lines
discussed in Refs. [39] or [62], will be investigated in the
future.

Our series of benchmark calculations confirms the excellent
agreement of the IT-NCSM with the full NCSM in all cases
where the latter is computationally feasible. The comparison
also demonstrates that the IT-NCSM gives access to much
larger Nmaxh̄� spaces and to heavier nuclei than the full
NCSM. The range of the IT-NCSM in both Nmax and A is only
limited by the computing time and not by memory. Moreover,
the time-consuming steps of the computation can be easily
parallelized with minimal communication overhead.

The present calculations also allow a detailed assessment of
the first-generation VUCOM interactions used. Whereas the 4He
binding energy is in agreement with experiment by construc-
tion, the ground state of 16O is overbound by at least 5 MeV.
This level of agreement is still satisfactory and is not found
with most other realistic two-body interactions, be it bare or
effective. For the nonmagic nuclei discussed here, the binding
energies are systematically underestimated with the VUCOM

interaction, which might hint at deficiencies in the spin-orbit
part of the interaction. Furthermore, the IT-NCSM calculations
show that the convergence rate of the first-generation VUCOM

when going to large spaces is rather slow, which might result
from the high-momentum behavior of the interaction. All of
these deficiencies will be addressed during the construction of
the next generation of UCOM-transformed interactions, and
the IT-NCSM provides a indispensable tool for assessing these
aspects.

Obviously, the investigation of ground states of closed- and
open-shell nuclei is only a first step toward a complete ab initio
description of nuclear structure. The next crucial step is the
extension of the IT-NCSM to excited states. The importance
truncation scheme can be generalized in a straightforward
manner for the simultaneous description of a few target states.
In this way, it becomes possible to describe, e.g., ground
and a few excited states simultaneously and on the same
footing. A detailed discussion of the methodical details will
be presented in a subsequent paper, together with a variety of
applications.

Since we automatically obtain a representation of the
eigenstates in a shell-model basis, all observables of interest
can be computed directly. Although we discussed only energies
for the purpose of the present benchmark, we have computed
a variety of properties, e.g., radii, density distributions, and
form factors. We have even used the IT-NCSM eigenstates
as input for the calculation of phase shifts for low-energy
nucleon-nucleus scattering reactions in the framework of the
NCSM/resonating group method (NCSM/RGM) [56,63].

This demonstrates that the IT-NCSM offers the same
possibilities for complete ab initio calculations of nuclear
structure, spectroscopy, and reactions as the full NCSM. At
the same time, the IT-NCSM extends the range of these
ab initio studies to heavier nuclei and larger model spaces,
which is crucial for developing a consistent framework
for nuclear structure theory throughout the whole nuclear
chart.

ACKNOWLEDGMENTS
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