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Self-consistent random phase approximation (RPA) approaches in the relativistic framework are applied to
calculate the isospin symmetry-breaking corrections δc for the 0+ → 0+ superallowed transitions. It is found that
the corrections δc are sensitive to the proper treatments of the Coulomb mean field, but not so much to specific
effective interactions. With these corrections δc, the nucleus-independent F t values are obtained in combination
with the experimental f t values in the most recent survey and the improved radiative corrections. It is found that
the constancy of the F t values is satisfied for all effective interactions employed. Furthermore, the element Vud

and unitarity of the Cabibbo-Kobayashi-Maskawa matrix are discussed.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2]
relates the quark eigenstates of the weak interaction with
the quark mass eigenstates. The unitarity condition of the
CKM matrix provides a rigorous test for the standard model
description of electroweak interactions. Its leading matrix
element, Vud , only depends on the first generation quarks
and so is the element that can be determined most precisely.
There are three traditional methods to determine |Vud | experi-
mentally: nuclear 0+ → 0+ superallowed Fermi β decays [3],
neutron decay [4], and pion β decay [5]. Recently, experiments
with nuclear mirror transitions provided another independent
sensitive source for extracting the value of |Vud | [6].

Among these methods, the most precise determination of
|Vud | comes from the study of nuclear 0+ → 0+ superallowed
Fermi β decays [7]. These pure Fermi transitions between
nuclear isobaric analog states (IAS) allow for a direct mea-
surement of the vector coupling constant GV of semileptonic
weak interactions by

G2
V = K

2
(
1 + �V

R

)
F t

. (1)

Together with the Fermi coupling constant GF for purely
leptonic decays, the up-down element of the CKM matrix
can be determined, Vud = GV /GF . In Eq. (1), K/(h̄c)6 =
2π3h̄ ln 2/(mec

2)5 and �V
R is the transition-independent part

of radiative corrections caused, for example, by the processes
where the emitted electron may emit a bremsstrahlung photon
that goes undetected in the experiment [8,9]. The nucleus-
independent F t value is obtained by the corrections to the
experimental f t values for radiative effects as well as isospin
symmetry breaking by Coulomb and charge-dependent nuclear
forces [3],

F t = f t(1 + δ′
R)(1 + δNS − δc), (2)

where f and t represent the statistical rate function and
partial half-life, respectively, and are obtained through mea-
surements of the Q values, branching ratios, and half-lives

for the superallowed decays. The correction terms δ′
R and

δNS represent the transition-dependent radiative corrections
[8,9]. The correction term δc is the isospin symmetry-breaking
correction, accounting for the isospin symmetry breaking in
nuclei.

The isospin is not an exact symmetry mainly due to the
presence of the Coulomb forces in nuclei. The nonconserva-
tion of isospin symmetry induces a slight reduction of the
superallowed transition strength |MF |2 from its ideal value
|M0|2:

|MF |2 = |〈f |T±|i〉|2 = |M0|2(1 − δc), (3)

where M0 = √
2 for T = 1 states with the exact isospin

symmetry.
Shell model calculations are generally used to determine

the isospin symmetry-breaking corrections δc. Recently, by
including the core orbitals, an improvement on such correc-
tions has been achieved and a good agreement among the
nucleus-independentF t values for the 13 well-measured cases
has been obtained [9].

Alternatively, the self-consistent random phase approxima-
tion (RPA) based on microscopic mean field theories is another
reliable approach for the superallowed transition strength MF .
Such calculations were performed for a few nuclei with the
nonrelativistic Skyrme Hartree-Fock approach in the 1990s
[10]. Since then no further investigation followed even though
significant progress in self-consistent RPA in charge-exchange
channels have been made [11–15].

During the last decade, great efforts have been dedicated to
developing the charge-exchange (Q)RPA within the relativistic
framework. From the early model which only contains a rather
small configuration space [13] to the sophisticated model
which includes Bogoliubov transformation and proton-neutron
pairing [14], these approaches are aimed at describing the
spin-isospin resonances, β decay rates, neutrino-nucleus cross
sections, etc., in a systematical, reliable, and predictive way.
Recently, based on the success of the newly established
density-dependent relativistic Hartree-Fock (RHF) approach
[16–18], a fully self-consistent charge-exchange RPA has been
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established and the first applications have been performed for
spin-isospin resonances like Gamow-Teller and spin-dipole
resonances [15]. A very satisfactory agreement with the
experimental data was obtained without any readjustment of
the energy functional. Therefore, it is appropriate now to
reinvestigate the isospin corrections for superallowed Fermi
β decay with these relativistic approaches. It is not the aim
here to claim that a covariant framework is necessarily more
appropriate for this problem than a nonrelativistic one such
as Skyrme Hartree-Fock plus RPA. The key point, which will
be discussed in Sec. III A, is a full treatment of Coulomb
and nuclear interactions in both their direct and exchange
contributions. In this respect, satisfactory nonrelativistic RPA
studies of the δc corrections are not available.

In this paper, the self-consistent RPA approaches in the
relativistic framework will be applied to calculate the isospin
symmetry-breaking corrections δc. With the corrections thus
obtained, the nucleus-independent F t values will be obtained
in combination with the experimental f t values in the most
recent survey [19] and the improved radiative corrections [8,9].
The element Vud and unitarity of the CKM matrix will then be
discussed.

II. SELF-CONSISTENT RELATIVISTIC RPA

The basic ansatz of the relativistic Hartree (RH), also known
as relativistic mean field (RMF), and relativistic Hartree-Fock
(RHF) theories is a Lagrangian density L, where nucleons are
described as Dirac spinors that interact via the exchange of
σ -, ω-, ρ-, π -mesons and the photon [20–22]. In order to give
a satisfactory description of nuclear matter and finite nuclei,
the nonlinear self-coupling of mesons, e.g., in Refs. [23–25],
or density-dependent meson-nucleon couplings, e.g., in Refs.
[16,26], are introduced.

The effective Hamiltonian operator Ĥ can be obtained with
the general Legendre transformation. Together with the trial
ground state (Slater determinant) in the Hartree or Hartree-
Fock approximation, the energy functional can be written as

E = 〈�0|Ĥ |�0〉

=
∑

a

〈a| α · p + βM |a〉 + 1

2

∑
ab

〈ab| V (1, 2) |ba〉

−1

2

∑
ab

〈ab| V (1, 2) |ab〉 , (4)

where the first term is the kinetic energy, the second and the last
terms are the direct (Hartree) and exchange (Fock) energies,
respectively. In the Hartree approximation, the Fock term is
neglected for simplicity. The two-body interaction V (1, 2)
includes the following meson-nucleon and photon-nucleon
interactions:

Vσ (1, 2) = −[gσγ0]1[gσγ0]2Dσ (1, 2), (5a)

Vω(1, 2) = [gωγ0γ
µ]1[gωγ0γµ]2Dω(1, 2), (5b)

Vρ(1, 2) = [gργ0γ
µ�τ ]1 · [gργ0γµ�τ ]2Dρ(1, 2), (5c)

Vπ (1, 2) = −
[

fπ

mπ

�τγ0γ5γ
k∂k

]
1

·[
fπ

mπ

�τγ0γ5γ
l∂l

]
2

Dπ (1, 2), (5d)

VA(1, 2) = e2

4
[γ0γ

µ(1 − τ3)]1[γ0γµ(1 − τ3)]2DA(1, 2),

(5e)

with the finite-range Yukawa type propagator

Di(1, 2) = 1

4π

e−mi |r1−r2|

|r1 − r2| . (6)

Furthermore, in order to cancel the contact interaction coming
from the pion pseudovector coupling, a zero-range pionic
counterterm should be included [15,21]:

Vπδ(1, 2) = g′
[

fπ

mπ

�τγ0γ5γ

]
1

·
[

fπ

mπ

�τγ0γ5γ

]
2

δ(r1 − r2),

(7)

with g′ = 1/3. Thus, g′ is not an adjustable parameter.
The RPA equations can be obtained by taking the second

derivative of the energy functional E. In the charge-exchange
channels, the RPA equations become(

AJ
pn̄p′n̄′ BJ

pn̄n′p̄′

−BJ
np̄p′n̄′ −AJ

np̄n′p̄′

) (
UJν

p′n̄′

V Jν
n′p̄′

)
= ων

(
UJν

pn̄

V Jν
np̄

)
, (8)

where p and p̄ (n and n̄) denote unoccupied and occupied
proton (neutron) states. These equations describe both the T+
and T− channels. It should be emphasized that the unoccupied
states include not only the states above the Fermi surface, but
also the states in the Dirac sea. The RPA matrices A and B
read

A12,34 = (E1 − E2)δ12,34 + 〈14| Vph |32 − 23〉, (9a)

B12,34 = −〈13| Vph |42 − 24〉, (9b)

where the first term in the ket represents the direct contribution,
and the second term represents the exchange contribution.
In the RPA built on the Hartree mean field, the exchange
contributions in Eqs. (9) are accordingly neglected.

In the self-consistent RPA calculations, the particle-hole
residual interaction Vph should be derived from the same
energy functional E as that used in the ground-state descrip-
tion. The explicit density dependence of the meson-nucleon
couplings introduces, in principle, additional rearrangement
terms in the particle-hole residual interaction Vph, and their
contributions are essential for a quantitative description of
excited states [27]. However, since the rearrangement terms
are due to the dependence on isoscalar ground-state densities,
it is easy to see that they are absent in the charge-exchange
channels. Therefore, in the description of superallowed Fermi
β decays, the particle-hole residual interaction Vph is just
the meson-nucleon interactions shown in Eqs. (5a)–(5d) and
(7). The photon-nucleon interaction in Eq. (5e) does not
contribute to the particle-hole residual interaction because the
configurations are of the neutron-proton type.
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The eigenvectors of the RPA equations (8) are separated
into two groups, which respectively represent the excitations
of the T− and T+ channels with the following normalization
conditions:⎧⎨
⎩

∑
pn̄

(
UJν

pn̄

)2 − ∑
np̄

(
V Jν

np̄

)2 = +1, for T− channel,∑
pn̄

(
UJν

pn̄

)2 − ∑
np̄

(
V Jν

np̄

)2 = −1, for T+ channel.
(10)

Then, the excitation energies and X, Y amplitudes in the T−
channel read

�ν = +ων, XJν
pn̄ = UJν

pn̄ , Y Jν
np̄ = V Jν

np̄ , (11)

whereas the excitation energies and X, Y amplitudes in the T+
channel are

�ν = −ων, XJν
np̄ = V Jν

np̄ , Y Jν
pn̄ = UJν

pn̄ . (12)

The 0+ → 0+ superallowed transition operators are T− or
T+. The transition probabilities between the ground-state and
excited states read

B−
Jν =

∣∣∣∣∣
∑
pn̄

XJν
pn̄ 〈p ||T−|| n̄〉+

∑
np̄

(−)jn+jp̄Y Jν
np̄ 〈p̄ ||T−|| n〉

∣∣∣∣∣
2

,

(13a)

B+
Jν =

∣∣∣∣∣
∑
np̄

XJν
np̄ 〈n ||T+|| p̄〉+

∑
pn̄

(−)jp+jn̄Y Jν
pn̄ 〈n̄ ||T+|| p〉

∣∣∣∣∣
2

.

(13b)

Before ending this section, it is worthwhile to make the
following remark about the self-consistency of the RH+RPA
approach when it is applied to the 0+ → 0+ transitions. Within
this approach, it is known that, in order to reproduce the

excitation energies of Gamow-Teller resonances, one has to
adjust the πNN particle-hole residual interaction and that g′
cannot be kept equal to 1/3 [13,14]. However, for the 0+ → 0+
channel in the present paper, the direct contributions from the
pion vanish. Therefore, in this sense, the self-consistency is
also fulfilled in RH+RPA approach for the superallowed Fermi
β decays.

III. RESULTS AND DISCUSSION

For all the calculations in this paper, the spherical symmetry
is assumed and the filling approximation is applied to the
last partially occupied orbital. The radial Dirac equations are
solved in coordinate space by the Runge-Kutta method within
a spherical box with a box radius R = 15 fm and a mesh
size dr = 0.1 fm [28]. The single-particle wave functions thus
obtained are used to construct the RPA matrices A and B in
Eqs. (9) with the single-particle energy truncation [−M,M +
120 MeV], i.e., the occupied states are the positive energy
states below the Fermi surface, whereas the unoccupied states
can be either positive energy states above the Fermi surface
or bound negative energy states [15]. With these numerical
inputs, the model-independent sum rule,∑

ν

B−
ν −

∑
ν

B+
ν = N − Z, (14)

can be fulfilled up to 10−5 accuracy, and the isospin symmetry-
breaking corrections δc are stable with respect to these
numerical inputs at the same level of accuracy.

A. Isospin symmetry-breaking correction δc

In Table I, the isospin symmetry-breaking corrections δc

in Eq. (3) for the 0+ → 0+ superallowed transitions are
shown. The results are obtained by self-consistent RHF+RPA

TABLE I. Isospin symmetry-breaking corrections δc for the 0+ → 0+ superallowed transitions obtained by self-consistent
RHF+RPA calculations with PKO1 [16], PKO2 [29], and PKO3 [29] as well as self-consistent RH+RPA calculations with
DD-ME1 [26], DD-ME2 [30], NL3 [23], and TM1 [24]. The column PKO1∗ presents the results obtained with PKO1 without the
Coulomb exchange (Fock) term. The results obtained by shell model calculations [9] are listed in the column T&H for comparison.
All values are expressed in percents.

PKO1 PKO2 PKO3 PKO1∗ DD-ME1 DD-ME2 NL3 TM1 T&H [9]

10C → 10B 0.082 0.083 0.088 0.148 0.149 0.150 0.124 0.133 0.175(18)
14O → 14N 0.114 0.134 0.110 0.178 0.189 0.197 0.181 0.159 0.330(25)

18Ne → 18F 0.270 0.277 0.288 0.357 0.424 0.430 0.344 0.373 0.565(39)
26Si → 26Al 0.176 0.176 0.184 0.246 0.252 0.252 0.213 0.226 0.435(27)
30S → 30P 0.497 0.550 0.507 0.625 0.612 0.633 0.551 0.648 0.855(28)

34Ar → 34Cl 0.268 0.281 0.267 0.359 0.368 0.376 0.438 0.320 0.665(56)
38Ca → 38K 0.313 0.330 0.313 0.406 0.431 0.441 0.390 0.572 0.765(71)
42Ti → 42Sc 0.384 0.387 0.390 0.460 0.515 0.523 0.436 0.443 0.935(78)
26Al → 26Mg 0.139 0.138 0.144 0.193 0.198 0.198 0.172 0.179 0.310(18)
34Cl → 34S 0.234 0.242 0.231 0.298 0.302 0.307 0.289 0.267 0.650(46)
38K → 38Ar 0.278 0.290 0.276 0.344 0.363 0.371 0.334 0.484 0.655(59)

42Sc → 42Ca 0.333 0.334 0.336 0.395 0.442 0.448 0.377 0.383 0.665(56)
54Co → 54Fe 0.319 0.317 0.321 0.392 0.395 0.393 0.355 0.368 0.770(67)
66As → 66Ge 0.475 0.475 0.469 0.571 0.568 0.572 0.560 0.524 1.56(40)
70Br → 70Se 1.140 1.118 1.107 1.234 1.232 1.268 1.230 1.226 1.60(25)

74Rb → 74Kr 1.088 1.091 1.071 1.230 1.233 1.258 1.191 1.234 1.63(31)

064316-3



HAOZHAO LIANG, NGUYEN VAN GIAI, AND JIE MENG PHYSICAL REVIEW C 79, 064316 (2009)

TABLE II. Excitation energies Ex for the 0+ → 0+ superallowed
transitions measured by taking the ground state of the corresponding
even-even nuclei as reference. In the comparison with the experi-
mental values taken from the recent survey [19], the corrections due
to the proton-neutron mass difference in particle-hole configurations
are made for the calculated results. All units are in MeV.

Expt. PKO1 PKO1∗ DD-ME2

10C → 10B −1.908 −1.698 −2.307 −2.236
14O → 14N −2.831 −2.420 −2.989 −3.081

18Ne → 18F −3.402 −3.195 −3.497 −3.451
26Si → 26Al −4.842 −4.531 −5.139 −5.110
30S → 30P −5.460 −4.845 −5.326 −5.395

34Ar → 34Cl −6.063 −5.559 −6.129 −6.278
38Ca → 38K −6.612 −6.035 −6.611 −6.775
42Ti → 42Sc −7.000 −6.661 −6.970 −6.964
26Al → 26Mg 4.233 3.908 4.372 4.350
34Cl → 34S 5.492 5.062 5.428 5.561
38K → 38Ar 6.044 5.557 5.936 6.083

42Sc → 42Ca 6.426 6.118 6.333 6.333
54Co → 54Fe 8.244 7.720 8.221 8.240
66As → 66Ge 9.579 9.044 9.488 9.677
70Br → 70Se 9.970 9.632 9.805 9.852
74Rb → 74Kr 10.417 10.005 10.349 10.437

calculations with PKO1 [16], PKO2 [29], PKO3 [29]
effective interactions, as well as by self-consistent RH+RPA
calculations with DD-ME1 [26], DD-ME2 [30], NL3 [23],
TM1 [24] effective interactions. The results obtained by shell
model calculations (T&H) [9] are also listed for comparison.
The present corrections δc range from about 0.1% for the
lightest nucleus 10C to about 1.2% for the heaviest nucleus
74Rb, which are 2–3 times smaller than the T&H results.
It is noticed that even smaller values of δc compared to
the shell model calculations have been recently obtained in
Ref. [31] using perturbation theory. In addition, in Table II
the excitation energies Ex for the 0+ → 0+ superallowed
transitions corresponding to PKO1 and DD-ME2 are shown as
examples. These energies are measured by taking the ground
state of the corresponding even-even nuclei as reference. In
the comparison with the experimental values taken from the
recent survey [19], the corrections due to the proton-neutron
mass difference in particle-hole configurations are made for
the calculated results. A good agreement between the data and
the calculated ones can be seen in Table II.

In Table I, it is found that the present isospin symmetry-
breaking corrections δc for each nucleus can be unambiguously
divided into two categories, those obtained by RHF+RPA
calculations and those obtained by RH+RPA calculations.
Comparing these two categories, it is seen that the corrections
δc of RHF+RPA are systematically smaller than those of
RH+RPA. On the other hand, it is also found that within one
category the corrections δc are not sensitive to specific effective
interactions or the structure of the Lagrangian density. For
instance, within the RH+RPA framework, both the Lagrangian
densities with density-dependent meson-nucleon couplings
(DD-ME1, DD-ME2) or with nonlinear meson couplings
(NL3, TM1) lead to quite similar results.

To understand this systematic discrepancy between
RHF+RPA and RH+RPA, it must be kept in mind that in
RHF+RPA the exchange (Fock) terms of mesons and photon
are kept in both the mean field and RPA levels, whereas
they are neglected altogether in RH+RPA. Among all the
Fock terms, we expect, in particular, the exchange terms
of the Coulomb field to play an important role due to the
following reason. The IAS would be degenerate with its
isobaric multiplet partners, i.e., Ex = 0, and it would contain
100% of the model-independent sum rule (14), i.e., δc = 0, if
the nuclear Hamiltonian commutes with the isospin raising
and lowering operators T±. This would be true when the
Coulomb field is switched off. While this degeneracy is broken
by the mean field approximation, no matter the exchange
terms of mesons are included or not, it can be restored by
the RPA calculations as long as the RPA calculations are
self-consistent [32]. Therefore, the Coulomb field is essential
for the 0+ → 0+ superallowed transitions and the Coulomb
exchange (Fock) term should be responsible for the different
isospin symmetry-breaking corrections δc in RHF+RPA and
RH+RPA approaches.

In order to verify the above argument, we have performed
the following calculations. Using PKO1, the Hartree-Fock
calculations are performed by switching off the exchange
contributions of the Coulomb field. From the single-particle
spectra thus obtained, self-consistent RPA calculations are then
performed. One may notice that in such calculations some
nuclear properties including binding energies and rms radii
can no longer be reproduced. However, this does not hinder
us from discussing the physics we are concerned with. The
isospin symmetry-breaking corrections δc and the excitation
energies Ex thus obtained are listed in the column denoted
as PKO1∗ in Tables I and II. It is seen that these results
are almost the same as those of RH+RPA calculations with
DD-ME1, DD-ME2, NL3, and TM1, i.e., by switching off
the exchange contributions of the Coulomb field, Ex and δc

in RHF+RPA calculations recover the results in RH+RPA
calculations. In other words, although the meson exchange
terms can be somehow effectively included by adjusting the
parameters in the direct terms, this has not been done for the
Coulomb part in the usual RH approximation.

Therefore, one can conclude that the proper treatments of
the Coulomb field is very important to extract the isospin
symmetry-breaking corrections δc.

B. Nucleus-independent F t values

Among the 0+ → 0+ superallowed transitions listed in
Table I, some of their measured f t values are summarized
in a recent survey [19]. To obtain the nucleus-independent F t

values from each experimental f t value, apart from the isospin
symmetry-breaking corrections δc in Table I, one still needs
the values of the transition-dependent radiative corrections δ′

R

and nuclear-structure-dependent radiative corrections δNS.
Using the δ′

R and δNS values from recent calculations [9],
δc in Table I, and measured f t values [19], the nucleus-
independent F t values for superallowed Fermi β decays are
listed in Table III together with the average F t values and the
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TABLE III. Nucleus-independent F t values. The average F t value and the normalized χ2/ν appear at the bottom. All units are in s.

PKO1 PKO2 PKO3 PKO1∗ DD-ME1 DD-ME2 NL3 TM1

10C → 10B 3079.6(45) 3079.5(45) 3079.4(45) 3077.5(45) 3077.5(45) 3077.5(45) 3078.3(45) 3078.0(45)
14O → 14N 3078.2(31) 3077.5(31) 3078.3(31) 3076.2(31) 3075.8(31) 3075.6(31) 3076.1(31) 3076.8(31)

34Ar → 34Cl 3081.9(84) 3081.5(84) 3082.0(84) 3079.1(84) 3078.8(84) 3078.6(84) 3076.7(83) 3080.3(84)
26Al → 26Mg 3077.7(13) 3077.7(13) 3077.5(13) 3076.0(13) 3075.8(13) 3075.8(13) 3076.6(13) 3076.4(13)
34Cl → 34S 3083.5(16) 3083.3(16) 3083.6(16) 3081.6(16) 3081.4(16) 3081.3(16) 3081.8(16) 3082.5(16)
38K → 38Ar 3084.1(16) 3083.8(16) 3084.2(16) 3082.1(16) 3081.5(16) 3081.3(16) 3082.4(16) 3077.8(16)

42Sc → 42Ca 3082.7(21) 3082.6(21) 3082.6(21) 3080.7(21) 3079.3(21) 3079.1(21) 3081.3(21) 3081.1(21)
54Co → 54Fe 3083.9(27) 3083.9(27) 3083.8(27) 3081.6(27) 3081.5(27) 3081.6(27) 3082.7(27) 3082.4(27)
74Rb → 74Kr 3094.8(87) 3094.7(87) 3095.3(87) 3090.3(87) 3090.2(87) 3089.4(87) 3091.5(87) 3090.2(87)
average 3081.4(7) 3081.3(7) 3081.4(7) 3079.5(7) 3079.1(7) 3079.0(7) 3080.0(7) 3079.1(7)

χ 2/ν 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0

values of chi-square per degree of freedom χ2/ν, in which the
uncertainty of δc is taken as zero.

It is found that the chi-square per degree of freedom
χ2/ν is 1.0 ∼ 1.1 s for all effective interactions employed.
This indicates the constancy of the nucleus-independent F t

values is satisfied, even though not as well as the shell model
calculations in Ref. [19]. It is also found that the F t values of
RHF+RPA are about 2 s larger than those of RH+RPA, which
are larger than the difference due to the different effective
interactions in either RHF or RH approximations.

The results of RHF+RPA with PKO1, RH+RPA with DD-
ME2, and NL3 are plotted as a function of the charge Z for
the daughter nucleus in Fig. 1 to illustrate the constancy of the
nucleus-independent F t values. The shaded horizontal band
gives the standard deviation, which combines the statistical
errors and χ2/ν, around the average F t value.

In order to get a deeper understanding on the treatment of
the Coulomb field, the F t values from RPA calculations using
Skyrme Hartree-Fock (SHF) with SGII effective interaction
are shown in panel (b) of Fig. 1, in which the isospin symmetry-

FIG. 1. Nucleus-independent F t values as a function of the
charge Z for the daughter nucleus. The values of δc are respectively
obtained by RHF+RPA calculations with PKO1 (a), by RH+RPA
calculations with DD-ME2 (c), and NL3 (d), as well as by SHF+RPA
calculations with SGII [10] (b). The shaded horizontal band gives one
standard deviation around the average F t value.

breaking corrections δc are taken from the Table I in Ref. [10].
It should be emphasized that in these results the exchange
contributions to the Coulomb mean field are treated in Slater
approximation. Although this model leads to a similar average
F t value, F t = 3081.1(7) s, it is found that the chi-square per
degree of freedom χ2/ν = 1.5, i.e., the constancy of the F t

values in this SHF framework is not as good as that given by
the relativistic calculations. In particular, theF t value deduced
from the nucleus 74Rb is seriously overestimated.

C. CKM matrix

With the nucleus-independent F t value, the element Vud of
the CKM matrix can be calculated by

V 2
ud = K

2G2
F

(
1 + �V

R

)
F t

, (15)

where K / (h̄c)6 = 8120.2787 (11) × 10−10 GeV−4 s,
GF / (h̄c)3 = 1.16637 (1) × 10−5 GeV−2 [7], and �V

R =
2.361(38)% [9]. Then in combination with the other two CKM
matrix elements |Vus | = 0.2255(19) and |Vub| = 0.00393(36)
[7], one can test the unitarity of the matrix.

The element Vud as well as the sum of squared top-row
elements of the CKM matrix are listed in Table IV. The
uncertainties of the present results are underestimated to some
extent as the uncertainty of δc is assumed to be zero and

TABLE IV. The element Vud and the sum of squared top-row
elements of the CKM matrix.

|Vud | |Vud |2 + |Vus |2 + |Vub|2

PKO1 0.97273(27) 0.9971(10)
PKO2 0.97275(27) 0.9971(10)
PKO3 0.97273(27) 0.9971(10)
PKO1∗ 0.97303(26) 0.9977(10)
DD-ME1 0.97309(26) 0.9978(10)
DD-ME2 0.97311(26) 0.9978(10)
NL3 0.97295(26) 0.9975(10)
TM1 0.97309(26) 0.9978(10)
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FIG. 2. The element Vud of the CKM matrix obtained by
RHF+RPA calculations with PKO1 and by RH+RPA calculations
with DD-ME2 in comparison with those in shell model (H&T) [19]
as well as in neutron decay [7], pion β decay [5] and nuclear mirror
transitions [6].

the systematic errors are not taken into account. In Fig. 2,
the element Vud of the CKM matrix obtained by RHF+RPA
calculations with PKO1 and by RH+RPA calculations with
DD-ME2 are shown in comparison with those in the shell
model (H&T) [19] as well as in neutron decay [7], pion β

decay [5], and nuclear mirror transitions [6].
It can be clearly seen in Table IV that the matrix element

|Vud | determined by the 0+ → 0+ superallowed transitions
mainly depends on the treatment of the Coulomb field and
less sensitive to the particular effective interactions. Switching
either on or off the exchange contributions of the Coulomb
field, the discrepancy caused by different effective interactions
is much smaller than the statistic deviation. It is interesting
to note that the present |Vud | values well agree with those
obtained in neutron decay, pion β decay and nuclear mirror
transitions. However, the sum of squared top-row elements
considerably deviates from the unitarity condition, which is in
contradiction with the conclusion in shell model calculations
(H&T) [19]. This calls for more intensive investigations in
the future. For example, mean field and RPA calculations
including the proper neutron-proton mass difference, isoscalar
and isovector pairing, and deformation should be done. It
should also be emphasized that apart from the proper treatment
of pairing by either BCS or Bogoliubov approaches, the
particle number projection must be implemented as well in
order to remove the artificial isospin symmetry breaking effects
due to the particle number violation.

IV. SUMMARY AND PERSPECTIVES

In summary, self-consistent relativistic RPA approaches are
applied to calculate the isospin symmetry-breaking corrections
δc for the 0+ → 0+ superallowed transitions. In the RHF+RPA
framework the density-dependent effective interactions PKO1,
PKO2, and PKO3 are employed, while in the RH+RPA frame-
work the density-dependent effective interactions DD-ME1
and DD-ME2 as well as the nonlinear effective interactions
NL3 and TM1 are used.

It is found that the proper treatments of the Coulomb field
is very important to extract the isospin symmetry-breaking
corrections δc. By switching off the exchange contributions
of the Coulomb field, Ex and δc in RHF+RPA calculations
recover the results in RH+RPA calculations. In other words,
although the meson exchange terms can be somehow effec-
tively included by adjusting the parameters in the direct terms,
this has not been done for the Coulomb part in the usual RH
approximation.

With the isospin symmetry-breaking corrections δc calcu-
lated by relativistic RPA approaches, the nucleus-independent
F t values are obtained in combination with the experimental
f t values in the most recent survey and the improved radiative
corrections. It is found that the constancy of the F t values
is satisfied for all self-consistent relativistic RPA calculations
here. It is also found that theF t values of RHF+RPA are about
2 s larger than those of RH+RPA, which are larger than the
difference due to the different effective interactions in either
RHF or RH approximations.

The values of |Vud | thus obtained well agree with those
obtained in neutron decay, pion β decay, and nuclear mirror
transitions. However, the sum of squared top-row elements
considerably deviates from the unitarity condition, which is in
contradiction with the conclusion in shell model calculations
(H&T) [19].

For the further studies, more intensive investigations in-
cluding the proper neutron-proton mass difference, isoscalar
and isovector pairing, and deformation should be done.
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[30] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
[31] N. Auerbach, Phys. Rev. C 79, 035502 (2009).
[32] C. A. Engelbrecht and R. H. Lemmer, Phys. Rev. Lett. 24, 607

(1970).

064316-7


