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Depletion of the nuclear Fermi sea
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The short-range and tensor components of the bare nucleon-nucleon interaction induce a sizable depletion of
low momenta in the ground state of a nuclear many-body system. The self-consistent Green’s function method
within the ladder approximation provides an ab initio description of correlated nuclear systems that accounts
properly for these effects. The momentum distribution predicted by this approach is analyzed in detail, with
emphasis on the depletion of the lowest momentum state. The temperature, density, and nucleon asymmetry
(isospin) dependence of the depletion of the Fermi sea is clarified. A connection is established between the
momentum distribution and the time-ordered components of the self-energy, which allows for an improved
interpretation of the results. The dependence on the underlying nucleon-nucleon interaction provides quantitative
estimates of the importance of short-range and tensor correlations in nuclear systems.

DOI: 10.1103/PhysRevC.79.064308 PACS number(s): 21.60.De, 21.65.Cd

I. INTRODUCTION

Recent experiments at Jefferson Laboratory have clari-
fied several aspects of the role of short-range and tensor
correlations in determining the properties of nucleons in
the nuclear medium. In an (e, e′p) experiment on 12C, an
unambiguous signature of the presence of high-momentum
nucleons was identified [1]. In the domain of missing energy
and momentum probed by the experiment, the amount of
single-particle (sp) strength identified corresponded reason-
ably to scaled theoretical predictions of the self-consistent
Green’s function (SCGF) calculation for 16O [2] and correlated
basis functions (CBF) calculations for nuclear matter in the
local density approximation [3]. The underlying mechanism
for the presence of these high-momentum components is
associated with the strong repulsion that nucleons experience
when they are in close proximity, generating a suppression of
the relative wave function in coordinate space. In turn, this
repulsion is required by the experimental nucleon-nucleon
(NN ) phase shifts. An additional mechanism that provides
high-momentum components is the action of the NN tensor
force, mediated to a large extent by the exchange of the pion.

In even more demanding exclusive two-nucleon knock-out
experiments on 16O to the ground state of 14C [4,5], direct
evidence for the presence of short-range proton-proton (pp)
correlations was identified, in reasonable agreement with
theoretical calculations [6,7]. Definitive evidence for the
importance of the nuclear tensor force in generating high-
momentum components was presented in Ref. [8], where the
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ratio of knocked-out proton-neutron (pn) to pp pairs from 12C
was found to be around 20. Theoretical relative momentum dis-
tributions exhibit a similar enhancement of pn over pp correla-
tions due to the tensor force in the domain of momenta probed
in this Jefferson Lab experiment [9]. Possible implications for
the physics of neutron stars were discussed in Ref. [10].

Particle number conservation requires the high-momentum
components to be accompanied by a corresponding depletion
of the nuclear Fermi sea. A characteristic feature of this
depletion in nuclear matter is its essentially momentum-
independent character, except in the immediate vicinity of the
Fermi surface [11]. A survey of calculations [12–15] of the
momentum distribution of nuclear matter at normal density in
Ref. [11] demonstrated that, for all realistic NN interactions
then available, different many-body techniques consistently
predicted a depletion of the nuclear Fermi sea of a little over
15%. About one-third of this depletion results from tensor
correlations. In addition, the influence of three-body forces on
the depletion appears to be rather insignificant [12]. An (e, e′p)
experiment on 208Pb at National Institute for Nuclear Physics
and High Energy Physics (NIKHEF) in a large domain of miss-
ing energy and a momentum range corresponding to the mean-
field Fermi sea confirmed that a global depletion between 15
and 20% of proton orbits below the Fermi energy explains all
the measured coincidence cross sections [16,17]. To put these
results in perspective it is useful to note that the depletion of
liquid 3He for very small momenta is considerably larger and
reaches about 50% [18], while the depletion of the electron
Fermi sea in closed-shell atoms is essentially zero [19].

Although there is uncertainty about the precise nature of the
short-range part of the NN interaction, there is now evidence
from recent lattice QCD calculations that the features of a

0556-2813/2009/79(6)/064308(17) 064308-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.064308
mailto:rios@nscl.msu.edu


ARNAU RIOS, ARTUR POLLS, AND W. H. DICKHOFF PHYSICAL REVIEW C 79, 064308 (2009)

strong repulsive short-range core emerge from first principles,
particularly when the pion mass is reduced toward more
realistic values [20]. The presence of short-range correlations
is thus corroborated by QCD simulations and strongly suggests
that fully microscopic nuclear many-body calculations should
continue to address their consequences in detail. Recently
developed realistic NN interactions, like CDBonn [21,22] or
the chiral interactions [23] have in general softer cores than
older potentials [24,25]. Even modern local potentials, such as
Argonne v18 (Av18) [26], have a soft core compared to more
traditional interactions. By assessing the different results for
the Av18 and CDBonn interactions in the present article, we
plan to develop a measure of the remaining uncertainty of the
role of short-range and tensor correlations in nuclei.

A particularly well-suited technique for this goal is the
SCGF method [27]. Within this approach, a fully self-
consistent treatment of ladder diagrams for the interaction
between particles that propagate with respect to a correlated
(by short-range and tensor effects) ground state are accounted
for. Recently, calculations including full off-shell effects have
become available at finite temperature [28–31], providing
thermodynamically consistent results that preserve sum rules,
like, e.g., conservation of the number of particles [32,33].
Earlier applications of this approach at T = 0 involved a
discretized version of the spectral distribution and have
challenged the conventional interpretation of the nuclear-
matter saturation problem [34]. Finite-temperature effects
are expected to smooth out the momentum distribution near
the Fermi momentum, not unlike the influence of pairing
correlations [25]. Thermal effects hardly affect the small and
very high-momentum content of the ground state, however.
This expectation is confirmed in general by the present work,
although it requires some qualification in the case of low
density or high temperatures, as we shall discuss in this work.

The study of the asymmetry dependence of short-range
and tensor correlations is motivated to a large extent by the
(future) study of rare isotopes with large neutron excess.
Experimental studies employing heavy-ion knock-out reac-
tions already suggest that the removal probability for the
minority species is strongly reduced compared to shell-model
calculations, whereas the majority species exhibits properties
that are essentially mean-field like [35]. Similar tendencies, but
smaller in magnitude, have been obtained for the spectroscopic
factors of protons from a combined dispersive optical model
analysis of a sequence of Ca isotopes [36,37]. Fitting a huge
collection of elastic proton scattering data while including
results obtained from (e, e′p) reactions for quantities below
the Fermi energy, the emerging complex optical potentials for
protons exhibit a striking increase in surface absorption with
increasing nucleon asymmetry. This translates into a qualita-
tively similar tendency in spectroscopic factors as obtained
from the zero-momentum occupation of protons calculated in
the bulk for isospin-polarized nuclear matter [24]. A major
purpose of the present work is to clarify the role of various
variables, such as the temperature, the density or the choice of
the NN interaction, in the determination of the momentum
distribution for isospin-polarized systems. In this fashion,
we can assess the importance of the short-range and tensor
contributions to the bulk properties of asymmetric nuclei.

Recent applications of the SCGF method to isospin imbal-
anced matter have generated predictions for the depletion of
the proton and the neutron Fermi seas at fixed total density as
a function of nucleon asymmetry [24]. Some intriguing results
were reported in this work that require a deeper understanding.
First, an increasing difference between the zero-momentum
occupation of the neutron and proton Fermi sea was reported
at a temperature corresponding to 10 MeV. Naively, this
difference is expected to be associated with the decreasing
(increasing) importance of the nuclear tensor force for neutrons
(protons) with increasing asymmetry, because neutrons alone
do not experience the strong 3S1-3D1 tensor coupling, whereas
protons will. There are, however, other physical effects that can
influence this difference and it is therefore useful to investigate
whether the calculated predictions depend on the choice of the
realistic interaction or on the temperature. Another feature that
requires a better understanding is the opposite density depen-
dence of the depletion for symmetric and pure neutron matter
(PNM) reported in Ref. [24]. For symmetric nuclear matter
(SNM), a decrease in the depletion of the zero-momentum
state with increasing density is obtained, while the opposite
result pertains for PNM in the case of the CDBonn interaction
[21]. The result for SNM differs from earlier calculations, like
those reported in Ref. [15] for a separable version [38] of
the Paris interaction [39], which predicted very little density
dependence of this quantity. We propose to clarify this issue in
the present work by analyzing more carefully the ingredients
that determine the density dependence of the depletion, paying
particular attention to the importance of thermal effects and
to the choice of the interaction. To provide a better insight
into these dependences, we have relied and further clarified
an approximate relation between the momentum distribution,
above and below the Fermi surface, and the energy derivatives
of the time-ordered components of the self-energy. These
components differ from the retarded quantities that have been
used in finite-temperature calculations.

In Sec. II, we present the relevant ingredients of the for-
malism of the finite-temperature implementation of the SCGF
method. Results for SNM and PNM are presented in Sec. III,
where the role of the temperature, the density, and the choice
of realistic interaction (softer vs. harder core) are clarified.
A deeper insight into the density and isospin-polarization
dependence of the results is obtained by employing the relation
between the momentum distribution and energy derivatives
of the different time-ordered components of the nucleon
self-energy. This topic is discussed in Sec. IV. Results for
isospin-polarized matter are analyzed in Sec. V and further
interpreted with the help of the relations discussed in Sec. IV.
Finally, conclusions are drawn in Sec. VI.

II. SELF-CONSISTENT GREEN’S FUNCTIONS METHOD
AT FINITE TEMPERATURE

A. Single-particle propagators

The results that are presented in the following have been
obtained with the SCGF method at finite temperature. In
quantum statistical mechanics, the expectation value of any
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operator X̂ is given by a grand-canonical average,

〈X̂〉 =
∑

n e−β(En−µNn)〈n|X̂|n〉∑
n e−β(En−µNn)

, (1)

where β = 1/T is the inverse temperature and µ is the
chemical potential of the system [32,40,41]. The many-body
eigenstates of the system, |n〉, diagonalize simultaneously the
Hamiltonian and the particle number operators,

Ĥ |n〉 = En|n〉, (2)

N̂ |n〉 = Nn|n〉, (3)

and their Boltzmann sum [the denominator of Eq. (1)] defines
the partition function of the system, Z . These eigenstates
contain all the micro- and macroscopic information of the
system, but an ab initio calculation including all of them is
intractable. The description of the system can be substantially
simplified, without loosing physical information, by consid-
ering particular kinds of excitations on top of the thermal
bath. At the sp level, for instance, all the information of a
homogeneous quantum many-body system is encoded in the
time-ordered one-body propagator,

iGT (k; t − t ′) = 〈T [âk(t)â†
k(t ′)]〉, (4)

given by the thermal average of a product of Heisenberg-
picture operators associated with the addition and removal
of sp excitations with momentum k between times t and t ′.
The time-ordering is implemented by the Wick operator, T ,
which arranges the operators in a chronological order and
incorporates a +1 (−1) factor according to the even (odd)
nature of the corresponding permutation [40,41]. The ordering
of the time variable determines the analytical structure of GT
in the Fourier space associated with the time difference, t − t ′.

The correlation functions,

iG>(k; t − t ′) = 〈âk(t)â†
k(t ′)〉 (5)

iG<(k; t − t ′) = −〈â†
k(t ′)âk(t)〉, (6)

are equal to the time-ordered propagator in the corresponding
t > t ′ and t < t ′ domains. Because of the absence of time-
ordering, G> and G< are analytical and well-defined functions
at all energies. The Lehmann representation for G>,

G>(k, ω) = 2π
∑
n,m

e−β(En−µNn)

Z |〈m|â†
k|n〉|2δ(ω−Em+En),

(7)

provides a physical interpretation for this function, as the
probability of adding a particle with momentum k on top of the
thermal bath and ending up in any possible final state, m, as
long as the energy difference between the states coincides with
ω. A similar interpretation exists forG< in terms of the removal
of a particle from the bath. For a system in thermal equilibrium,
the correlation functions are connected by detailed balance,

G<(k, ω) = eβ(ω−µ)G>(k, ω), (8)

yielding the so-called Kubo-Martin-Schwinger (KMS) rela-
tion [32]. The sum of G> and G< defines the sp spectral
function of the system, A(k, ω), which is individually linked

to either of them by the relations,

G<(k, ω) = f (ω)A(k, ω), (9)

G>(k, ω) = [1 − f (ω)]A(k, ω), (10)

with f (ω) = [1 + eβ(ω−µ)]−1 the Fermi-Dirac distribution.
The retarded propagator

iGR(k; t − t ′) = �(t − t ′)〈âk(t)â†
k(t ′)〉, (11)

is related to the causal propagation of perturbations in the
system, as enforced by the presence of the Heaviside function
in relative time. Its spectral decomposition in frequency space
is given uniquely in terms of the spectral function

GR(k, ω) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
ω+ − ω′ , (12)

where the notation ω± = ω ± iη, with η infinitesimally small,
has been introduced. Decomposing Eq. (12) in real and
imaginary parts,

ImGR(k, ω) = −1

2
A(k, ω), (13)

ReGR(k, ω) = −P
∫ ∞

−∞

dω′

π

ImGR(k, ω′)
ω − ω′ , (14)

a direct connection between ImGR and the sp spectral function
is found. Moreover, a dispersion relation (P denotes a principal
part integration) links the real part of GR to the energy
dependence of its corresponding imaginary part.

Similarly, the spectral decomposition of the time-ordered
propagator can be written as the sum of two terms

GT (k, ω) = G↑(k, ω) + G↓(k, ω), (15)

each of them depending both on the spectral function and an
additional phase space factor. The real and imaginary parts of
the up,

ImG↑(k, ω) = 1

2
f (ω)A(k, ω), (16)

ReG↑(k, ω) = P
∫ ∞

−∞

dω′

π

ImG↑(k, ω′)
ω − ω′ , (17)

and the down components,

ImG↓(k, ω) = −1

2
[1 − f (ω)]A(k, ω), (18)

ReG↓(k, ω) = −P
∫ ∞

−∞

dω′

π

ImG↓(k, ω′)
ω − ω′ , (19)

are linked by independent dispersion relations. It is then easy to
show that the retarded propagator is related to the time-ordered
components via the expressions:

ImG↑(k, ω) = −f (ω)ImGR(k, ω), (20)

ImG↓(k, ω) = [1 − f (ω)]ImGR(k, ω). (21)

In the zero-temperature limit, the phase-space factors in the
dispersion integrals guarantee that the integration domains for
the up and down components are disconnected. The integration
inG↑ goes up to the Fermi surface, ω = µ, while the dispersion
integral for G↓ starts at this point. Because the poles of the
up (down) component are in the upper (lower) half of the
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complex energy plane, one can associate the first (second)
term to a “hole” (“particle”) propagator. In contrast, the
dispersion integral associated with GR receives simultaneous
contributions from above and below the Fermi surface. As we
shall see in the following, this generates rather different energy
dependences for the real parts of these three quantities. Let us
also note that the knowledge of the spectral function is enough
to compute the real and imaginary parts of all the different sp

propagators [42].
The definition of the time-ordered propagator, Eq. (4), can

be generalized to purely imaginary times with the proper
treatment of the imaginary time-ordering [32]. The following
KMS relation arises

GT (k, τ ) = −eβµGT (k, τ − iβ), (22)

which demonstrates that GT is a quasiperiodic function along
the imaginary time axis. This suggests the following discrete
Fourier representation

GT (k, τ ) = 1

−iβ

∑
ν

e−izντG(k, zν), (23)

where zν = (2ν+1)π
−iβ

+ µ correspond to fermionic Matsubara
frequencies [40–42]. An analytical continuation of the co-
efficients in the Fourier transform, G(k, zν), to continuous
complex values of energy can be uniquely defined [43]. The
spectral decomposition of this function

G(k, z) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
z − ω′ , (24)

is again uniquely given by the spectral function. Note that
the same function, G, contains information on both the
time-ordered propagator (when computed at z = zν) and
the retarded propagator (at z = ω+). In general, the sums
over Matsubara frequencies can be transformed into energy
integrals for the retarded components using complex analysis
techniques.

In momentum-frequency space, the Dyson equation for the
sp propagator,

[
z − k2

2m
− 	(k, z)

]
G(k, z) = 1, (25)

reduces to an algebraic equation in terms of the self-energy,
	(k, z). As a consequence of this equation, the self-energy
inherits the analytical properties of the propagator. In par-
ticular, it can be decomposed in equivalent retarded, time-
ordered or “less/greater than” contributions [42]. Taking the
z → ω+ limit in this last expression leads to a Dyson equation
relating the retarded Green’s functions and the retarded self-
energy. Because these retarded components form a closed
set of equations by themselves, they have been extensively
discussed, particularly in the nuclear context at finite temper-
ature [29,44,45]. If one needs to distinguish between particle
and hole contributions, however, time-ordered components
become essential [44]. The decomposition in terms of up and
down self-energies also allows for a more natural connection
with zero-temperature SCGF calculations [46,47].

B. Ladder approximation

The retarded self-energy fulfills the dispersion relation

Re	R(k, ω) = 	HF(k) − P
∫ ∞

−∞

dω′

π

Im	R(k, ω′)
ω − ω′ . (26)

The first term in this expression corresponds to an energy-
independent Hartree-Fock contribution

	HF(k) =
∑

k′
〈kk′|V |kk′〉An(k′), (27)

where we have introduced the NN potential (properly anti-
symmetrized) and the momentum distribution, n(k). The latter
includes correlation effects and can be computed from the sp

spectral function

n(k) = ν

∫ ∞

−∞

dω

2π
A(k, ω)f (ω), (28)

where ν = 4(ν = 2) accounts for the degeneracy of nuclear
(neutron) matter. The energy-dependent, dispersive contribu-
tion to the self-energy describes many-body processes that
go beyond the basic mean-field approximation. In the ladder
approximation, one includes an infinite series of collisions
between a particle and a series of particles and holes in the
medium, thus accounting for the two-body scattering problem
in the medium [40,41]. The imaginary part of the retarded
self-energy in this approximation reads

Im	R(k, ω) =
∑
k′

∫ ∞

−∞

dω′

2π
[f (ω′) + b(ω + ω′)]

×A(k′, ω′)〈kk′|ImT (ω + ω′
+)|kk′〉, (29)

and is given in terms of the in-medium interaction, the sp

spectral function and phase-space factors, including a Bose-
Einstein distribution, b(
) = [e−β(
−2µ) − 1]−1. The T matrix
in the medium fulfills a Lippmann-Schwinger-like equation

〈k1k2|T (
+)|k3k4〉A
= 〈k1k2|V |k3k4〉A +

∑
k5,k6

〈k1k2|V |k5k6〉AG0
II (k5, k6; 
+)

×〈k5k6|T (
+)|k3k4〉A, (30)

where the retarded G0
II is obtained from the product of two

spectral functions and a phase-space factor describing the
intermediate propagation of particle-particle and hole-hole
pairs

G0
II (k, k′; 
+) =

∫ ∞

−∞

dω

2π

dω′

2π
A(k, ω)A(k′, ω′)

× 1 − f (ω) − f (ω′)

+ − ω − ω′ , (31)

properly accounting for Pauli blocking effects at finite temper-
ature [41]. Once the real and imaginary parts of the self-energy
are computed, one can feed back this information into the
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spectral function via the Dyson equation

A(k, ω) = −2Im	R(k, ω)[
ω − k2

2m
− Re	R(k, ω)

]2 + [Im	R(k, ω)]2
,

(32)

which can in turn be used to compute a new G0
II . By

iterating this procedure until convergence, the SCGF result
within the ladder approximation is obtained. The importance
of self-consistency arises from the fact that sum rules are
preserved [48,49] and also that thermodynamical consistency
is fulfilled [50,51]. In addition, self-consistency represents a
democratic treatment of all the particles considered in the
problem: the one for which the self-energy is calculated,
as well as the ones it interacts with. In all the previous
expressions, a grand-canonical ensemble has been assumed,
so that there are two external, fixed variables, the temperature
and the chemical potential. The latter is not particularly well
suited for in-medium studies, so it is customary to supplement
the SCGF equations with an equation that fixes the total density
of the system

ρ = ν
∑

k

n(k, µ), (33)

where we have highlighted the dependence of the momentum
distribution on the chemical potential via the Fermi-Dirac
factor of Eq. (28).

The numerical solution of the SCGF equations is a
demanding task, due to two major difficulties. The first issue
is related to the possibility of a pairing solution below a
certain critical temperature, Tc, because nucleons tend to form
Cooper pairs in certain density regimes [52,53]. Although the
SCGF formalism is capable of dealing with the description
of the superfluid phase, we will only discuss results for the
normal phase, because the effects of pairing are concentrated
in a narrow energy region (related to the gap) around the
chemical potential [25]. Any conclusion drawn for energies
and momenta away from this region should therefore also
be valid in the pairing regime and, most interestingly, in
the zero-temperature limit. The second numerical difficulty
implementing the SCGF method is related to the requirement
to solve the coupled nonlinear equations in a wide range of
momenta and energies. Because no quasiparticle assumption
is made, complete off-shell propagation effects are included.
In this case, different regions in the energy and momentum
domains have to be sampled simultaneously, particularly
the quasiparticle peak and the high-momentum and energy
components of the spectral functions. The smoothing of
structures associated with finite temperature is helpful in this
direction, but the problem is still formidable. It has taken some
time before complete, satisfactory numerical results have been
obtained for realistic NN interactions. We refer the reader
to Refs. [28–31] for further details on how the SCGF is
implemented in practice.

Once a self-consistent solution has been obtained, one has
access to the spectral functions of a nuclear system at a given
density and temperature. In addition to the sp properties,
the spectral function also determines to a large extent the
macroscopic properties of the system. The total energy, for

instance, can be computed from the Galitskii-Migdal-Koltun
sum rule [54,55]. An approximation to the entropy beyond
the quasiparticle approximation can also be obtained via the
Luttinger-Ward formalism [51,56]. All the remaining thermo-
dynamical properties of the system are therefore accessible
and include properly the effect of short-range and tensor
correlations.

So far, we have discussed uniform nuclear systems with
a single species: the nucleon, in the case of SNM, and the
neutron, in the case of PNM. For a fixed total density, one
can switch from one system to the other by modifying the
relative concentration of neutrons and protons. The asymmetry
parameter

α = ρn − ρp

ρn + ρp

, (34)

is a measure of the isospin imbalance. The SCGF method
within the ladder approximation can be generalized to the case
of asymmetric nuclear matter and partially isospin-polarized
systems can thus be analyzed [24,57,58]. Because the approach
accounts for both the short-range and tensor correlations
associated with the underlying NN interaction, it can be
used to generate quantitative predictions for the importance of
different types of correlations in isospin asymmetric systems.
In this sense, it is a unique theoretical tool. Other theoretical
formalisms either cannot be generalized to isospin asymmetric
systems (as is the case of the variational approach [59])
or lack adequate consistency constraints (as in the case of
Brueckner-Hartree-Fock theory [60]).

In the following, we shall employ different microscopic
NN interactions to quantify the uncertainty related to their
short-range and tensor properties. Most of the calculations
have been performed with the CDBonn [21] and the Av18 [26]
potentials. These phase-shift equivalent forces are represen-
tative of two subsets of realistic NN potentials. The first
is a boson-exchange potential, with a soft short-range core
and a somewhat small tensor component, as indicated by a
relatively low D-state probability for the deuteron. The latter
is a local potential, with a harder short-range core and a
more significant tensor coupling. Although these differences
do not affect the two-body scattering observables (which
are identical for any phase-shift equivalent interaction), they
do influence the in-medium properties due to their different
off-shell behaviors [61]. To assess the importance of the
different components of the nuclear force, we shall also discuss
results obtained from the systematically simplified family of
NN interactions obtained by the Argonne group [62]. Each
of these forces (from v18 to v4′) has a successively simpler
operatorial structure, with their parameters refitted to describe
the two-body system at their corresponding level of simplicity.
Finally, the Reid93 potential, fitted to the Nijmegen partial
wave analysis, has also been used as a benchmark [63].
The momentum distributions obtained with these modern
interactions will also be compared to results for older realistic
interactions [11] that have somewhat stronger repulsive cores.
In all cases, our present results have been obtained with partial
waves up to J = 8 in the Hartree-Fock and J = 4 in the
dispersive contributions to the self-energy.

064308-5



ARNAU RIOS, ARTUR POLLS, AND W. H. DICKHOFF PHYSICAL REVIEW C 79, 064308 (2009)

III. MOMENTUM DISTRIBUTION OF ONE-COMPONENT
NUCLEAR SYSTEMS

We start the discussion of the SCGF results by highlighting
the effect of correlations on the momentum distribution
in SNM. Interaction-induced correlations have a distinctive
signature in the momentum distribution, removing strength
at momenta below the Fermi surface and shifting it to high
momenta. In addition to the correlations induced by the
NN force, however, the SCGF momentum distribution is
sensitive to the temperature of the system. As a matter of
fact, thermal correlations produce a similar signature on
the momentum distribution: low momenta are depopulated,
whereas high momenta are thermally occupied. The amount
of low-momentum depletion and high-momentum population,
however, is significantly different for both types of correla-
tions. One can distinguish between these two types of effects
by comparing the fully correlated SCGF prediction with the
free Fermi gas (FFG) results, which are sensitive only to
thermal correlations [64]. To this end, in Fig. 1 we show n(k)
of SNM for Av18 and the FFG for ρ = 0.16 fm−3 at T =
5 MeV (left panel) and 10 MeV (right panel). At the lower
temperature, the Fermi-Dirac distribution of the FFG deviates
very little from a step function, �(kF − k), which describes
the n(k) of the FFG at zero temperature. At this temperature
and density, one can conclude that the thermal effects are
small in the deep interior of the Fermi sea. Thermal effects,
however, modulate n(k) close to the Fermi surface, which is
no longer discontinuous at kF . Temperature is also responsible
for the fact that, even in this very degenerate regime, the
contribution of the states below kF to the density sum rule
is only 86%. The remaining 14% corresponds to thermally
populated states above kF . For the correlated case, n(k) is
rather flat below kF and it presents a sizable depletion [that we
will later on characterize by n(0)]. With the comparison with
the FFG, one can conclude that dynamical NN correlations
are mainly responsible for the depletion. Due to these effects,
the contribution to the density sum rule of the states below kF

is reduced to 75%, i.e., 10% of the strength is shifted to higher
momenta due to NN correlations. Consequently, momentum
components of the wave function above kF are generated. The
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FIG. 1. (Color online) Correlated momentum distribution ob-
tained with the Av18 interaction at ρ = 0.16 fm−3 and two tem-
peratures: T = 5 MeV (left panel) and T = 10 MeV (right panel).
The dashed line corresponds to the momentum distribution of the free
Fermi gas under the same conditions.

high-momentum tail in n(k) at this density and temperature
provides 52% of the total kinetic energy per particle, to be
compared to the much smaller 25% in the FFG.

At a larger temperature (right panel), thermal effects do
not only modify the FFG n(k) around the Fermi surface, but
they also produce a depletion deep inside the Fermi sea. The
lowest momentum state is depopulated by a few percentages,
n(0) = 0.97. The shape of n(k) differs significantly from the
step function, documenting the loss of degeneracy at this
temperature and density, even though it is still far from the
classical Boltzmann momentum distribution. The fraction of
particles that occupy states below kF in the FFG decreases to
73%, while they contribute only the 53% of the kinetic energy
per particle. At this temperature, the momentum distribution
of the correlated system deep inside the Fermi sea exhibits a
depletion, 1 − n(0) = 15%, which is approximately the sum
of the depletion associated with the dynamic NN correlations
(∼13%) plus the one coming from the thermal distribution
of the FFG (3%). The high-momentum tail is, however,
substantially more important in the correlated case and the
fraction of particles in states above the Fermi momentum
increases to 44%, while the contribution to the kinetic energy
amounts to 56%.

The depletion of the momentum distribution below the
Fermi surface can be taken as a measure of the importance
of both thermal and dynamical correlations in many-body
systems. In the degenerate regime, where thermal effects are
unimportant, the amount of strength removed at low momenta
is closely related to the structure of the underlying NN

force and is particularly sensitive to the short-range core as
well as to the tensor components. In the correlated case, the
low-momentum region of the momentum distribution is rather
flat and almost independent of momentum as long as the
temperature is relatively low and the density is large enough.
For high temperatures or low densities, n(k) is softened by
thermal correlations. One can therefore focus on the k = 0 state
to discuss generic depletion effects in both regimes. Figure 2
displays the density dependence of the occupation of this state
for SNM (left panel) and PNM (right panel). Results for the
Av18 (CDBonn) interaction are shown in solid (dotted) lines,
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FIG. 2. (Color online) Density dependence of the occupation of
the lowest momentum state at T = 5 MeV for Av18 (solid lines),
CDBonn (dotted lines), and the FFG (dashed lines). The left (right)
panel corresponds to nuclear (neutron) matter results. Note the
different vertical scale of the two panels.
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while dashed lines represent the FFG depletion under the same
conditions.

The noninteracting depletion is extremely helpful in under-
standing the influence of thermal effects on the low-momentum
components. At high densities, degeneracy dominates over
temperature, and n(0) = 1 as expected from the zero temper-
ature FFG momentum distribution. This degenerate regime
determines the region where interaction-induced correlations
represent the major contribution to the depletion in the
correlated case. Consequently, the results obtained in this
regime can be taken as faithful representatives of zero-
temperature calculations. At lower densities, however, the FFG
drops rapidly as density decreases, indicating that thermal
effects dominate the low-momentum components of n(k).
The decrease observed in n(0) for the correlated case should
therefore be associated with temperature effects rather than
with NN correlations. In this region, the correlated n(0) yields
interaction-independent results, as expected from the virial
expansion [65] and illustrated in the figure. Note also that
the onset density for the thermally dominated region is larger
for symmetric matter (ρ <∼ 0.16 fm−3) than for neutron matter
(ρ <∼ 0.08 fm−3). This corresponds to the notion that, for a
given density, neutron matter is more “degenerate,” i.e., has a
larger Fermi momentum for the same value of ρ.

If we take the deviation of n(0) from 1 as a measure
of correlations, we can say that neutron matter is “less
correlated,” in general, than nuclear matter (note the different
vertical scale of the two panels of Fig. 2). Moreover, the
behavior of n(0) as a function of density in the region where
thermal effects are unimportant is very different for PNM
and SNM. In neutron matter, as the density increases, the
population of low momenta drops. This result agrees with the
intuitive idea that, as particles are closer together on average,
the effect of the short-range core increases and low-momentum
strength is shifted to high momenta. Also in accordance
with this picture, the depletion is more important for an
interaction with a harder core (Av18) than for a softer force
(CDBonn) [25]. In stark contrast, for SNM the opposite density
dependence is observed: the depletion is constant or decreases
as the density increases. For Av18, the depletion saturates at a
constant value of n(0) ∼ 0.87 as density increases, while for
CDBonn a clear increase of n(0) with density is observed.

What causes such a different behavior in the density
dependence of n(0)? The major difference between neutron
and nuclear matter lies in the role of the strong 3S1-3D1
tensor component, which is only active in the latter. It appears
that the effect of this component is twofold. On the one
hand, it increases, in general, the depletion as compared to
the effect of short-range correlations by themselves, as seen
by comparing SNM and PNM results. On the other hand,
tensor components seemingly modify the density dependence
of n(0). This nontrivial result requires a deeper understanding
for which the Green’s functions formalism offers a unique
perspective by connecting directly the momentum distribution
and the in-medium self-energy, as will be discussed in Sec. IV.
Suffice it to say for now that the effect of the tensor force is
not only limited to the depletion low-momentum components
but is also responsible in higher order for binding effects, as
illustrated by the deuteron.
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FIG. 3. (Color online) Momentum distribution of symmetric
(upper panels) and neutron (lower panels) matter obtained with the
Av18 interaction at T = 5 MeV for different densities. The right
panels focus on the high-momentum region.

The normalization of the momentum distribution to the
total density, Eq. (33), forces the missing strength at low
momentum to be shifted to high-momentum states. The shift
in strength may depend on the physical properties of the
system (temperature, density, isospin content). Figure 3 shows
the momentum distribution of symmetric (upper panels) and
neutron (lower) matter for Av18. In all cases the temperature
is 5 MeV and four different densities are displayed. In the left
panels the momentum distribution is displayed as a function
of the ratio k/kF , where kF = (6π2/νρ)1/3 is the Fermi
momentum of the system. This allows for a clear inspection
of the density dependence of n(k) and can be instructive in
understanding the scaling of the distribution as a function of
density. At a constant temperature, an increase in density leads
to a more degenerate system. Consequently, the high density
results have a more zero-temperature-like structure, with an
almost constant depletion below kF and a substantial jump in
n(k) at k = kF . In contrast, at low densities, the momentum
distribution is modulated by temperature at all momenta.
Comparing the four different densities, one can observe that
one major density effect is the redistribution of strength in the
region close to the Fermi surface. Note that on the present scale
the effects on the depletion shown in Fig. 2 are hard to see. In
general, though, Av18 leads to a saturation of the depletion in
symmetric matter and to a decrease of the population of low
momenta for high-density neutron matter.

The high-momentum components are shown in the right
panels of Fig. 3 on a logarithmic scale for momenta ranging
between 500 and 1500 MeV. In both symmetric and neutron
matter, the high-density results lead to a larger population
of high-momentum states. This is in contrast to the low-
momentum states, which exhibit a very different density
dependence for the two cases. All in all, this suggests that
the mechanism that produces high-momentum components
only scales with density and is rather momentum independent.
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There have been suggestions in the literature that high-
momentum components scale with k5

F as a function of density.
Such results have been obtained for a separable version of the
Paris interaction [15] and a central (no tensor effects) version
of the Reid soft-core interaction [66]. These interactions have
a stronger core, which may explain the different behavior.
In addition, in the limit of extremely dilute matter, the
high-momentum components scale with k6

F for the hard-sphere
Fermi gas [67]. Our calculations, based on more recent, softer
realistic interactions, scale more like k3

F [30].

IV. RELATION OF n(k) TO THE TIME-ORDERED
SELF-ENERGY

The Green’s functions method is unique in that it can
provide an interpretation of the previous results in terms of
the sp spectral function. The interplay between thermal and
density effects in n(k) can be qualitatively understood in terms
of the evolution in temperature and density of both the spectral
function and the phase-space distribution [see Eq. (28)] [31].
Unfortunately, it is not straightforward to go beyond this sort
of reasoning and find a simple connection to the in-medium
interaction. A different perspective and additional insight can
be achieved by considering an approximate relation between
the momentum distribution and the components of the time-
ordered self-energy. The analysis will be performed for T = 0
to make contact with earlier work on this subject [66,68–71].
Let us write the Dyson equation at T = 0 in the form

G = G0 + G0	G =
∞∑

n=0

G0{	G0}n, (35)

where G0 is the time-ordered noninteracting sp propagator.
The momentum distribution can then be written as

n(k) =
∫

C

dω

2πi
G(k, ω)

=
∫

C

dω

2πi

∞∑
n=0

G0{	G0}n. (36)

with C representing a contour composed of the real axis and
closed by a semicircle in the upper half-plane. To proceed it
is necessary to decompose the self-energy into its different
time-ordered contributions

	(k, ω) = 	HF(k) + 	↓(k, ω) + 	↑(k, ω)

= 	HF(k) −
∫ ∞

εF

dω′

π

Im	↓(k, ω′)
ω+ − ω′

+
∫ εF

−∞

dω′

π

Im	↑(k, ω′)
ω− − ω′ . (37)

The first term in the expansion of Eq. (36), corresponding to
G0, yields the step function momentum distribution, n0(k) =
�(kF − k), of the FFG. Using Eq. (37), the second term
(n = 1) in Eq. (36) yields three contributions, each of them
with two noninteracting propagators, G0. For k < kF , the
contribution with the Hartree-Fock term vanishes on account of
the double pole inside the contour, which leads to the derivative
of a constant when Cauchy’s integral formula is applied. The

contribution with 	↑ can be shown to be zero as well by using
the corresponding dispersion relation for 	↑ and applying the
residue theorem (the residues cancel). Only the term with 	↓
finally contributes and yields:

n1
↑(k) = ∂ωRe	↓(k, ω)|ω=ε0(k), k < kF , (38)

by applying Cauchy’s integral formula. The derivative is
applied at the pole of the noninteracting propagator. Because
the peak of the dressed propagator will normally occur at the
quasiparticle energy

ε(k) = k2

2m
+ Re	[k, ε(k)], (39)

it is convenient to include an auxiliary potential

U (k) = Re	[k, ε(k)], (40)

anticipating that the derivative in Eq. (38) must be taken at
the location where most of the sp strength is concentrated.
This leads to an additional constant term in Eq. (37), where
U must be subtracted. An approximate result for n(k) for
k < kF can now be obtained by expanding 	↓ only up to
first order at ε(k) in all contributions to higher-order terms
(n > 1) in Eq. (36). This approximation will therefore be best
for momenta as far as possible from the Fermi energy, because
from the corresponding dispersion relation it is clear that a
linear approximation to the energy dependence will be most
appropriate for k = 0 [for which ε(0) is farthest from εF ]. The
series with only 	↓ terms yields

n↑(k) = 1

1 − ∂ωRe	↓(k, ω)|ω=ε(k)
, k < kF , (41)

because a geometric series is produced with the energy deriva-
tive appearing in each higher order. Other terms including the
constant 	HF and 	↑ will not contribute in a similar fashion as
in the term with n = 1, as long as the validity of this expansion
for 	↓ is assumed.

For momenta above kF , the noninteracting propagators
in Eq. (36) have poles outside the contour C and cannot
contribute. Only terms with the derivative of 	↑ will occur
when a similar expansion as for k < kF is employed. The
n = 1 term accordingly generates the first contribution to n(k)
for k > kF , given by

n1
↓(k) = −∂ωRe	↑(k, ω)|ω=ε(k), k > kF . (42)

For high momenta this will be the dominant contribution to
n(k), because the location of ε(k) can be quite far from εF .
Summing the geometric series from higher-order contributions
with 	↑ (with the approximation of keeping only linear terms
in the energy) then yields

n↓(k) = 1 − 1

1 − ∂ωRe	↑(k, ω)|ω=ε(k)
, k > kF . (43)

While Eqs. (41) and (43) have not been rigorously derived
here, we note that these results have been employed before
in the literature [70]. Indeed, it turns out that their numerical
implementation generates an accurate approximation to the
full result for n(k), except in the immediate vicinity of the
Fermi surface, as will be illustrated in the following. Moreover,
these equations allow for a deeper understanding of the
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FIG. 4. (Color online) Correlated momentum distribution ob-
tained with the Av18 interaction at ρ = 0.16 fm−3 and T = 5 MeV
(solid line). The n↑(k) and n↓(k) contributions of Eqs. (41) and (43)
are shown in dashed and dot-dashed lines, respectively.

observed trends in the depletion of the Fermi sea. Because
the decomposition of the self-energy in terms of “up” and
“down” components is essential for this derivation, it clarifies
the need for introducing these terms also at finite temperature.

For a self-consistent calculation at finite temperature, ex-
pressions (41) and (43) reproduce the momentum distribution
obtained from the complete spectral function extremely well
in their respective momentum range. An example is shown in
Fig. 4 for Av18 at ρ = 0.16 fm−3 and T = 5 MeV. The hole
contribution coming from Eq. (41) (dashed line, left panel)
is a very good approximation to the momentum distribution
for momenta below 0.75kF . Similarly, for momenta above
1.25kF , n(k) is very well approximated by Eq. (43) (dash-
dotted line, right and left panels). A similar agreement is found
in a wide range of densities and temperatures and also for
other NN forces. We note that, for these results to be valid, it
is essential to calculate the derivatives at the corresponding
quasiparticle energies and therefore self-consistency is a
necessary ingredient in obtaining this good agreement.

Having found a direct connection between n(k) and the self-
energy, one can try to establish a relation between the density
dependences of n(k) and the density and energy dependence
of the self-energy. To this end, let us discuss the structure
of 	↑ and 	↓. Figure 5 shows the self-energy of the k = 0
state as a function of energy for the CDBonn potential at
ρ = 0.16 fm−3 and T = 5 MeV. The upper panel displays
three different components of 	. The solid line corresponds
to the retarded self-energy, which has traditionally been used
and discussed in finite-temperature SCGF calculations [30,44].
Note that Im	R is negative at all energies and displays two
distinctive peaks: a relatively small peak in the “hole” region,
ω < µ, and a much larger structure in the “particle” region,
ω > µ. While the hole components decay rapidly for negative
energies, the particle side has a much slower decay in energy
due to the combination of the large particle-particle phase-
space and short-range correlation effects, in complete analogy
with earlier results obtained for T = 0 [46].

Because the self-energy has the same analytical structure
as the sp propagator, the time-ordered contributions of 	 can
be obtained from the retarded component by using equivalent
expressions to Eqs. (20) and (21). The phase-space factors
in the imaginary parts isolate the respective particle and hole
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FIG. 5. (Color online) Different components to the imaginary
(upper panel) and real (lower panel) parts of the self-energy for
CDBonn at ρ = 0.16 fm−3 and T = 5 MeV.

regions. Consequently, Im	↑ and Im	↓ have a single peak
below and above the Fermi surface, respectively. In the case of
the hole contribution, the peak has the opposite sign compared
to the retarded component, but for the particle one it coincides
with the Im	R peak. The differences between the retarded
and the corresponding time-ordered imaginary components
will be larger in the ω ∼ µ region, due to the variation of
the thermal distribution in this region. In particular, at higher
temperatures, the opening of phase space can eventually lead
to the appearance of additional peaks in the self-energy of each
component, due to the overlap between the “opposite” peak
and the nonzero Fermi-Dirac distribution.

The different imaginary components of 	 are related
to their respective real parts by the dispersion relations of
Eqs. (14), (17), and (19). These real parts are illustrated in
the lower panel of Fig. 5. The important consequences of the
isolation of the hole and particle components in the imaginary
part can be clearly observed now. Re	↑ decays rapidly at
low and high energies, because the hole strength in the
imaginary part is limited to a relatively narrow energy domain.
This component exhibits a wiggle at small negative energies,
associated with the hole peak. The down component of 	 has a
substantial contribution at all energies, as a consequence of the
extremely long energy tail of the imaginary part [25,30,31].
It also has a peak structure, related to the onset of a very
fast decrease of Im	↓ near ω ∼ µ. This threshold, together
with the relatively large and constant energy tail, are at the
origin of a bell-shaped minimum. As we shall see in the
following, it is this minimum that dominates the low-energy
components of the momentum distribution. The real part of
the down component has a zero at high energies, ∼1.5 GeV,
and it is still substantial at very high energies. These results
are in good qualitative agreement with the zero-temperature
calculations of Ref. [46] for a much harder interaction.

The decomposition of 	 in its time-ordered components can
also be used to better understand the structure of the retarded
self-energy. The sum of Re	↑ and Re	↓ must coincide with
the real part of the retarded self-energy [42]. The high positive
and negative energy tails of the retarded self-energy have to
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FIG. 6. (Color online) Imaginary part of 	↓
as a function of energy for the k = 0 state.
Different densities are displayed with different
line styles. The upper panels have been obtained
with CDBonn, whereas the lower panels cor-
respond to Av18. Symmetric (neutron) matter
results are shown in the left (right) panels. Note
the difference in scales between the upper and
lower panels.

be related to the down component of 	, which is the only
active contribution in these regions. Moreover, the double-peak
structure of Re	R at ω ∼ µ is caused by the superposition of
the up and down peaks and wiggles in this region. In particular,
the ω < µ peak in Re	R is a reflection of the negative side
of the wiggle in Re	↑, while the ω > µ peak is mostly due to
the down component. The relative importance of the hole and
particle peaks changes with momentum, with the “particle”
side becoming more prominent as k increases. In spite of
this important shift, the connection between the up and down
components and the high energy and peak structures of the
retarded self-energy remains valid.

The 	↓ self-energy is related, via Eq. (41), to the mo-
mentum distribution below kF . This suggests that the density
dependence of the low-momentum components of n(k) can
be understood in terms of the self-energy. Let us focus for
simplicity on the k = 0 state. Figure 6 displays the energy
dependence of Im	↓ for different densities in the case of
symmetric (left panels) and neutron matter (right panels).
The upper (lower) panels correspond to the CDBonn (Av18)
interactions. The imaginary part of 	↓ has a very large
structure in the ω > µ region that only decays at extremely
high energies. The area covered by this function depends
substantially on the density, the NN potential and the isospin
content of the system. In the high-energy regime, Im	↓
displays a linear dependence in density for both nuclear and
neutron matter.

A significant difference is found by comparing upper and
lower panels in Fig. 6: the amount of imaginary part shifted
to high energies is substantially larger for Av18 than for
CDBonn (note the very different vertical scales). The down
component of the self-energy is therefore very sensitive to the
structure of the underlying NN force. This result suggests
that hard interactions produce a much larger imaginary part
than soft ones do [25], for both SNM and PNM. For a
given NN interaction, however, the peak of Im	↓ at high
energies is relatively similar for the two systems, as seen by
comparing left and right panels. While in PNM the peak can
be attributed basically to short-range correlations, SNM has
an additional contribution coming from the tensor components

that generates an important imaginary part below 1000 MeV,
as discussed in Refs. [11,72]. It is good to remember that the
presence of an imaginary part in the self-energy above the
chemical potential is directly responsible for the appearance
of sp strength at those energies for momenta below kF . In
nuclear matter, the additional 3S1-3D1 coupled channel with
both its short-range and tensor contribution is thus responsible
for the stronger and more pronounced imaginary part starting
above the chemical potential as compared to neutron matter,
where it is absent. The position of the peak in Im	↓ also
changes when going from symmetric to neutron matter but
in an interaction-dependent way. While for CDBonn the peak
is shifted to high energies for neutron matter, the contrary
happens for Av18 [25].

The energy dependence of the imaginary part has an
immediate impact on the real part of 	↓ by means of the
dispersion relation. Figure 7 shows this component in a
narrower energy range for various densities. In general, the
real part is proportional to the density, with higher densities
leading to more attractive real self-energies (in the range
displayed in the figure). Comparing left and right panels,
one observes an important difference between symmetric and
neutron matter. Although a distinctive inverted peak develops
in nuclear matter for the two NN interactions, in neutron
matter only a very broad minimum is observed. The origin
of this peak is associated with the rapid drop, from zero to
negative values, of Im	↓ in a narrow energy band around
ω ∼ µ. This sharp threshold occurs for symmetric matter (see
the upper left panel of Fig. 6, for instance), but it is not as
sharp in neutron matter, reflecting the important on/off role of
the tensor force in these systems. As a consequence of these
large differences, the dispersive counterparts of the threshold
of the imaginary part are very different for both systems.

The presence of the inverted peak in symmetric matter has
important consequences for the momentum distribution at low
momenta. To compute n(k), the partial derivative with respect
to the energy of Re	↓ is computed at the quasiparticle peak.
The quasiparticle energy for k = 0 at different densities is
identified by dots in Fig. 7. As expected, at zero momentum
the quasiparticles are more bound for higher densities, so
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FIG. 7. (Color online) The same as Fig. 6
for the real part of 	↓. The dots represent the
position of the quasiparticle peak.

their energies shift to more negative values with respect
to the chemical potential. In SNM, this shift moves the
quasiparticle contribution further away from the inverted peak,
which is displaced to higher energies as density increases. The
combination of the two effects (attractive quasiparticle shift,
repulsive peak shift) is such that the slope at the quasiparticle
energy is reduced with increasing density. For PNM, the
quasiparticle shift is larger, but the inverted peak is absent
and the broad structure is such that the local slope around the
quasiparticle contribution decreases with density.

To clarify these issues, we show in Fig. 8 the partial
derivative with respect to the energy of the self-energy at T =
5 MeV for different densities. Upper (lower) panels correspond
to symmetric (neutron) matter, while left (right) panels show
results for Av18 (CDBonn). Let us first focus on the SNM case
(upper panels). At all densities, the inverted peak in the real
part (a zero in the derivative) lies inside the ω > µ region, and
it is therefore not visible in the figure. Instead, we have chosen
to display the ω < µ regime, where the derivative should be

taken according to Eq. (41). This corresponds to the wings of
the peak on the left side. At these energies, the slope of Re	↓
decreases with energy and, in general, has more negative values
at higher densities. The increase of the slope with density
also appears to be related to the hardness of the interaction.
While for CDBonn the slope changes very little as density
increases, Av18 leads to much larger variations in SNM.
The soft interaction, therefore, generates a small variation in
density of ∂ωRe	↓ which, together with the quasiparticle shift,
produces a decreasing depletion as the density increases. This
observation therefore explains the counterintuitive behavior
observed in the left panel of Fig. 2. For a harder interaction,
such as Av18, the effect of density in the slope is much
larger, while the quasiparticle shift is similar to CDBonn.
Consequently, there is the possibility for the depletion to
saturate (or even decrease) at high densities. Earlier results for
a separable version of the Paris potential exhibit little density
dependence for the depletion [15] not unlike our results for
Av18 in the range from once to twice normal density. Note that
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FIG. 8. (Color online) Partial derivative of
	↓ as a function of energy for the k = 0 state
at T = 5 MeV. Different densities are displayed
with different line styles. The upper panels show
symmetric matter results, while the lower panels
correspond to neutron matter. Left (right) panels
have been obtained with the Av18 (CDBonn)
interaction.
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the density dependence of the self-energy is closely related
to the strong correlation effects induced by the short-range
components.

The density dependence of the partial derivative is also
important in neutron matter (lower panels). Again, the slope
changes much more as a function of density for Av18 than
for CDBonn. Due to the quasiparticle shift, the derivative at
zero momentum decreases. Thus, the depletion increases with
density, in agreement with the right panel of Fig. 2. For a
given NN interaction, the overall decrease of ∂ωRe	↓ with
density and the quasiparticle shift are qualitatively similar for
both neutron and nuclear matter. The origin of the differences
between SNM and PNM should thus be attributed to the energy
dependence of the slope, which is much more pronounced for
symmetric matter than for neutron matter. This is particularly
true for energies close to ω ∼ µ, where a sharp decrease is
observed associated with the inverted peak in the real self-
energy. As we have already discussed, this is largely related
to the threshold behavior of the imaginary part of 	↓. In turn,
this behavior must be partly ascribed to the tensor component
of the one-pion-exchange interaction.

V. MOMENTUM DISTRIBUTION OF TWO-COMPONENT
NUCLEAR SYSTEMS

Up to now, we have considered the momentum distributions
for two extreme cases, namely SNM and PNM. It is also
illustrative to study the dependence of the proton and neutron
momentum distributions, nτ (k), as a function of the asymmetry
parameter, α. This analysis should shed some light on
the isospin dependence of single-particle nuclear properties
coming from volume effects. In particular, tensor effects can
be highlighted in asymmetric systems and can be pinpointed
by a comparison of different NN potentials.

The asymmetry dependence of the neutron- and proton-
momentum distribution is presented in Fig. 9 at ρ = 0.16 fm−3

and T = 5 MeV. The left (right) panel contains the results
for FFG (Av18). For α = 0 (symmetric case), the momentum
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FIG. 9. (Color online) Isospin asymmetry dependence of the free
Fermi gas (left panel) and the correlated momentum distribution from
Av18 (right panel). The density (ρ = 0.16 fm−3) and temperature
(T = 5 MeV) are fixed and the results for different asymmetries are
shown in different line styles. Symmetric matter results correspond
to the central solid curve, while curves to its right (left) correspond
to neutron (proton) distributions for the corresponding isospin
asymmetric cases.

distributions of neutrons and protons coincide in both cases.
Let us discuss first the left panel, where we show the
momentum distribution of the isospin asymmetric FFG. For
the symmetric case (α = 0) and as discussed previously in the
context of Fig. 1, the thermal effects on n(k) are visible only
at the Fermi surface and almost no depletion occurs inside the
Fermi sea. The same is true for the most abundant component
as asymmetry increases: the depletion is negligible and the
Fermi momentum is displaced to larger values. For protons,
however, n(k) is clearly affected by temperature, exhibiting
a large change in shape in a wide region of momenta. At
large asymmetries, in particular, the momentum distribution
of the less abundant components differs substantially from the
step function, losing its degeneracy character and decreasing
the occupation at the origin. In some sense, when increasing
the asymmetry, the less abundant component moves closer to
a classical momentum distribution, while the most abundant
component becomes more degenerate. Note, however, that, at
α = 0.8, one is still far away from the classical regime even
though thermal effects are important. This analysis suggests
that one should take into account thermal corrections when
analyzing the change in asymmetry of nτ (k) also for the
correlated case.

Focusing on the right panel, one observes that the most
abundant component (neutrons for positive α) gets less
depleted when the asymmetry increases, i.e., neutrons become
“less correlated.” This is in contrast to the FFG results, which,
for neutrons, exhibit no change inside the Fermi sea. The
decrease of depletion for the most abundant component in
this density and temperature should be taken as a pure NN

correlation effect. This behavior can be explained in simple
terms as follows. Although the total number of pairs is the same
when increasing the asymmetry at constant density, some of
the pn pairs are replaced by neutron-neutron pairs. The latter
correlations are weaker than the pn ones, due to the absence of
tensor effects, and therefore neutrons become less correlated
at large α’s. Conversely, the momentum distributions of the
less abundant species (protons) become more depleted with
asymmetry. A single proton sees an increasing number of
neutrons when the asymmetry increases, i.e., pp pairs are
replaced by the more correlated pn pairs, which results into a
more depleted proton momentum distributions. Together with
this, protons “feel” more the effect of temperature. The proton
density in the asymmetric system decreases as α increases.
At finite temperature, this is translated into the fact that np(k)
becomes dominated by thermal effects at large asymmetries
and looks less degenerate. The plateau associated with hole
states, for instance, which is clearly observed for neutrons
at all asymmetries, gets washed out for protons at large
α. Consequently, one should be careful in associating the
increase of the depletion of protons only to dynamical NN

correlation, because the momentum distribution of the less
abundant component might be strongly influenced by thermal
effects.

The information about the isospin dependence of the
depletion is summarized in Fig. 10, where nτ (0) is plotted as a
function of the asymmetry at T = 5 MeV for ρ = 0.16 fm−3

(left panel) and ρ = 0.32 fm−3 (right panel). The FFG (dashed
lines) results are compared to the Av18 (solid lines) and
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FIG. 10. (Color online) Isospin asymmetry dependence of the
neutron (filled circles) and proton (squares) lowest momentum
occupation. Correlated results for the Av18 (solid lines) and CDBonn
(dotted lines) interactions are compared to the free Fermi gas (dashed
lines) predictions.

CDBonn (dotted lines) SCGF predictions. Again, the FFG
results provide a measure of thermal effects. On the one
hand, the occupation of the most abundant component at zero
momentum does not change when the asymmetry increases,
indicating that this species is totally degenerate in the whole
range of asymmetries. On the other hand, the corresponding
occupation of protons (the less abundant component) is close
to 1 at small asymmetries and decreases as the asymmetry
increases. At ρ = 0.16 fm−3, this accounts for a ∼2% effect
for α = 0.6 and a ∼11% for α = 0.8. As a matter of fact,
in the limit α → 1, the protons become an impurity gas in a
Fermi sea of neutrons, thus behaving as a classical gas with
np(0) → 0. The steepness of the change in np(0) depends
on the total density and the temperature of the system. At
a higher density (right panel), the thermal effects affecting
protons do not set in unless the asymmetry is very large and,
even at α = 0.8, the effect is only of ∼2%. Let us stress the
fact that this is a pure thermal effect: for the FFG at zero
temperature, nτ (0) = 1 for both protons and neutrons at all
asymmetries.

For the correlated depletion, the occupation of the zero
momentum state is an increasing (decreasing) function of
the asymmetry for the most (less) abundant component. The
behavior is very similar for both NN interactions, although
the occupations for Av18 are systematically smaller than
those for CDBonn at both densities. The differences between
the two potentials increase with density (see right panel). The
comparison with the FFG allows us to identify the regime
in which NN correlations dominate over thermal effects.
At T = 5 MeV and ρ = 0.16 fm−3, for instance, and up
to asymmetries of about α ∼ 0.4 − 0.6, the occupations of
neutrons and protons can be attributed to dynamical correla-
tions and should provide a good estimate for the case of zero
temperature. Up to these asymmetries, both the neutron and
the proton depletion change almost linearly with asymmetry.
In the left panel, the depletion of protons starts to bend down
for larger asymmetries, attributable to the onset of thermal
effects. In a more degenerate case (right panel), where thermal
effects are almost negligible, the asymmetry dependence of
both nτ (0)’s is again found to be linear.

Asymmetries of stable nuclei belong to the lower range of
asymmetries, i.e., α ∼ 0.2 for 208Pb. The SCGF predictions
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FIG. 11. (Color online) Difference of neutron and proton occupa-
tion of the lowest momentum state as a function of isospin asymmetry
for different interactions. The two panels show results at T = 5 MeV
for ρ = 0.16 fm−3 (left) and ρ = 0.32 fm−3 (right).

should be valid in this range, where thermal effects are unim-
portant. Unfortunately, the difference between the occupation
of protons at this asymmetry and the symmetric case is only
∼2%, too small to allow experimental verification. Nuclei at
larger asymmetry produced at future rare isotope facilities may
provide a better testing ground. Moreover, integrated effects
over the whole neutron and proton density profiles might also
enhance the effect of asymmetry. Let us note that, for finite
nuclei, one should also take into account surface properties
and their isospin dependence. In particular, an asymmetry
dependent effect associated with surface properties has been
identified for protons in Ca isotopes [36,37].

A surprising feature arises when comparing the two panels
of Fig. 10. In spite of the differences observed in both SNM
and PNM for the Av18 and CDBonn results, the asymmetry
dependence of nτ (0) is very similar at all densities. This is
shocking because, as we have stressed so far, both forces have
a rather different short-range behavior and tensor structure.
Given the almost linear dependence of nτ (0) with asymmetry,
a better insight into these differences can be gained by plotting
the difference nn(0) − np(0). In Fig. 11, we present this
“iso-depletion” for different interactions as a function of the
asymmetry at T = 5 MeV for the same densities as before.
The left panel shows that this difference is the same for a
wide variety of modern NN potentials, independently of their
short-range or operatorial structure. This seems to suggests that
the iso-depletion is fixed by the phase shifts, most probably
via their isospin dependence. This is corroborated at higher
densities by comparing the very similar Av18 and CDBonn
predictions (right panel).

In both panels, there are two results that fall below the main
iso-depletion line. Immediately below most of the interactions,
one finds the results corresponding to the Av4′ potential. This
has an extremely simplified operatorial structure, with only
a spin-isospin part and no tensor components, and is fitted
to reproduce the binding energy of the deuteron [62]. The
fact that it lies significantly below the other results shows the
importance of tensor effects for isospin asymmetric systems.
It appears that the tensor force tend to increase the difference
between neutron and proton momentum distributions as
asymmetry increases. Moreover, the comparison with Av6′ and
Av8′ suggests that, once the tensor components are included
in a force, the iso-depletion will remain almost the same
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TABLE I. Occupation of the lowest momentum state for different
NN interactions in symmetric and neutron matter.

Interaction Symmetric Neutron

CDBonn 0.891 0.972
Reid93 0.872 0.962
Argonne v18 0.872 0.957
Argonne v8′ 0.863 0.956
Argonne v6′ 0.879 0.964
Argonne v4′ 0.946 0.971
FFG 0.9993 0.999991

independently of the extra spin-orbit terms. Let us again
stress the fact that such an agreement for different potentials
is very surprising, particularly if one considers the fact that
the momentum distributions of neutrons and protons can be
different for each potential.

The FFG iso-depletion is, in all the cases explored, below
the correlated results, which shows the importance of NN

interaction-induced effects. Let us note that the effect of
beyond mean-field correlations is essential in this case. Mean-
field calculations, either with realistic or phenomenological
forces, will predict results of the same order of magnitude
of the FFG. Again, the latter provides a measure of thermal
effects. In the left panel, for instance, the correlated iso-
depletion at the largest asymmetry considered should be
significantly affected by thermal effects and therefore one
should not take that value as a NN dynamical correlation
effect. For the right panel, thermal effects are suppressed by
degeneracy and the results can be taken as purely interaction-
induced, zero-temperature values.

Table I summarizes the values of n(0) for SNM and
PNM at ρ = 0.16 fm−3 and T = 5 MeV for the different

interactions considered in the left panel of Fig. 11. In all
cases, n(0) for PNM is larger than for SNM, confirming
the notion that, for the same density, neutron matter is less
correlated than nuclear matter. The values of the depletion
for both systems are within less than 5% of each other for
the three phase-shift equivalent potentials (and also for Av6′
and Av8′), which suggests that this quantity is rather well
established at the theoretical level. Numerical uncertainties
are well under control in this case and will only affect the
third significant digit in the correlated calculations. Moreover,
the difference of the occupation between neutron and nuclear
matter is rather constant for all potentials. The conclusion is
therefore warranted that the asymmetry dependence of the
difference between the depletion for neutrons and protons is
rather strongly constrained once an interaction is employed
that yields an accurate description of the NN phase shifts. Av4′
does not reproduce these and produces an unrealistically small
depletion for SNM, thus effectively decreasing the difference
between nuclear and neutron matter. Due to the fact that both
neutron and nuclear matter are degenerate systems at this
density and temperature, as indicated by the extremely small
depletions for the FFG case, these results are not affected by
thermal effects. As a matter of fact, the results obtained with
Reid93 are in very good agreement with previous calculations
at zero temperature for the same potentials, obtained with a
different procedure to implement the SCGF method [47].

The isospin asymmetry dependence of nτ (0) can also be
analyzed in terms of the time-ordered components of the self-
energy. Figure 12 shows the k = 0 imaginary (left panels) and
real (central panels) parts of 	↓, at ρ = 0.16 fm−3 and T =
5 MeV, as a function of the energy for different asymmetries.
Upper (lower) panels display the results for neutrons (protons)
obtained for the Av18 interaction. The increase of isospin
asymmetry has a repulsive effect in the neutron Im	↓, which
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is shifted by almost a constant amount as α increases. The
minimum in this function becomes shallower and the threshold
at ω ∼ µτ is less pronounced. These repulsive effects are
associated with the decreasing importance of the tensor force
for neutrons with increasing asymmetry. As a consequence of
the diminishing threshold behavior, the inverted peak in Re	↓
for neutrons is smeared out at large α’s. The corresponding
partial derivatives (right panels) become smaller in absolute
value and, together with the quasiparticle shift, lead to a
decrease of neutron depletion as asymmetry increases. Let
us note here that the k = 0 quasiparticle energies for neutrons
become more repulsive as asymmetry increases [58]. However,
the distance with respect to the (also more repulsive) chemical
potential increases with asymmetry, providing the shift to more
negative values observed in the figure.

In the case of protons, the situation for the down component
is significantly different. The minimum of Im	↓ becomes
larger as the system becomes more neutron rich and the
threshold is more pronounced. Consequently, the inverted
peak in the real part becomes larger and more attractive.
When the partial derivative is taken (right panel), similar
results are obtained for all asymmetries in the energy region
of interest. This indicates that the effect of asymmetry on
the proton self-energy is mainly energy independent, with
the real part only shifting by a constant at energies ω <∼ µτ .
This is in contrast to the results for neutrons (upper right
panels), where the partial derivative changes substantially
as asymmetry increases, i.e., asymmetry induces energy-
dependent effects for neutrons but not for protons. In spite
of these qualitatively different behaviors, nn(0) and np(0)
deviate from the symmetric value by almost the same amount
as asymmetry increases (see Fig. 10). Similar results have been
obtained for other NN interactions under the same conditions.
In the view of these results, the “universality” found for the
iso-depletion for different interactions appears to be rather
surprising. In spite of having very different Im	↓ components
and predicting different quasiparticle shifts, the differences in
the two momentum distributions are such that they give the
same results independently of the NN force.

VI. CONCLUSIONS

The aim of the present article is to provide a better
understanding of the depletion of the nuclear Fermi sea as
a function of density, temperature, and isospin asymmetry for
different choices of realistic interactions. The SCGF method,
when implemented at the level of ladder diagrams, is capable
of providing answers to these questions with emphasis on the
role of short-range and tensor correlations that are induced by
realistic NN interactions. While long-range correlations have
an additional influence on the depletion of the Fermi sea, it is
expected that they are more important near the Fermi energy.
For a proper comparison with finite nuclei, however, these
long-range volume effects are presumably irrelevant, because
they must anyway be replaced by the surface dominated
physics of low-lying nuclear states. The SCGF study reported
here is performed at finite temperature, on the one hand, to clar-
ify the role of the temperature in determining depletion effects

and, on the other hand, to avoid dealing with the technically
challenging issue of pairing correlations. Because pairing is
confined to energies very near the Fermi energy, at least at
densities relevant for nuclei, our results will not be modified
when such correlations will be considered in the future. We
therefore report results mostly for T = 5 and 10 MeV, well
above any pairing transition temperature for the systems under
study [25]. We have studied both one-component systems
(symmetric matter and pure neutron matter) as a function of
density, as well as isospin-polarized matter as a function of
asymmetry for normal and twice normal density.

Our results indicate that temperature affects n(k) in a
qualitatively similar way as dynamical correlations do. The
two types of correlations, however, induce quantitatively
different effects and can therefore be distinguished. To separate
these components, we have relied on a comparison with
the FFG results, which are only affected by temperature
effects. In the degenerate regime, i.e., at high density and
relatively low temperatures, temperature effects are confined
to a redistribution of particles around the chemical potential
within an energy scale that is proportional to the temperature
considered. Dynamical correlations induced by the short-range
NN repulsion and tensor effects, on the contrary, generate
an almost momentum-independent depletion of the Fermi
sea and, complementarily, lead to an occupation of high-
momentum states far from the Fermi momentum.

The CDBonn and Av18 interactions have been employed
to identify possible differences for the resulting nuclear
momentum distributions. For symmetric nuclear matter and
neutron matter, the depletion for k = 0 is strongly influenced
by temperature at low densities. Once a density corresponding
to ρ = 0.08 fm−3 is reached in PNM, short-range correlations
lead to slowly increasing depletion as a function of density.
This behavior is intuitive, because neutrons will be exposed
more frequently to their mutual repulsion with increasing
density, thus enhancing their occupation of high-momentum
states, and, accordingly, increasing the depletion of the Fermi
sea. For SNM, this behavior is not observed. The depletion
saturates for the Av18 beyond normal density at a value of
about 12%, while it continues to decrease for CDBonn. The
larger depletion of the Av18 as compared to CDBonn further
emphasizes that the first is a slightly harder NN interaction.
This is also illustrated by the different behavior of their self-
energies. To understand this puzzling density dependence, we
have utilized an approximate relation between the momentum
distribution and energy derivatives of the real part of the time-
ordered self-energy taken at the corresponding quasiparticle
energy (emphasizing the importance of self-consistency). For
momenta below kF , this result is valid when the energy
dependence of the real part of the self-energy associated
(through a dispersion integral) with the imaginary part above
the chemical potential is essentially linear. For momenta above
kF , a similar relation holds when the real part of the self-energy
is considered that is related to the imaginary part below the
chemical potential. Near the Fermi momentum and at low
densities, this approximation ceases to be valid. However,
for most situations considered in this article, it provides
an excellent approximation to the momentum distribution
calculated from the self-consistent spectral function.
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To utilize this relation, we have generated the time-
ordered contributions to the nucleon self-energy at finite
temperature. This allows us to gain access to the appropriate
energy derivatives. Finite-temperature calculations are nor-
mally performed with retarded quantities, but the “particle”
and “hole” decomposition of the self-energy provides a more
suitable connection with the corresponding results at zero
temperature. The relevant self-energy components for de-
termining the occupation inside the Fermi sea indeed shed
light on the anomalous density dependence of the depletion
in symmetric nuclear matter. Mainly due to the tensor force,
there is a an important threshold behavior in the imaginary part
of the self-energy above the chemical potential in symmetric
matter, which is absent in neutron matter. For CDBonn, the
threshold gives rise to an inverted peak in the corresponding
real part that moves to higher energy with increasing density,
yielding an almost density independent derivative. Because
the tensor force also leads to more binding with increasing
density, the location of the derivative moves farther away
from the peak with density, thereby decreasing its absolute
value and accordingly the depletion of the Fermi sea. For the
Av18 interaction, the energy derivative decreases with density
on account of its less dramatic threshold behavior for the
imaginary part, yielding similar binding from an imaginary
part that is significantly stronger than for CDBonn, but peaking
at much higher energy. Because the binding effects are similar
to those for CDBonn, the two effects compensate leading to
the saturating behavior of the depletion observed in Fig. 2. For
neutron matter, the 3S1-3D1 coupled partial wave is absent and
no strong threshold behavior is generated in the imaginary part
for both interactions. This leads to the more intuitive behavior
that the depletion increases with the density.

For asymmetric systems, we find a significant change of
depletion with isospin asymmetry. We identify a temperature
effect for the minority protons (but not for the majority
neutrons) at an asymmetry beyond α = 0.4 at T = 5 MeV

and normal density, due to the corresponding low density
for protons. For twice normal density, the temperature effect
does not play a role up to an extreme asymmetry of 0.8. The
effect was implicit (and stronger) in earlier results obtained
at T = 10 MeV [24]. The remaining difference between
the neutron and proton depletion is due to the decreased
(increased) importance of tensor correlations for neutrons
(protons). By considering also different operatorial clones of
the Av18 interaction, like Av8′, Av6′, and Av4′, we can indeed
unambiguously demonstrate that this difference is associated
with the tensor force. More importantly, this iso-depletion is
independent of the chosen interaction and therefore determined
solely by phase shifts at least up to twice normal density.

We close this discussion by noting that the employed
interactions appear to slightly underestimate the depletion of
the experimentally determined depletion of the deep proton
mean-field orbits in 208Pb [16]. Interactions with an even
stronger repulsion, like the Reid soft core [73], yield a slightly
larger depletion of about 15% [27,34,74]. Nevertheless, while
there remains a few percentages of uncertainty as to the
exact amount that is experimentally required, it is also clear
that very different interactions, including modern ones, still
lead to very similar predictions for the depletion of the
nuclear Fermi sea. Such depletions can be reliably calculated
with the SCGF method. When lattice QCD calculations
yield unambiguous information about the short-range NN

repulsion, the remaining uncertainty about the depletion of
the nuclear Fermi sea might eventually be eliminated.
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