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Corrections to the neutrinoless double-#-decay operator in the shell model
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We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless
double-B decay of 32Se. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to
generate the Hamiltonian for recent shell-model calculations of double-8 decay. After first summing high-
energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in
the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting
effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear
matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element
at very short distances as expected, they enhance it at distances between one and two fermis, so that their
overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that
the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation
between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative

calculation.
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I. INTRODUCTION

Neutrinoless double-8 decay is a very slow lepton-number-
violating nuclear process that occurs if neutrinos are their own
antiparticles. An initial nucleus (Z, A), with proton number Z
and total nucleon number A, decays to (Z + 2, A), emitting
two electrons in the process [1].

The neutrino masses and mixing matrix figure prominently
in the decay. The rate, assuming that the process is mediated
by the exchange of a light virtual neutrino, is

[T0] 7" = Gou(Q, 2)| Mo, > (mg)?, (1

where Q is the energy difference between the initial and final
nuclei, Z is the charge of the initial nucleus, Gg,(Q, Z) is
a tabulated phase-space measure, My, is the nuclear matrix
element to which we turn shortly, and mgg is a linear
combination of neutrino masses:
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In this last equation, my is the mass of the kth neutrino (these
mass eigenstates are linear combinations of the electron-, mu-,
and tau-neutrinos) and U, is the element of the unitary mixing
matrix that connects that neutrino to the electron neutrino. The
quantity mgg is what experimenters want to extract from the
measured decay rate. They cannot do so, however, without
knowing the matrix element M, , which must be calculated in
some nuclear model.

Most calculations of M, are done either in the neutron-
proton quasiparticle random phase approximation (QRPA) or
in the shell model. The two methods have complementary
virtues. The QRPA includes many single-particle orbitals
outside a relatively small “inert” core, but limits itself to
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a particular kind of correlation. The shell model includes
arbitrary complicated correlations, but only among a few
single-particle orbitals outside a larger inert core. The current
predictions of the two models, after a recent shaking out period,
show the QRPA matrix element exceeding that of the shell
model by factors of up to about two in the lighter isotopes
such as 7°Ge and %2Se, and somewhat less in the heavier
isotopes [2,3].

Which kind of calculation is closer to the truth? Are there
important effects that escape both models? To find out, one has
to correct one or both to account for omitted physics. Although
it is possible to add missing correlations to the QRPA, it
is not easy to do so systematically because several different
uncontrolled approximations—a BCS treatment of pairing, a
phenomenological interaction, the quasiboson approximation,
etc.—are part of the method. By contrast, because the shell
model includes all correlations within a well-defined subspace
of the full Hilbert space (the space generated by valence
particles occupying a few single-particle states), there is a
systematic procedure for adding the effects of states outside
that space [4-7].

While the procedure as usually implemented is perturbative
in a renormalized residual nuclear interaction (the G matrix)
and not always reliable for that reason, it often works well
enough, particularly if followed by some modest adjustment
to data. Practitioners have long used such an approach to
obtain good effective interactions [8], but have never applied
the same techniques to obtain an effective double-B-decay
operator. Instead, they typically modify the bare operator
phenomenologically, e.g., through the reduction of the axial-
vector coupling constant g4 (suggested by studies of single-8
decay) or the use of a prescription [9] to treat the short-range
nucleon-nucleon repulsion that is not present in shell-model
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wave functions.! Not surprisingly, it is difficult to assess the
reliability of such approximations.

In this paper, therefore, we apply the same techniques
used to construct effective shell-model interactions to the
decay operator itself. Section II below contains a brief
description of the matrix element we try to calculate, and
Sec. III a description of our procedure for renormalizing the
corresponding operator. In Sec. IV we present the results of
our calculation, which combines the renormalized operator
with shell-model transition densities from the authors of
Ref. [12] for the decay of 82Se to 32Kr. (Densities for other
decays, e.g., of "%Ge, are not currently available.) Although
we cannot be fully confident in our perturbative result, our
initial steps—accounting for short-range correlations through
the generation of a G matrix and an analogous corrected
decay operator—are nonperturbative and trustworthy. And
even if the low-order perturbation theory we employ subse-
quently is not accurate, it should tell use whether we might
expect significant renormalization in a fully nonperturbative
treatment.

II. FORM OF BARE M,,

A precise expression for the matrix element is complicated,
but with a few approximations that induce an error of less than
30% [2,3], we can write My, as

2
g
Mo, ~ M§T — =X M{, (3)
A

with gy and g4 the vector and axial-vector coupling constants,
and

My, = (f1 > H(rap, E)e 7 i), @)
a,b

MST = (f1Y " H(rap. Ea - G, 7,7 i). )
a,b

Here |i) and | f) are the initial and final nuclear ground states,
a, b label nucleons, E is an average excitation energy, and H
is a “neutrino potential”, given by

_ 2R (% singr
Mnm=——/ dg—— . (6)

The quantity R is the nuclear radius, inserted to make the
matrix element dimensionless. Since our work is exploratory,
we use the relatively simple forms in Egs. (4) and (5) in most
of what follows, though we also discuss corrections due to
nucleon form factors and forbidden terms in the weak nuclear
current.

'The unitary correlation operator method (UCOM) used, e.g., in
Refs. [10,11], is more than a prescription, but the method has not
yet been consistently applied to both the decay operator and the
interaction.
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III. CONSTRUCTING AN EFFECTIVE SHELL-MODEL
DECAY OPERATOR

A. Formalism and diagrams for two-body operators

Diagrammatic effective-operator theory has a long history
in nuclear physics. References [4,6,7] are early reviews and
Ref. [5] is amore recent one. The theory is based on the division
of the many-body Hilbert space into the shell-model space P
of particles occupying several degenerate or quasidegenerate
orbitals (usually eigenstates of a harmonic-oscillator potential
U), and the rest of the Hilbert space Q. One begins by defining
operators with the same names that project onto these spaces:

P =)l Q=) li)il, (7)

ieP other i
with
P’=P, Q°=0,

Next one defines an effective Hamiltonian that when acting on
the P-space projection of an eigenstate |\W,) gives back that
projection with the correct eigenvalue:

Hei(Eq) P|Wo) = Eq P|Wy). )

PO =0QP=0. (8)

Similarly, for any “bare” operator M (where “bare” means
“acting in the full model space”), we can define an effective
operator M. that acts only in the P space, with matrix
elements related to those of the bare operator by

(Wa| P Mg PIW5)
VA(Wal PIW,) (Wp| PIW,)
It is straightforward to show that the effective Hamiltonian

can be represented in energy-dependent form as a solution to
the Bloch-Horowitz equation [13]

= (Wa| M W}). (10)

Hut(E)= PHP + PHQ QHP, (1)

E—- QH

with the full wave function a solution to the associated equation

1
|lII(E))_Z<1+ E_QHQH>P|\I/(E)). (12)
Here E is the energy of the eigenstate and Z is a normalization
factor. One can remove the explicit dependence on energy by
treating the residual interaction V — U, which couples the P
and Q spaces, as a perturbation. When Egs. (11) and (12) are
solved order by order, the result is a series of valence-linked
Goldstone diagrams for the matrix elements of Heg and Mg
[7].

The diagrams are very much like those for the binding
energy, but have open lines at each end to represent the valence
single-particle states on the right and left sides of the effective
operators. The use of this representation in a linked-cluster
expansion forces the introduction of “folded” diagrams, in
which intermediate states have zero excitation energy. The
mostly low-order diagrams we consider here, however, will
not have folds.

Some recent work on effective interactions [14] has used
Viowk as a starting point, with high-energy states effectively
integrated out at the beginning. But because we want to
calculate the contributions of such states to the effective decay
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FIG. 1. Diagrammatic construction of a G matrix, the starting
point for an effective interaction. Ruled lines correspond to high-
energy particle states in the doubly-partitioned space.

operator, we need a method that treats them explicitly. Our
starting point, therefore, is the same as in the Brueckner
treatment of nuclear matter: we define a nonperturbative
G matrix as the sum of the two-particle ladder diagrams
displayed in Fig. 1 below. The ruled lines in the figure
indicate high-energy states, lying well above the shell-model
single-particle space (we will vary the exact amount by which
they are above). The G matrix is thus defined not only between
two-body states in the valence space but also between states in
a larger model space that contains several higher shells. (See
Ref. [5] for details on this “double partitioning” [15] of the
Hilbert space.)

Although there are an infinite number of ladder diagrams,
the sum can be carried out indirectly, e.g., through the solution
of the Bethe-Goldstone equation. The familiar idea underlying
the infinite sum is that the hard short-range core that makes the
nucleon-nucleon interaction intractable can be treated exactly,
at least at the two-body level, by nonperturbatively admixing
into the wave function intermediate two-particle states with
arbitrarily high-energy. The effective low-energy interaction
G| V] that results has a soft core because the effects of short-
range physics have already been accounted for in the ladder
sum. The argument V in the G matrix is meant to reinforce
the fact that G depends on the “bare interaction” V.

After this nonperturbative construction of the G matrix, one
can use perturbation theory in G to add the effects of states that
are at low energy but still outside the valence space, i.e., in the
intermediate space of the double-partitioned set. The diagrams
in Fig. 2 include all such effects up to second order in G
(with the exception of those produced by tadpole and one-body
graphs, which are commonly omitted), and some third-order
effects. In this figure, the upward-going lines represent low-
lying particle states (including the valence levels, as long as
they do not lead to intermediate denominators with zero en-
ergy) in the gap between the Fermi surface and the high-energy
levels. Downward going lines represent “hole” states that cor-
respond to the vacating of levels below the shell-model space.

Typically, more complicated graphs, including the folded
ones, are included alongside the graphs in the figure. Even
then, problems with convergence, three- and higher-body
operators that are generally too complicated to include, etc.,
mean that the resulting interaction often must be modified
phenomenologically, especially in the monopole-monopole
channel [8,16]. Sometimes, however, the perturbation theory
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FIG. 2. Low-order diagrams (in G) for the effective interaction
H.:.

by itself is enough to produce a pretty good interaction [5,14].
The recent shell-model calculations of double-8 decay in
Ref. [12] were based on a tuned version of such an interaction.

A similar procedure can be followed to evaluate the matrix
elements of any two-body operator’M. The expansion of
Eq. (12) leads to a set of diagrams for the effective operator
in Eq. (10) in which a horizontal line representing the bare
operator appears once alongside an arbitrary number of
interaction lines [4,7]. The denominator of Eq. (10) gives
rise, in addition, to norm and overlap diagrams that determine
a special basis in which the effective operator should be
represented. We have, however, evaluated the most important
of these diagrams (they are given by the derivative with
respect to the unperturbed energy of the effective-interaction
diagrams) and found them to change the operator matrix
elements by at most a few percent. We therefore will not
include their complicated but small effects here.

To obtain the effective decay operator, we begin by
summing all diagrams with two particles excited to high
energies in which one horizontal line in each diagram is the
operator M rather than the interaction. We denote the result
of this nonperturbative sum, which is completely analogous to
the G matrix, by Mu;en. Sequences of 1,2, . . . interaction lines
either before or after the operator insertion can be separately
summed, i.e., replaced by G matrices (or, more, precisely, by
the similar ladder sum G for which the either the outgoing or
incoming states are high-lying). If M is one of the double-8
operators appearing in Eq. (3), then two neutron lines become
proton lines whenever it acts, and the ladder sum reduces to the
four diagrams on the right side of the equation in Fig. 3. Thus,
the solid lines (red online) in the figure represent neutrons and
the dotted lines (blue online) represent protons.

Since these diagrams involve only T = 1 states, their sum
(with small Coulomb effects neglected) can be calculated
simply from a G-matrix code through the trick

Mhigh =

d
_AG[VT:I +rM 13)

d

where M’ is the charge-conserving version of the charge-
changing operator in Eqs. (4) or (5), obtained by removing

I;=01

ZPrevious work has focused almost entirely on one-body operators,
however.
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FIG. 3. (Color online) An effective double S operator that
accounts for short-range correlations in the nuclear wave function.
Solid lines (red online) are neutrons and dotted line (blue online) are
protons. The symbol G represents the extension of G to the Q space.

the isospin raising operators. In other words, we can calculate
matrix elements of Mg, by computing the G matrix corre-
sponding to the interaction V + AM’. The derivative filters
out all graphs except for those that have a single double-8
line replacing an interaction line. The difference between the
matrix elements of M and Mgy gives us a rigorous measure,
at least for two-valence-nucleon systems, of the effects of
short-range correlations in double-8 decay (up to the few
percent due to norm diagrams).

Having constructed Mgy, to include short-range two-body
correlations, one can use it together with the G matrix
to calculate the additional renormalization from low-lying
excitations. We do so by replacing one G-matrix line in each
of the diagrams in Fig. 2 by Mye,. The resulting diagrams
for Mg, all first order in G except for second-order ladders,
appear in Fig. 4. Short-range correlations are included at every
vertex through the use of G and Mg, in place of V and M.
Most of these diagrams can be calculated through the trick in
Eq. (13). Only the core-polarization graphs (the last two in the
figure) must be treated explicitly. Those graphs are essentially

Migh
Muigh cmmmmmm ANANN
NANANA cmmmmmm
G
(a) (b) (c)
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FIG. 4. (Color online) Low order diagrams (in G) contributing to
the final effective double-B operator. The thick dashed line is My;gn,
expressed diagrammatically in Fig. 2.
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different from the corresponding effective-interaction graph
in the identities (neutron or proton) of the particles and holes
involved. One cannot see the difference explicitly in our figures
because Fig. 2 does not distinguish between neutrons and
protons.

B. Using the operator in 32Se

The shell-model calculations of Ref. [12] used an inter-
action that was constructed largely through the effective-
interaction theory discussed above (though it included more
diagrams). The Bonn-C nucleon-nucleon interaction [17] was
the starting point for the ladder-diagrams that enter the G
matrix. After summing all diagrams through third order in G
and the folded diagrams based on those, the authors adjusted
the interaction by fitting certain components to spectra.

To be as consistent as possible with the calculations
of Ref. [12] in constructing our effective decay operator
for 32Se, we use the same Bonn-C interaction, the same
valence space ( f5,2pg9/2), the same oscillator parameter (b =
82!/6 MeV), and the same average energy (E = 10.08 MeV) as
that reference throughout. We follow the procedure described
in Ref. [5] to calculate the G matrix and its extension to
the Q space, for several values of the “starting energy”. The
dependence of the matrix on the starting energy is quite weak,
and in the remainder of the calculation we set it to zero.

Next we evaluate My, in Fig. 3 and the more involved
effective-operator diagrams in Fig. 4. Here, as is typical for
the fs5/2pg9/» model space, we shift the valence p and f5),
levels up one oscillator iw in energy, to make them degenerate
with the go/2 level, and shift all levels above the model
space up by the same amount to remove their degeneracy
with the valence space. Our only modification to the standard
procedure is to prohibit intermediate particles in diagrams
(1) and (j) from occupying levels that are essentially full
in 82Se and %2Kr. These Pauli-forbidden contributions, if
included, would be canceled by higher-order diagrams that
we do not evaluate here. Finally, we combine the matrix
elements of the effective two-body operator (at several stages
of approximation) with the 65 independent two-body ground-
state-to-ground-state transition densities from the shell-model
calculation of Ref. [12] to obtain a transition matrix element
for the decay 32Se — 82K,

IV. RESULTS

A. High-energy states and short-range correlations

Before looking at long-range corrections, we report the
effects of the ladder diagrams shown in Fig. 3. The treat-
ment of short-range correlations these diagrams represent is
completely well defined; one knows exactly what it includes
and what it omits, and there is no double counting. To
look at the spatial structure of the correlations we define a
two-body double-g correlation function CT(r) by making
the substitution H(rup, E) — H(rap, E)8(r — ryp) in the
Gamow-Teller transition operator.

Figure 5 displays the results for the decay of 32Se with the
shell-model transition densities mentioned above, when the
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FIG. 5. (Color online) The radial distribution C®T(r) that, when
integrated, produces the Gamow-Teller Ov matrix element for the
decay of %2Se. The top panel corresponds to the simple operator
given in Eq. (5) and the bottom panel includes momentum-transfer
dependent form factors and forbidden operators (see text). The solid
lines correspond to the bare operator and the dashed lines to the
effective operator generated by summing the high-energy ladders in
Fig. 4.

boundary between “high-energy” single-particle states (ruled
in the diagrams) and lower-energy states lies 4%w above the
valence fp shell. The results change only very slowly as
the boundary is moved up from that point. The function in
the top panel, labeled with the subscript 0, corresponds to the
simple GT operator of Eq. (5); the function in the bottom panel
includes modifications to that operator from the weak nucleon
form factors and higher-order terms in the weak current (see,
e.g., Refs. [3,18] for definitions).

Both panels show the suppression of short-range contri-
butions by the ladders, though the suppression is weaker in
the lower panel because the nucleon form factors cut out
some short-distance neutrino exchange by themselves. But
in neither case is the matrix element reduced very much by
the correlations: for the simple operator the reduction is about
8%, and for the full operator it is less than 3%. The reason,
as the figure shows, is that probability density is shifted from
very short distances to around r = 1 fm, where the function
H(r, E) is still large.

This behavior is similar to that found in Ref. [18], which
constructs correlated wave functions by solving coupled-
cluster equations at the one and two-body level. There are some
differences between that treatment of short-range effects and
ours: the coupled-clusters method includes Hartree-Fock-like
effects, sums hole-hole ladders as well as particle-particle
ladders, and has no double partitioning. Nevertheless, both
methods include much of the same physics and should
yield similar results. To test the similarity we repeated our
calculation with the Argonne V18 interaction used in Ref. [18]
in place of the Bonn-C interaction. Figure 6 shows the results
for the simple-operator GT correlation function discussed
above along with the corresponding coupled-cluster results,
which we generated by using the phenomenological Jastrow-
function fit reported in Ref. [18]. The two correlation functions
are almost indistinguishable. These results, alongside those of
Refs. [10,11], mean that unless many-body effects significantly
modify short-distance correlations, the phenomenological
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FIG. 6. (Color online) Same as the top panel of Fig. 5, but with
the dashed line from a calculation with the Argonne V18 potential in
place of Bonn-C. The dotted line, nearly indistinguishable from the
dashed line, comes from a fit to coupled-cluster results [18] with the
Argonne potential.

Jastrow function from Ref. [9], used reflexively for a long
time, almost certainly overestimates the quenching due to
short-range correlations.

B. Longer-range correlations

When the correlations induced by the diagrams in Fig. 4 are
added to the short-range effects discussed above, the matrix
element changes further. Results for the Gamow-Teller part of
the matrix element [Eq. (5), without form factors or forbidden
currents] appear in Table L.

The table successively adds the results from three classes of
diagrams: the high-energy ladders discussed above [labeled (a)
in Fig. 4], the diagrams with the high-energy ladders embedded
in lower energy ladders [labeled (b)—(f)], the four-particle
two-hole diagrams (g) and (h), and finally the core-polarization
diagrams (i) and (j). Each row corresponds to a different
boundary (measured in iw from the fp shell) between the
“high-energy” particle levels, denoted by ruled lines in the
figures, and the lower-energy levels. All the diagrams except
the last two in Fig. 4 are insensitive to this boundary if it is
above about 4 hiw. The core polarization graphs, by contrast,
still have not converged at 8 (or even 9) iw. We are unable
to carry the calculation beyond that point. Core-polarization
graphs in the effective interaction are notorious for converging
very slowly, sometimes taking 20 or more i [19].

The table shows several things. First, the short-range corre-
lations, as discussed previously, damp the bare matrix element
by about 8%. Second, the ladder and four-particle-two-hole

TABLE 1. Renormalization of Mg‘% [from Eq. (5)] for the decay
825e —»82Kr.

Boundary  Bare (a) (a)—(f) (a)—(h) All
4 how 3.33 3.07 4.15 5.38 3.05
5ho 3.33 3.06 4.17 5.39 3.15
6 how 333 3.05 4.16 5.39 3.21
7 ho 3.33 3.06 4.17 5.39 3.28
8 hw 333 3.06 4.17 5.39 3.35
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contributions then increase the matrix element by about 75%.
These graphs contain pairing matrix elements that promote
particles into unoccupied levels, unblocking the transition.
Finally, the core-polarization diagrams decrease the matrix
element so that after summing particle-hole configurations
up to 8 hiw our matrix element is just slightly bigger than
the bare version. The core-polarization graphs contain the
neutron-proton interaction, the correlations from which are
known to counteract the effects of pairing. Cutting off the
sum at 8 fiw, however, probably exaggerates the size of this
counteraction; the bulk of the effect comes from low energy
levels, and contributions from higher-energy levels actually
increase the matrix element again. Thus, our full result (in the
column labeled “all”) grows with the boundary between low
and high-energy states, and is still growing at our maximum
value.

All these statements remain true when we include the Fermi
term in Eq. (4)—resulting in a total My, of 3.95 at 8 hw vs.
the bare value 3.78—or add the effects of form factors. We
have not included forbidden currents in the full calculations,
but do not expect them to change the pattern reported in the
table.

As just noted, the effects of the pairing and neutron-proton
correlations cancel each other to a significant extent. The
cancellation resembles what happens in the QRPA, which
includes a portion of the effects calculated here through the

PHYSICAL REVIEW C 79, 064317 (2009)

use of a relatively large single-particle space. When all is said
and done, our result is a bit larger (and continuing to grow
at 8 fiw) than the result at the bottom of column labeled (a).
That number is the bare matrix element corrected for short-
range correlations, like the shell-model results reported in
Refs. [2,12]. The use of our effective operator thus improves
the agreement between the shell model and QRPA, though the
convergence issues keep us from saying by exactly how much.
One would expect something similar for "*Ge, which has only
six fewer nucleons and is treated in the same model space.

Of course, the large corrections from individual graphs
mean that higher order graphs may contribute significantly
as well. The near cancellation between corrections due to
pairing and neutron-proton correlations may not persist in
higher order and/or when many-body diagrams are included.
A nonperturbative evaluation of the corrections is therefore
important, and we are working in that direction.
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