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We present calculations of fission properties for heavy elements. The calculations are based on the macroscopic-
microscopic finite-range liquid-drop model with a 2002 parameter set. For each nucleus we have calculated the
potential energy in three different shape parametrizations: (1) for 5 009 325 different shapes in a five-dimensional
deformation space given by the three-quadratic-surface parametrization, (2) for 10 850 different shapes in a
three-dimensional deformation space spanned by ε2, ε4, and γ in the Nilsson perturbed-spheroid parametrization,
supplemented by a densely spaced grid in ε2, ε3, ε4, and ε6 for axially symmetric deformations in the neighborhood
of the ground state, and (3) an axially symmetric multipole expansion of the shape of the nuclear surface
using β2, β3, β4, and β6 for intermediate deformations. For a fissioning system, it is always possible to define
uniquely one saddle or fission threshold on the optimum trajectory between the ground state and separated fission
fragments. We present such calculated barrier heights for 1585 nuclei from Z = 78 to Z = 125. Traditionally,
actinide barriers have been characterized in terms of a “double-humped” structure. Following this custom we
present calculated energies of the first peak, second minimum, and second peak in the barrier for 135 actinide
nuclei from Th to Es. However, for some of these nuclei which exhibit a more complex barrier structure,
there is no unique way to extract a double-humped structure from the calculations. We give examples of such
more complex structures, in particular the structure of the outer barrier region near 232Th and the occurrence of
multiple fission modes. Because our complete results are too extensive to present in a paper of this type, our aim
here is limited: (1) to fully present our model and the methods for determining the structure of the potential-energy
surface, (2) to present fission thresholds for a large number of heavy elements, (3) to compare our results with
the two-humped barrier structure deduced from experiment for actinide nuclei, and (4) to compare to additional
fission-related data and other fission models.
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I. INTRODUCTION

In fission a nucleus evolves from a single ground-state shape
to separated fission fragments. A key question is, what are the
optimum trajectories and the associated shapes and energies
along these trajectories? In particular, what is the maximum
energy along the optimum trajectory (barrier height), what are
the symmetries of the nucleus at this saddle point, and what
is the level density at the saddle? The saddle-point energy
will tell us if thermal-neutron-induced fission is energetically
possible. The balance between the neutron separation energy
and fission-barrier height is decisive for determining the
behavior of different actinide isotopes in a nuclear reactor
and the nature of the termination of element synthesis in the
r-process. The heaviest nucleus that can be formed in the
r-process is determined by where the onset of neutron-induced
fission occurs. As another example, if the Q value for electron
capture (EC) is sufficiently large to allow states above or just
below the fission barrier in the daughter to be populated, then
electron-capture-delayed fission is possible.

Since the discovery of fission, it has been customary to
begin the characterization of the process by calculating the
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potential energy of a nucleus as a function of shape. Soon
after the discovery of fission in 1938 the potential energy was
described in terms of a liquid-drop model in which the potential
energy is the sum of shape-dependent surface and Coulomb
energy terms. This description was first invoked by Meitner
and Frisch [1] and soon put on a more quantitative basis in the
seminal paper by Bohr and Wheeler [2].

Several subsequent developments led to the much more
complete theoretical picture of the fission potential energy that
exists today, as is schematically illustrated in Fig. 1. In the first
model of the fission barrier, the liquid-drop model, Bohr and
Wheeler [2] expanded the Coulomb and surface energies to
fourth order in α2, the lowest-order coefficient in an expansion
of the reflection and axially symmetric shape in Legendre
polynomials. With this approximation, they could determine
barrier heights and corresponding deformations for very heavy
nuclei. By clever formulations, they were also able to deduce
the barriers of light nuclei and by interpolation span the
region in between, thus obtaining estimates of fission barriers
throughout the periodic system. In an important 1947 paper
which foreshadowed many of the developments to emerge
more than a decade later, Frankel and Metropolis [3] calculated
the Coulomb and surface energies of more highly deformed
nuclear shapes using numerical integration. This was one of
the first basic-physics calculations done on a digital computer.
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FIG. 1. Historical development of
fission-barrier theory. For details, see
the text.

For more than a decade afterward, developments reverted
to attempting to model the macroscopic energies by more
complicated expansions in deformation parameters, which
was never completely satisfactory because of convergence
difficulties. When numerical calculations were resumed in
earnest around 1960, major progress in understanding the
liquid-drop model rapidly followed. In a parallel development,
in 1955 Swiatecki [4] suggested that more realistic fission
barriers could be obtained by adding a “correction energy” to
the minimum in the liquid-drop-model barrier. The correction
was calculated as the difference between the experimentally
observed nuclear ground-state mass and the mass given by
the liquid-drop model. Swiatecki obtained much improved
theoretical spontaneous-fission half-lives based on these mod-
ified liquid-drop-model barriers. These observations formed
the basis for the shell-correction method. In the mid-1960s,
Strutinsky [5,6] presented a method to theoretically calculate
these shell corrections. His method and parallel experimental
results led to the realization that actinide fission barriers are
“double-humped”: beyond the ground-state minimum there
are two saddles or maxima in the fission barrier, separated by
a fission-isomeric second minimum. Later, Nix [7] proposed
that certain experimental data could best be explained if the
outer barrier peak were split into two peaks separated by a
shallow third minimum. In these early studies, the fission
potential energy, was usually calculated only for a few hundred
nuclear shapes. However, to obtain a realistic picture of the
potential energy, it is necessary to calculate the energy for
several million different shapes and use special techniques
for identifying relevant saddle points on the paths from the
nuclear ground state to the separated fission fragments. We
have explored some of the consequences of this approach in a
series of papers [8–12].

The complete specification of our macroscopic-
microscopic model of potential energy for a given shape has
been given elsewhere [13]. Some references in Ref. [13] that
give additional background information are included here as
Refs. [14–22]. We limit this presentation to the specific details
of how we apply the model in the current calculations. Since
many issues related to determining fission saddle points appear
to be poorly understood, we discuss these crucial issues in
some detail. In particular, there is a belief that the Hartree-Fock
(HF) method automatically takes all higher shape degrees of
freedom into account and that this means that saddle points
are well determined in this method. This was first stated
in 1973 [23] and repeated in 1980 in a commonly used
textbook [24], in which it is also stated that one-constraint
HF calculations are superior to macroscopic-microscopic
Strutinsky calculations which must calculate multidimensional
surfaces. Both assertions are incorrect. Deficiencies that are
similar to those of constrained HF calculations, but not
identical, are present in macroscopic-microscopic calculations
that display results versus two variables, say β2 and β3, and
minimize the energy with respect to additional multipoles
rather than calculate the complete deformation space in all
the variables considered. We show by specific examples
that even in Hartree-Fock-Bogoliubov (HFB) calculations
with multiple constraints, saddle-point shapes and energies
frequently cannot be determined accurately and are subject
to errors of fairly random magnitude. In brief, the source of
the errors is that the unconstrained shape variables vary in
an uncontrolled fashion and may assume values that lead the
method to converge to apparent saddle points that lie high
up on a mountain side, rather than to the optimum saddle
between the ground state and separated fragments. In contrast,
shape variables in our method are completely specified and are
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therefore totally controlled. Rather than being a weakness of
our method, it is a significant strength. We provide details in
Secs. II and III.

We use previously developed techniques to perform a
systematic calculation of fission potential-energy surfaces for
5254 nuclei from A = 171 to A = 330 from the proton drip
line to the neutron drip line in three different deformation
spaces for each nucleus. We calculate potential energies
in a five-dimensional (5D) space for 5 009 325 different
shapes, in a three-dimensional (3D) space that includes axial
asymmetry for 10 850 different shapes, and in a constrained β

parametrization; details are given below.
We also devote special attention to the determination of

ground-state shapes and energies. The fission-barrier height
is the difference between the saddle-point energy and the
ground-state energy. We considerably improve the calculations
of ground-state shapes and energies compared with those on
which our 1995 mass tables [13] are based. In the 1995 work,
true minimizations were done in a two-dimensional (2D)
coordinate space on a fairly coarse grid. Two extra degrees
of freedom were separately investigated in one-dimensional
studies with these two coordinates held fixed. We have
improved the specification of the ground state in several ways.
The determination of the ground-state energy is based on a
calculation in a four-dimensional (4D) grid in ε2, ε3, ε4, and
ε6, with a spacing of 0.01 in all four coordinates. In addition
we study the effect of axial asymmetry in a 3D deformation
space. Finally, the decision of which of several minima is the
ground state is based on a consideration of the fission-barrier
height with respect to the various minima.

Our complete results are too extensive to present in a paper
of this type, so we have elected to present here: (1) calculated
barrier heights (one number) for 1585 nuclei from Z = 78
to Z = 125 from the proton drip line to about five neutrons
beyond β stability, (2) calculated “double-humped” barrier
structures for 135 actinide nuclei from Th to Es, and (3) a
discussion of how characteristic features of the saddle-point
shape, features that only emerge in very detailed fission
potential-energy calculations, have substantial influence on
saddle-point level densities. More neutron-rich nuclei are not
accessible on earth and will be discussed in a subsequent
paper with an astrophysical focus. It is expected that the
detailed information on the structure of fission barriers that
we have uncovered will go beyond “statics” and also be
useful in improving and constraining nuclear reaction codes
used to model cross sections and support future advances in
the ENDF/B-VII cross-section data base [25]. Apart from
level-density results, we also give some examples of fission
half-life calculations based on our calculated potential-energy
surfaces.

II. MODELS

We calculate the fission potential energy as a function of
shape in the macroscopic-microscopic model. Because our
model of the nuclear potential energy is not an analytical
expression in terms of deformation parameters, there is in
a static calculation no a priori way to know which shapes
we need to study to find the optimum path and saddle point

between a single ground-state shape and separated fragments.
We need to calculate the energy for all shapes that could
conceivably be relevant. In the nuclear-physics community,
there have existed significant misconceptions about the need
to calculate the energy for all shapes that might be of relevance.
Various shortcuts have been employed, such as minimiza-
tion with respect to additional shape degrees of freedom
beyond, for example, the quadrupole and octupole moments in
either macroscopic-microscopic calculations, or constrained
Hartree-Fock models. These shortcuts are inadequate, as
we discuss in Secs. III and IV. The issues involved may be
made more clear by use of an analogy, namely, finding the
optimal route and lowest saddle point (“pass”) between the
U.S. Atlantic and Pacific coasts. This problem cannot be solved
by considering only local properties of the topography. The
solution requires a global consideration of the entire landscape
of the United States [26]. The same is true for the energy
landscape relevant to fission. It is necessary to have available
for analysis a “topographical map” of the entire landscape. We
now define the shape coordinates we have chosen to study in
order to obtain a sufficiently complete landscape.

A. Shape parametrizations

The potential-energy surfaces that serve as the starting point
for finding saddle points, minima, and other structures such
as fission valleys beyond the outermost saddle are calculated
in three different shape parametrizations, depending on the
deformation region studied. Our aim is to use an optimal
parametrization in each region of deformation. We believe our
studies are unique in their capability to use more than one shape
parametrization in the same physical model, and to compare
them in regions where they overlap (see Sec. IV). The three
parametrizations we use are the Nilsson perturbed-spheroid (ε)
parametrization, the β parametrization, and the Swiatecki-Nix
three-quadratic-surface (3QS) parametrization [27,28]. The ε

parametrization is able to describe shapes from somewhat
oblate shapes through the sphere out to shapes in the vicinity
of the fission-isomeric state. We use it to describe axially
asymmetric shapes in the region between the prolate and oblate
axes out to ε2 = 0.75. The β parametrization, in which the
β’s are coefficients in an expansion in spherical harmonics
of the nuclear surface function, restricted in this work to
axial symmetry, describes shapes in the same region, but is
useful for slightly larger deformations. However, because it
is an expansion, many terms would be required to describe
realistic saddle-point shapes with small necks. Although it is
indeed trivially simple to describe shapes with small necks in
this parametrization, a major difficulty is that no independent
control can be exercised over the shapes of the emerging
fragments late in the fission process. Thus, it is difficult
to generate a smooth shape consisting of, for example, an
exactly spherical, partially formed fragment joined by a neck
region to a partially formed deformed fragment. In the 3QS
parametrization, on the other hand, these exactly spherical
and spheroidal partial fragments are easy to describe. The
3QS parametrization is therefore the most suitable of the three
for studying shapes from the fission-isomeric minimum to
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scission. Shapes and energies of the fission-isomeric state can
be calculated accurately in all three parametrizations and the
energies and deformations obtained with the three different
parametrizations agree very well as we elaborate below. This
agreement constitutes an excellent test of our model and
computer codes. In making our tables and figures, we compare
the results in all three parametrizations and choose the lowest
result obtained for the minima and saddle points. We now
define the three parametrizations and how we choose our
deformation grid in each of them.

1. Nilsson perturbed spheroids

For small to moderate deformations, we use the Nilsson
perturbed-spheroid (ε) parametrization. Because its precise
definition is quite lengthy, we refer to our mass paper [13]
for complete details. (Some misprints have been corrected in
Ref. [29].) We calculate the potential energy in a three-
dimensional deformation space versus ε2 (elongation), ε4

(neck coordinate), and γ (axial asymmetry) for the deforma-
tion space spanned by

ε2 = (0.0, 0.025, . . . , 0.75),

γ = (0.0, 2.5, . . . , 60.0), and

ε4 = (−0.12,−0.10, . . . , 0.14),

altogether 10850 different shapes for each nucleus. Our immer-
sion method (see Sec. III) is used to investigate the structure
of each potential-energy surface we calculate. Specifically
we tabulate all minima and the saddle points between all
possible pairwise combinations of minima. We use all axially
symmetric minima found to calculate improved ground-state
energies and deformations. We use the ε2 and ε4 values at
these minima as starting points for a separate minimization in
a four-dimensional space defined by the coordinates ε2, ε3, ε4,
and ε6. Two minimizations are performed, one starting with
ε3 = 0.0 and ε6 = 0.0 and a second starting with ε3 = 0.1 and
ε6 = 0.0. All four coordinates are varied in steps of 0.01.

2. Multipole expansion

One commonly used parametrization of nuclear shapes is
the β parametrization. It is an expansion of the radius vector
in spherical harmonics:

r(θ, φ) = R0

(
1 +

∞∑
l=1

l∑
m=−l

βlmYm
l

)
, (1)

where R0 is deformation-dependent so as to conserve the vol-
ume inside the nuclear surface. When only axially symmetric
shapes are considered, the notation βl is normally used for βl0.
Since the spherical harmonics Ym

l are orthogonal, one may
determine the β parameters corresponding to any shape defined
by a radius vector r(θ, φ) in any parametrization, including the
ε parametrization, by the use of

βlm =
√

4π

∫
r(θ, φ)Ym

l (θ, φ)d	∫
r(θ, φ)Y 0

0 (θ, φ)d	
(2)

where r is the radius vector in the other parametrization.
Higher-order β parameters corresponding to a specific shape

in the ε parametrization are generally nonzero even if the
higher-order ε parameters are identically zero. A shape in the
ε parametrization for which ε2 �= 0 and all higher εν are zero
is a pure spheroid, and conversely a shape with only β2 �= 0 is
not a pure spheroid.

We use the axially symmetric β parametrization to calculate
constrained one-dimensional “fission-barrier” curves that are
plotted as a function of the charge quadrupole moment Q2.
We use two different elongation constraints: (1) the distance
r between mass centers of the two parts of the nucleus [18,
21,30,31] and (2) β2. For each of the two constraints, we
minimize the energy with respect to β3, β4, and β6, using the
values at the previous elongation as starting values. During the
minimization iterations using the constraint r, β2 is varied so
that the constraint is maintained. We do this mainly to illustrate
that constrained methods in practice may yield incorrect saddle
points. However, minima are usually correctly given by this
procedure. As mentioned earlier, when we tabulate or plot
a saddle-point energy or the energy of a minimum, we look
at the results obtained for this particular point in all three
parametrizations and use the lowest value.

3. Three quadratic surfaces

From Sec. III, it is clear that to determine the structure
of a multidimensional fission potential-energy function, it is
necessary to calculate a complete hypercube or hypervolume
in the multidimensional space. Because nascent-fragment
shell effects strongly influence the structure of the fission
potential-energy surface long before scission, often by the
outer saddle region, it is crucial to include the nascent-fragment
deformations as two independent shape degrees of freedom.
In addition, elongation, neck diameter, and mass-asymmetry
degrees of freedom are also necessary, leading to a minimum
of five shape coordinates required to adequately describe the
fission potential-energy surface in the region between the
fission isomer and scission.

The 3QS parametrization ideally satisfies these require-
ments. In this parametrization, the shape of the nuclear surface
is specified in terms of three smoothly joined portions of
quadratic surfaces of revolution. They are completely specified
[28] by

ρ2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2
1 − a2

1

c2
1
(z − l1)2, l1 − c1 � z � z1,

a2
2 − a2

2

c2
2
(z − l2)2, z2 � z � l2 + c2,

a2
3 − a2

3

c2
3
(z − l3)2, z1 � z � z2.

(3)

Here the left-hand surface is denoted by the subscript 1, the
right-hand one by 2, and the middle one by 3. Shapes 1 and 2
are spheroids, for which c is the semi-symmetry axis length, a
is the semi-transverse axis length, and l specifies the location of
the center of the spheroid. The middle body may be a spheroid
or a hyperboloid of one sheet, for which c3 is imaginary. At
the left and right intersections of the middle surface with the
end surfaces, the value of z is z1 and z2, respectively. Surfaces
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FIG. 2. (Color online) Five-dimensional shape parametrization
used in the potential-energy calculations. Different colors indicate
the three different quadratic surfaces defined by Eq. (3). The
first derivative is continuous where the surfaces meet. Note that
everywhere in this paper we give the charge quadrupole moment
Q2 in terms of 240Pu with the same shape as the nucleus considered,
so there is no nuclear size or charge effect in Q2. The end-body
masses, or equivalently volumes, M1 and M2, refer to the left and
right nascent fragments were they completed to closed shapes. For
the nascent spheroidal fragments we characterize the deformations
by Nilsson’s quadrupole ε parameter.

1 and 2 are also referred to as end bodies and, alternatively,
nascent fragments. They are indicated in red in Fig. 2.

There are 11 numbers required to specify the expressions
in Eq. (2), but the conditions of constancy of the volume and
continuous function and first derivative at z1 and z2 eliminate
five numbers. The introduction of an auxiliary unit of distance
u through

u =
[

1

2

(
a2

1 + a2
2

)] 1
2

(4)

permits a natural definition of two sets of shape coordinates.
We define three symmetric coordinates σi and three reflection-
asymmetric coordinates αi by

σ1 = (l2 − l1)

u
,

σ2 = a2
3

c2
3

,

σ3 = 1

2

(
a2

1

c2
1

+ a2
2

c2
2

)
,

α1 = 1

2

(l1 + l2)

u
,

α2 =
(
a2

1 − a2
2

)
u2

,

α3 = a2
1

c2
1

− a2
2

c2
2

. (5)

The coordinate α1 is not varied freely but is determined by
the requirement that the center of mass be at the origin, which
leaves us with five independent shape coordinates.

When a grid of deformation points is selected in the
3QS parametrization, a substantial practical problem is that
not all values of the deformation parameters correspond
to a physical shape. Another complication is that some of
the shape parameters are rather indirectly related to more
familiar quantities associated with nuclear shapes. To generate
a reasonable deformation grid in the 3QS parametrization,
we therefore select the input deformations by starting from
more familiar geometrical concepts.

First, it is reasonable to expect that at some stage of the
fission process the shape of the emerging fragments will start
to resemble the ground-state shapes of the final fragments. In
terms of the Nilsson perturbed-spheroid ε2 parameter [32–34]
we designate the shape of surface 1 by εf1 and the shape of the
other end body by εf2. The deformation parameters σ3 and α3

are connected to εf1 and εf2 by the relations

σ3 = 1

2

[(
3 − 2εf1

3 + εf1

)2

+
(

3 − 2εf2

3 + εf2

)2
]

(6)

and

α3 =
[(

3 − 2εf1

3 + εf1

)2

−
(

3 − 2εf2

3 + εf2

)2
]

. (7)

In our present calculation we investigate spheroidal shapes of
the end bodies that in terms of εf1 and εf2 correspond to the set

{−0.2,−0.15,−0.1, 0.00, 0.1, 0.15, 0.175, 0.2,

0.225, 0.25, 0.275, 0.3, 0.35, 0.4, 0.5}. (8)

This set includes most fission-fragment ground-state shapes.
It is not necessary to consider higher deformation components
such as ε4. For ground states of nuclei lighter than the rare
earths, that is, in the fission-fragment region relevant to this
study, higher shape multipoles usually lower the ground-state
energies by considerably less than an MeV. Thus we have
15 left- and 15 right-fragment deformations. Each nascent-
fragment deformation set includes the sphere and three oblate
shapes.

A common notation used to characterize the fragment
mass asymmetry of a fission event is MH/ML where MH

and ML are the masses of the heavy and light fission
fragments, respectively. For the purpose of grid generation
for the potential-energy calculation, it is convenient to relate a
mass-asymmetry shape degree of freedom for the prescission
nucleus to the final fission-fragment mass asymmetry in some
fashion, although the final mass division, strictly speaking,
cannot be determined from the static shapes occurring before
scission. However, the exact nature of our definition of
mass asymmetry for a single shape has no effect on the
calculated saddle-point energies and shapes because our 5D
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grid covers all the physically relevant space available to the
3QS parametrization, regardless of how we choose to define
the “mass-asymmetry” coordinate. So that we obtain equations
that are reasonably simple to work with for the purpose of
grid generation, we define an auxiliary grid mass-asymmetry
parameter αg

αg = M1 − M2

M1 + M2
(9)

where M1 and M2 are the volumes inside the end-body
quadratic surfaces, were they completed to form closed-surface
spheroids. Thus

αg = a2
1c1 − a2

2c2

a2
1c1 + a2

2c2
. (10)

The 3QS parameter α2 is then completely determined by the
relation

α2 = 2

(
( αg+1 )2 (2 σ3+ α3 )
( αg−1 )2 (2 σ3− α3 )

)1/3
− 1(

( αg+1 )2 (2 σ3+ α3 )
( αg−1 )2 (2 σ3− α3 )

)1/3
+ 1

(11)

for specific values of εf1 and εf2 of the end bodies, which
determine σ3 and α3. With this definition we select 35 grid
points corresponding to

αg = −0.02, 0.00, . . . , 0.66. (12)

We have closely spaced the asymmetry coordinate so that
points on the grid close to fragment magic proton and neutron
numbers will be included; in a more sparsely spaced grid they
may not appear. For 240Pu the values 0.00, 0.02, and 0.66 of
the mass-asymmetry coordinate αg correspond to the mass
divisions 120/120, 122.4/117.6, and 199.2/40.8, respectively.

Because of the intuitive appeal of the notation MH/ML, we
use it below to characterize the “asymmetry” of a single shape.
We then connect MH and ML to αg through

MH = A
1 + αg

2
and ML = A

1 − αg

2
(13)

for a nucleus with A nucleons for which the left fragment is
heavier that the right, which is the case for all our examples
below. For shapes with a well-developed neck, the ratio
obtained with this definition can be expected to be close to
but not equal to the final fragment mass-asymmetry ratio. We
cannot conveniently use M1 and M2 to designate the final
fragment mass asymmetries, because they do not sum up to the
total nuclear volume or mass. Equation (13) simply represents
a scaling of M1 and M2 so that their sum after scaling adds up
to the total mass number A.

We select the deformation parameter σ1 so that our grid
consists of 45 values of the quadrupole moment Q2. That is,
for each combination d, αg, εf1, and εf2 we determine by a
numerical procedure 45 values of σ1 so that 45 preselected
values of Q2 are obtained.

The electric multipole moment Qλ for a homogeneously
charged, sharp-surfaced volume is defined by

Qλ = 2

(
3Z

4πr0
3A

) ∫
V

rλPλ(cos θ )d3r (14)

In a cylindrical coordinate system, such as the 3QS
parametrization, this simplifies to

Qλ =
(

3Z

r0
3A

) ∫
V

√
ρ2 + z2λρPλ

(
z√

ρ2 + z2

)
dρ dz. (15)

To remove a trivial size and charge effect, we normalize the
value of Qλ to that possessed by a 240Pu nucleus having the
same shape.

In the selection of σ2 values, it is useful to observe that
for small values of σ1 there is a minimum neck diameter
d > 0. At a certain transition point σ1 = σ1t a zero-width
neck d = 0 can form. This transition configuration, for which
the middle body is absent, is the scission configuration of
completely formed spheroidal fragments, or, alternatively the
polar-parallel [35] touching configuration of colliding heavy
ions. For this configuration we find in the completely general
case of arbitrary mass asymmetry and end-body eccentricities:

σ1t =
√

α2 α3−2 α2 σ3+2 α3−4 σ3
α2 α3+2 α2 σ3−2 α3−4 σ3

+ 1√
α3−2 σ3
α2−2

. (16)

Because the fission saddle point occurs before scission for
heavy systems, we do not investigate the separated-fragment
configurations requiring a two-sheet hyperboloid for the
middle body that can occur in the region σ1 > σ1t. Thus, for
σ1 < σ1t the minimum value of the neck that we consider is the
minimum value allowed by the parametrization. For σ1 > σ1t

the minimum value of the neck is zero, corresponding to a
scission configuration. Based on these considerations we select
15 values of σ2 so that for each combination of Q2, εf1, εf2,
and αg we obtain a suitable spacing for d in the range between
the smallest and largest value possible for this highly nonlinear
variable.

This choice of deformation coordinates would be expected
to yield 5 315 625 grid points in the full 5D space of the
parametrization. In fact, our study completely exhausts the
physically relevant space available in this parametrization.
However, shapes corresponding to certain quadrupole mo-
ments do not exist for specific combinations of the other shape
parameters. For example, zero quadrupole moment cannot be
realized for shapes with very prolate end fragments. In our
grid, there exist 306 300 such “unphysical” points. Thus we
are left with 5 009 325 shapes for which we actually calculate
the potential energy.

To summarize, we consider the physically relevant part of
the full 5D space of the 3QS parametrization in terms of 45
values of the renormalized charge quadrupole moment Q2,
15 values of the neck diameter d, 15 values of the fragment
deformations ε for each of the two nascent fragments, and 35
values of the mass asymmetry αg = (M1 − M2)/(M1 + M2),
where M1 and M2 are the volumes of the left and right nascent
fragments were they completed to closed shapes. The various
shape coordinates are enumerated in Fig. 2, where an example
of a shape is shown. We have earlier [8] emphasized that it is
important to consider a dense grid in ε and mass asymmetry
because fragment shell corrections vary rapidly in a narrow
range of these deformation coordinates. For example, near
132Sn, the microscopic corrections vary by 1 MeV for a change
of Z or N by one unit [13].
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B. Potential energy

For a specific prescribed shape, the main steps to determine
the potential energy are the following:

(i) The macroscopic surface, Coulomb, and additional
shape-dependent energy terms, if any, are calculated
and the macroscopic energy is determined.

(ii) A single-particle potential of the prescribed shape is
generated numerically on a spatial grid of sufficient
density to yield the required accuracy in numerical
calculations of the matrix elements of the Hamiltonian.

(iii) The single-particle Hamiltonian based on the above
spatial part plus a spin-orbit interaction is diagonalized
and single-particle levels are obtained.

(iv) The single-particle levels serve as the starting point
for calculating the microscopic shell corrections for
protons and neutrons by use of Strutinsky’s method
[5,6] and microscopic pairing corrections based on the
Lipkin-Nogami method in the form implemented in
Ref. [19].

(v) The shell- and pairing-correction terms for neutrons and
protons are added to the macroscopic energy to obtain
the total potential energy. All total potential energies
in this work are expressed with respect to our defined
reference point, the macroscopic energy of the spherical
shape.

The single-particle model used in our calculation is the
folded-Yukawa model completely specified in our 1995 mass
paper [13], with additional discussions and investigations in
Refs. [14–22]. For the macroscopic model, we use the finite-
range liquid-drop model (FRLDM) which is also specified in
that paper, supplemented by the explicit inclusion of a shape-
dependent Wigner energy [12,18], which only contributes for
shapes with necks. However, because the use of many more
points in more general deformation spaces systematically leads
to lower saddle points than were obtained for fission barriers
in the 1995 paper, which used more than 20 000 times fewer
points, it was necessary to redetermine the coefficients of the
macroscopic FRLDM. This work is described in Ref. [12].
It is noteworthy that the improved barrier modeling led to a
model in which calculated barriers agree with data significantly
better than in the 1995 model, while the mass-model error
also decreased, by more than 2%, although none of the
ingredients other than the macroscopic-energy coefficients
in the mass model itself were changed. In our studies of
large-dimensional deformation spaces we have observed that
the other macroscopic model used in the 1995 mass paper,
the finite-range droplet model (FRDM), cannot be applied
to strongly deformed shapes with narrow neck regions. Such
shapes are important for describing saddle points of lighter
nuclei, and for modeling the fission process between the
saddle and the scission points. The reason is that some of
the terms occurring in the FRDM energy expression were
derived assuming small deformations around a spherical shape.
However, we find that this model is still our preferred model
for nuclear masses since it describes masses more accurately
than the mass model based on the FRLDM and since no ground
states involve such highly deformed shapes.

Our main emphasis is to calculate fission-barrier heights.
Fission barriers of actinide nuclei are often “double-humped”
and the first saddle, second (fission-isomeric) minimum and
second saddle are usually denoted by EA, EII, and EB respec-
tively. Outside a narrow range of actinide nuclei the fission
barrier is more complex than a simple double-humped barrier,
and the above parameters cannot be uniquely defined from the
calculated potential-energy surfaces. We will elaborate later.
However, all calculated potential-energy surfaces uniquely
possess one maximum fission-barrier height, and for most
nuclei in our study we therefore present only this unique
fission-barrier height.

In a few cases, we present complete fission-barrier curves;
that is, we plot the energy along optimal paths in the higher-
dimensional energy landscapes versus deformation. In the
region beyond the fission-isomeric state, there is often more
than one valley in the calculated five-dimensional energy
landscape. The valleys are separated by ridges, which can be
several MeV high. Sometimes distinctly different saddle points
separate these valleys from the fission-isomeric state. In other
cases, the additional valleys in the landscape develop beyond
the outer saddle so that there is only one saddle between these
valleys and the fission-isomeric states. For a few nuclei, we
present some of these features in the fission-barrier plots.

In our computer model, most of the time is used to calculate
the single-particle levels. Once the levels are determined, the
time needed to calculate the shell corrections and macroscopic
contributions to the potential energy is almost negligible.
The same set of levels can be used to calculate the shell
corrections for several neighboring nuclei to satisfactory
accuracy. However, excursions too far away would lead to
inaccuracies because the single-particle well radius changes
with the size of the system, and other parameters such as
the spin-orbit strength also change slowly with nuclear size.
In our calculation, we consider nuclei between the neutron
and proton drip lines (beyond which nuclei are unstable
with respect to neutron or proton emission) from A = 171
to A = 330. We divide this region into 24 subregions, each
of which is sufficiently limited so that within each region
the shell correction can be calculated from the same set
of single-particle levels. These regions are defined by first
selecting nuclei lying in eight strips with mass number A

between 171 and 190, 191 and 210 and so on, with each
strip including 20 mass chains. We then divide each of these
strips into three regions: one region on the proton-rich side of
β stability, one region containing β-stable and near-β-stable
nuclei, and one region on the neutron-rich side of β stability.
In each region, we calculate the energy of each nucleus for the
entire space of deformations using the single-particle levels
found for a central nucleus of the region.

The high-dimensional potential-energy space of each nu-
cleus is then analyzed by immersion techniques described in
Sec. III and all minima and all saddle points are identified. The
energies at these deformations are recalculated with the precise
model parameters for the nucleus under consideration; that is,
the potential radii, depths, and other quantities that characterize
the single-particle potential and which are all slowly varying
functions of Z and N assume exactly their proper values for
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this nucleus. This means that we assume that the location of
a minimum or saddle is less sensitive to parameter variations
than is the energy itself. We have performed numerous checks
of this assumption and find it is fulfilled to a very high degree.

In the β parametrization, we limit ourselves to constrained
calculations. As discussed in Sec. III, such an approach
often does not lead to a correct determination of saddle
points. However, minima are usually well determined. In the
constrained calculation, we vary β2 to fulfill an elongation
constraint, and minimize the energy with respect to β3, β4, and
β6. The starting values of the higher multipoles are those of the
previous point. Because the minimization approach requires
the calculation of energies of so few shapes compared with
the immersion approach, in this calculation we do not use a
common set of single-particle levels for several nuclei, we
instead perform the calculations individually for each system.
We investigate two different elongation constraints. One is
the distance r between mass centers of the two halves of the
nucleus; for definitions, see Refs. [18,21,30,31]. In a second
study we simply use β2 as our elongation constraint.

C. Level densities

The relative cross sections for reflection-asymmetric and
reflection-symmetric fission depend on the relative level
densities at the outermost saddles, as well as the barrier heights
and widths [36].

We calculate nuclear level densities by microscopic combi-
natorics based on single-particle levels and generate intrinsic
(non-collective) many-particle–many-hole excitations [37].
Pairing is treated individually for all configurations within
the BCS formalism [38]. The BCS wave function with excited
quasiparticles is given by

|τ 〉 =
∏

ν ′′∈τ2

(−Vν ′′ + Uν ′′a
†
ν ′′a

†
ν̄ ′′ )

×
∏
ν ′∈τ1

a
†
ν ′

∏
ν∈τ0

(Uν + Vνa
†
νa

†
ν̄)|0〉, (17)

where τ2, τ1, and τ0 denote the spaces of double, single, and
zero quasiparticle excitations, respectively. Uν and Vν are the
standard BCS occupation factors and |0〉 is the particle vacuum
[39].

The pairing gap � and the Fermi energy λ are found by
solving the BCS equations

� = G

[∑
ν∈τ0

UνVν −
∑
ν ′′∈τ2

Uν ′′Vν ′′

]
, (18)

N = 2
∑
ν∈τ0

V 2
ν +

∑
ν ′∈τ1

1 + 2
∑
ν ′′∈τ2

U 2
ν ′′ . (19)

The pairing strength G is adjusted to reproduce the mi-
croscopic pairing gap found at the saddle in the fission
potential-energy calculation.

Collective excitations, i.e., rotational, vibrational, and
discrete symmetry degrees of freedom, contribute substantially
to the total level density [40]. The rotational enhancement is
taken into account by adding a modified rotor to each of the
intrinsic noncollective states obtained from the single-particle

spectrum. The rotational energy is given by

Erot = I (I + 1) − K2

2J⊥(�)
, (20)

where I is the nuclear spin, K is the spin projection on the
symmetry axis of the intrinsic state upon which the rotational
band is built, and J⊥(�) is the moment of inertia around
an axis perpendicular to the symmetry axis. The moment of
inertia is approximated by the rigid-body moment of inertia
modified by the pairing gap as given in Ref. [41]. Given the
spin projection K and parity π of the bandhead, the rotational
band includes the following set of levels:

Iπ =

⎧⎪⎨
⎪⎩

Kπ, (K + 1)π , (K + 2)π , . . . if K �= 0,

0+, 2+, 4+, . . . if K = 0+,

1−, 3−, 5−, . . . if K = 0−.

(21)

Counting all these states, while keeping track of parity and
spin, gives the combinatorial level density ρcomb(E, I, π ).

The total level density is given by

ρtot(E, I, π ) = ρcomb(E, I, π )Kvib(E), (22)

where Kvib is the collective vibrational enhancement, which
is here approximated by the phenomenological attenuated
phonon method [42,43].

This level-density model has been tested by calculating
s-wave neutron resonance level spacings for which experi-
mental data are available [44,45]. For the compound nucleus
(Z,N), the level spacing D0 is given by

D0 = 1

ρtot(Sn, I0 + 1/2, π0) + ρtot(Sn, I0 − 1/2, π0)
,

for I0 > 0,

and (23)

D0 = 1

ρtot(Sn, 1/2, π0)
, for I0 = 0,

where I0 and π0 are the ground-state spin and parity of the
target nucleus (Z,N − 1) and Sn is the neutron separation
energy. The model is compared with data using the rms
deviation factor defined in Ref. [42]

frms = exp

[
1

Ne

Ne∑
i=1

ln2 Di
th

Di
exp

]1/2

, (24)

where Dth (Dexp) is the theoretical (experimental) resonance
spacing and Ne is the number of nuclei in the dataset.
In this model, frms = 3.2 for 223 axially deformed nuclei
(|ε2| > 0.05), which is somewhat larger than the frms = 2.13
obtained in the HFB model in Ref. [42], but this latter model
has a number of adjusted parameters. In our study we have not
adjusted any parameters to level-density data.

To be able to express our microscopic results in terms of
familiar concepts, we will, when we present our results below,
adjust the Fermi-gas expression

ρ(E) =
√

π

12a1/4(E − Eshift)5/4
exp[2

√
a(E − Eshift)] (25)

to our microscopic results and tabulate the resulting values for
the level-density parameter a and backshift Eshift.
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III. ANALYSIS

Optimal saddle points between minima of a function of
several variables cannot be determined by any type of local
argument [26]. This is often not fully appreciated. The need to
use the techniques we describe below is better understood if we
start by giving a few examples of how and why the commonly
used “minimization” techniques fail.

A. Fallacies in finding saddle points

Many in the nuclear physics community have the serious
misconception that optimal saddle points between minima of a
multidimensional potential-energy surface can be determined
by calculating and displaying the potential-energy function as
a function of two shape variables, for example, β2 and β4 [46]
or β2 and β3 [47,48], where the potential-energy function for
each value of the displayed coordinates has been “minimized”
with respect to additional multipoles such as β4, β5, β6, and
β7, or even more multipoles in, for example, Ref. [49]. To
the contrary, such a procedure can yield fictitious saddle
points that may be either higher or lower than the correct
ones. The corresponding “saddle-point shapes” would also be
different from the shapes obtained in a correct treatment of the
multidimensional problem.

It is also a common misconception that constrained self-
consistent calculations, for example HF or HFB calculations
with Skyrme or Gogny forces [50,51], automatically “take into
account” all nonconstrained variables in a way that will lead
to accurate determination of saddle points. This assumption
is incorrect, as is carefully explained in Ref. [52]. Here we
reproduce and discuss in more detail the simplified example
in Ref. [52] and add some additional examples. Figure 3
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FIG. 3. (Color online) Two-dimensional schematic surface for
which “minimizations” or constrained calculations fail. Bluer colors
represent lower energies, redder ones higher energies. The parameter
� represents an elongation (fission) coordinate and α represents all
other coordinates. The solid line, defined by the condition of zero
derivative of the energy with respect to α for constrained �, follows
valleys and ridges in the surface, and passes through the true saddle
point. The mathematical representation of this surface was given in
Ref. [52].

represents in terms of a two-dimensional contour plot features
that often occur in multidimensional potential-energy surfaces.
Let us assume that � represents an elongation coordinate
such as ε2 or Q2 and that α represents all additional shape
degrees of freedom. Often the essential features of such
a high-dimensional potential-energy surface are represented
by a one-dimensional (fission-barrier) curve. The aim in
constructing such a curve is to include the optimal or lowest
saddle point between successive minima. We illustrate in
Fig. 3 that when using some common strategies, the optimal
saddle points are not correctly identified. Let us assume we
wish to plot in terms of the one variable � the optimal path
and in particular include on this path the saddle point between
the lowest point on the left vertical axis of the diagram at
� = −100 and α = 9.1 and the lowest point on the right
vertical axis at � = 100 and α = −9.1. It may then sound
plausible, in particular if we study a function of more than
two variables and cannot easily display it, that this optimal
saddle point can be identified by plotting for each value
of � the lowest point with respect to the other variables.
This technique has been applied in macroscopic-microscopic
calculations and is what effectively occurs in constrained HF
calculations.

Why are these minimization techniques used at all? In the
macroscopic-microscopic method we are using, prior to about
2000 [8] it was not practical to calculate the potential energy
for large numbers of shapes using a relatively large number of
shape degrees of freedom. Instead, the lowest point (the ground
state) was located, then an elongation (fission) coordinate was
incremented and then constrained, with the energy defined
as the minimum with respect to all the other coordinates,
using their previous values as a starting point. This procedure
yields a potential-energy curve as a function of a single fission
variable. In constrained, self-consistent calculations, such as
constrained Hartree-Fock, this is what happens more or less
automatically. We should emphasize that minimization does
not necessarily lead to the wrong solution; in many simple
problems it will give the correct saddle point. Unfortunately,
one cannot know a priori whether a true or incorrect solution
will be found.

Referring again to Fig. 3, the technique of minimization
sounds very plausible, because what we want to find is the
optimal, minimum-energy path between the two low points at
the edges of the contour diagram. However, if the energy is
minimized with respect to α for various fixed elongations,
starting on the left side of the plot then the upper valley
will be followed if the previous value of α is used as a
starting coordinate in the minimizations for successive �’s.
Toward the right of the figure the upper valley disappears
and a discontinuous jump in energy leading to the lower valley
occurs. This is a common situation in constrained Hartree-Fock
fission calculations. The sequence of points followed will be
A, B, Y, C, F, and G. The true saddle point, D, is located
in the center of the figure. Similar difficulties occur when a
potential-energy function is minimized with respect to higher
multipoles and displayed as a function of β2 and β3. The
barrier curve inferred from the resulting 2D contour plot may
once again be very different from one derived from the full
multidimensional function.
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FIG. 4. Potential-energy curves obtained by local minimization
of the two-dimensional surface given in Fig. 3. The true saddle point
in this two-dimensional surface is represented by the black dot, which
does not lie on any of the curves obtained by minimization. The arrows
along the curves in the figure follow the time-line of the discussion
in the text of Fig. 3, starting with the 30◦ upward-pointing arrow near
the lower left of the figure.

In Fig. 4 we show as a solid black line the monotonically
increasing function, the “fission barrier,” we obtain by use
of this strategy applied to the function in Fig. 3. At the
turnaround point C in the solid curve between the upper valley
and the middle ridge, occurring when the upper valley ceases
to exist, there is a discontinuous drop in the energy and a
transition into the lower valley. The energy along the path now
followed in the lower valley is also shown as a solid line in
Fig. 4. In constrained calculations, it is sometimes customary
to follow the solution in the lower valley backward. We then
would follow the lower valley until it also disappears. The
continuation of the lower solution backward is indicated by a
dashed line in Fig. 4 and would involve points G, F, X, E, B,
and A, in that order. Since in this 2D example we actually can
display the potential surface, it is clear that the real saddle point
D is located at � = 0 and α = 0. In cases where the surface
cannot be as easily displayed, it has previously sometimes been
assumed that the high point C on the solid line in Fig. 4 is the
saddle, on other occasions that the intersection between the
solid and dashed curve in Fig. 4, the overlap between points
X and Y, is the saddle point. In reality, the saddle energy is
in between these two energies. For one constraint, typically
the mass quadrupole moment Q2, self-consistent calculations
often result in deficient solutions looking very much like those
obtained in our example, see for example Ref. [50]. Another
important consequence of using this procedure is a possible
improper determination of the shape or structure of the true
saddle point. In Sec. IV and in the Appendix we discuss
actual examples of problems encountered for realistic nuclear
potential-energy surfaces.

If instead two constraints are used, a 2D contour map
will be created. Then one may attempt to identify the true
multidimensional saddle point with an apparent saddle point in
the contour plot. In this situation, such as when two constraints
are used in self-consistent calculations, as occurs in the study in
terms of the quadrupole and octupole constraints in Ref. [51],

two or more solutions, or sheets, may be obtained. The true
saddle point lies somewhere in the multidimensional space
between these sheets. When surfaces are obtained in terms of
two variables in constrained calculations, a new complication
relative to calculations versus one constrained variable, is how
to decide what starting configuration to use at each grid point.
In macroscopic-microscopic calculations, values of the higher
multipole parameters at “the previous point” are often used for
the next point. In HF calculations, a similar approach is used.
But the definition of “the previous point” is not unique, in
contrast to the one-dimensional case, because it depends upon
the direction from which the particular point is approached.
Another strategy employed is to calculate a complete grid in the
additional multipoles for each value of � and plot the absolute
minimum in this high-dimensional space. In the example here,
this method would yield as the saddle point the intersection
point between the points X and Y on the two curves in Fig. 4 at
� = 0 and a function value about −6.5, much lower than the
real saddle point at −1.5. In this situation, one might identify
as the fission barrier the A, B, X, F, G curve with an unphysical
cusp at the top of the barrier.

For other types of potential-energy surfaces, one may avoid
the obvious discontinuities and cusps and obtain continuous
functions versus elongation when the function is minimized
with respect to additional shape degrees of freedom. But this
still does not guarantee that the optimal saddle point is located
on the curve obtained. Still sticking to the easy-to-visualize
case of two dimensions, we show a more complex surface
in Fig. 5. Because of the multiple saddle points, it is not
clear a priori which one corresponds to the fission threshold.
Therefore even if we could determine the location and energies
of all points where the first derivatives are zero, we still could
not determine which of these is the optimal saddle point.
Let us use the minimization strategy and study the outcome.
We identify the point � = −100, α = 6 as the ground state
or fission-isomeric state and proceed to find a “constrained”
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FIG. 5. (Color online) Maxima (+), minima (−), and saddle
points (arrows or crossed lines) of a two-dimensional function. As
discussed in the text it is not possible to obtain a lower-dimensional
representation of the optimal path across this surface by “minimizing”
with respect to the “additional” (α) shape degree of freedom. The
function increases in value as the colors progress from blue to red.
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fission barrier. From the starting point, we increase � by 40
(smaller steps will not alter the result) while keeping α fixed.
From the new position, we then minimize with respect to α

and find ourselves at the first black dot. When we repeat this
process we obtain the dot-dashed curve. The energy along this
path is a continuous function, and the magenta arrow would be
identified as the fission saddle point. However, this saddle is
higher than those shown by yellow arrows, which can only be
found when the full space is explored and which are located
on the optimal fission path in terms of energy height.

B. Immersion method

A method that allows the unambiguous identification of
the optimal saddle point between two minima was described
in Ref. [53]. As presented there, the method only allows the
determination of the energy of the optimal saddle, which in
fission potential-energy surfaces corresponds to the fission
threshold energy. It was not discussed how to identify at what
deformation the saddle is located. It was apparently unknown
to the authors of Ref. [53] that the method of immersion had
long been used in other fields, in particular in geography
[26,54]. A familiar example would be the determination of
the location of the “continental divide” in the U.S. Again, the
method is best explained by considering a 2D case. We imagine
that we have a geographical landscape of minima, maxima and
saddle points and that we are looking for the minimum-height
pass or saddle point between two minima, of interest, the first
being where we are, the second where we want to go. Instead
of just searching for a saddle point between two minima, we
may also search for a saddle between a minimum, for example
the fission-isomeric state, and a valley, for example a valley
near the scission point. In this discussion, we will designate
the minima or valleys on opposing sides of the searched-for
saddle point by “entry point” and “exit point.”

We recall that the energy is defined in a multidimensional
space defined by a set of shape coordinates, with each
coordinate taking on a specific set of values. In other words,
the potential energy is defined on a mesh in coordinate space.
Identifying a minimum is very straightforward, as the energy
at any local minimum has a lower value than all of its nearest
neighbors on the mesh. To start, we fill the minimum where we
are with “water” up to some level (we will be concrete about
how we immerse our landscapes to facilitate the explanation,
but the reader may feel free to imagine some other metaphor).
We define the lowest grid point to be “wet.” We then select a
filling level above the ground-state energy and scan the entire
coordinate grid, at each point determining: (1) if the energy is
below the filling level, (2) if the point has a nearest neighbor
that is wet. If both are true, that point is set to be wet. This
scan is repeated until no new points are switched to wet in the
last repetition. The water level is now raised, and the iterations
are repeated. At some sufficiently high water level, the exit
point will become wet. This level defines an upper limit to the
saddle-point energy.

To relatively quickly obtain an accurate value of the saddle-
point energy, we start by choosing a large spacing between
successive filling levels. Once the level at which the exit point

becomes wet is determined, the process is repeated starting
from the previous level, but with a decreased increment, until
we have determined the energy of the saddle point to the
desired precision.

It remains to determine the location of the saddle point,
or equivalently the shape of the nucleus at the saddle point.
It is also of interest to investigate if there are additional
saddle points in the potential and determine if possible their
significance. Furthermore, we might wish to determine if
different fission modes exist, perhaps expressed as distinctly
different valleys in the potential-energy surface, and if they
are accessed across different saddle points. We consider these
issues in the next section and when we present results of our
analysis of the calculated potential-energy surfaces.

C. Computer model of immersion

In Fig. 6 we illustrate schematically in two dimensions
how we simulate immersing the multidimensional energy
landscape. The energy landscape is stored in the matrix E.
This matrix has five indices corresponding to the values of
the five shape coordinates defined on a grid. Another matrix
IW indicates if a point is wet (1) or dry (0). To determine
the saddle-point height between the entry point (solid circle
near the lower left of the figure) (I a

1 , I a
2 , I a

3 , I a
4 , I a

5 ) and the
exit point (solid circle near the upper right of the figure)
(I b

1 , I b
2 , I b

3 , I b
4 , I b

5 ) we start by initializing all elements of IW

to 0. Then we set IW (I a
1 , I a

2 , I a
3 , I a

4 , I a
5 ) = 1, making the entry

point wet. We now add water to the ground state until the exit
point becomes wet, that is when the water has overflowed
the saddle between the entry and exit points. We start by
filling the ground state with water to a specified height above
the ground state, say 1 MeV. We assume that the edge of
the “1 MeV pool” in Fig. 6 is given by the contour line
around the ground-state minimum. The filling up to the 1 MeV
level is done by checking each location, one by one. At each
location, we set IW equal to 1, if and only if the energy at the
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FIG. 6. (Color online) Illustration of our computer implementa-
tion of the immersion method for saddle-point identification. The
figure is explained in the text.
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location is less than 1 MeV above the ground-state energy
and one of the neighboring points is wet. The plus signs
surrounded by small circles are points which have become
wet (IW=1) at some stage of this first iteration, the other
points remaining dry so far. This loop is repeated several times,
until we have performed a final iteration in which no elements
of IW change from their previous values. At this point we
check the value of IW (I b

1 , I b
2 , I b

3 , I b
4 , I b

5 ). If it is 0, then the
water has not overflowed the saddle and we raise the water by
1 MeV and repeat the procedure. The water level is raised until
the exit point becomes wet, that is IW (I b

1 , I b
2 , I b

3 , I b
4 , I b

5 ) = 1
at a water level EL. The saddle height EH is then in the
interval EL − 1 < EH < EL. To determine a more accurate
value the procedure is repeated with smaller steps, say
0.1 MeV, starting from EL − 1. Ever smaller steps are
employed sequentially until the saddle height is determined
to the desired accuracy.

The saddle-point location or equivalently the nuclear shape
at the saddle point is determined by elaborating on this
procedure. In principle, the iterations may be repeated until the
uncertainty in the saddle-point energy defines a very narrow
interval. The saddle is above EL but below EL + �E where
�E is very small. Adding water starting from EL, increasing
the level to EL + �E, leads to an entire large region between
the saddle point and the exit point becoming wet. All of these
points, normally hundreds of thousands of them, have energies
below EL. A very few points may have energies in the interval
EL to EL + �E, this number decreasing as �E gets smaller.
For a small enough increment, only one point will remain. This
is the saddle point, and its coordinates define the saddle-point
shape.

This relatively simple mathematical procedure must be
modified because of the finite precision of the energy values
of each shape and the finite precision of numbers stored in
computers. We have stored our energy matrices to a precision
of 1 keV. The limited precision of numbers stored on a
computer and the size of our deformation space has the
consequence that there will be several points along the “rim”
of the “lake” around the entry-point local minimum and along
the rim of the water that has now flowed beyond the saddle
that have exactly the same energy to this precision as does the
saddle point. One and only one of these points is the saddle
point. When we contemplate how to determine which point
is the correct one, it turns out that some obvious approaches
suggested by two-dimensional intuition end up either being
relatively difficult to implement or taking considerably more
time than the method outlined below. An example would be
to evaluate the topography in the neighborhood of each point
in an automated way, allowing for the restricted precision of
the energy values for each point, and defining a foolproof
algorithm to uniquely identify the true saddle as compared
with a point lying on the side of a “hill.”

We adopt the less obvious but efficient approach of adding
to each element of E a different random number, usually
0.001∗R MeV, where R is a random deviate uniformly
distributed on the interval [−1,1]. Clearly this will not change
the structure of the calculated potential-energy surface signifi-
cantly, since the calculated energy values are associated with a
higher numerical uncertainty, about 0.05 MeV. For the physical

problem of saddle-point energies, such uncertainties are much
less than both the uncertainty of experimental barriers, and the
average deviations of the model from experiment. If the energy
window �E is sufficiently small, usually 0.00001 MeV, the
probability that a point other than the saddle will have an
energy inside the window is small. Such a small value of �E

is more precision than is needed in determining the energy of
the saddle point, but it allows finding the shape of the saddle.
In the rare case of two or more points still being found, the
process of identifying the saddle-point energy is repeated with
an independent set of random deviates added to E. The saddle
point will then be identifiable as the only point common to
both iterations. If several identical locations were to occur, the
procedure could be repeated until only one common location
remained.

D. Alternative immersion strategies

An alternative approach would be to fill both the entry
area (a) and exit area (b) simultaneously with water (both
water levels always being the same) and store the wet points
in area (a) in a matrix IWa and the wet points in area (b)
in a matrix IWb. If this is done “slowly,” water from the
two pools will meet in one and only one point when the
water level is sufficiently high, i.e., it reaches the saddle point.
Computationally what occurs is that an identical location in
IWa and IWb will become 1. Until the water reaches this
level, the locations where the matrices IWa and IWb are 1
are all different. This method is intuitively more appealing
than the other method, but in practice more challenging to
program.1

E. Additional saddle points

To find additional higher-energy saddle points between the
ground state and an exit point, we “build a dam” at the lowest
saddle point. We start by identifying the lowest saddle point,
then raise the energy at this location to a very large value,
say 1000 MeV. We again find the lowest saddle point. If
the new saddle point is located adjacent to a high energy
value, the water is just flowing around the partial dam at
the lowest mountain pass. We raise the energy at this new
location, continuing until eventually the next saddle point
found is separated from the dam. This occurs when we have
blocked the identified saddle region up to the elevation of
the second saddle. The dam method is shown schematically
as a small drawing outside the main frame in the very left
part of Fig. 6. The thick wavy curve represents a cut through

1We are grateful to Andrius Juodagalvis for pointing out this method
to us. We originally wrote a code based on filling only the ground-state
area and decreasing the magnitude of the filling steps sufficiently to
determine the saddle height and location. Juodagalvis subsequently
wrote a code using his idea. We have checked that we obtain the same
saddle heights and locations with both codes. Later Ludovic Bonneau
wrote an independent code based on our original strategy and it also
obtains identical saddle points. We are grateful for these independent
verifications of our implementation of these algorithms.
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the potential-energy surface perpendicular to the direction of
fission. When we look into the picture we look toward larger
elongations in the fission direction and the minima represent
the lowest and second lowest saddle points. The vertical lines
represent successive dam sections that have been erected.
When the bottom of the dam reaches the elevation of the
second saddle point, the water flow will flip from near the dam
to cross the second saddle.

What is the significance of the additional saddle? One can
sometimes get guidance on this question by looking at the
shape associated with the saddle. However, in most cases it
is better to proceed differently and to first identify valleys
in the outer part of the fission potential-energy surface, for
deformations greater than that of all saddle points. Then one
can try to establish which saddle-point configurations provide
entry points to the different valleys (fission modes). We outline
how this is done in Sec. IV and present the actual structures
we identify in the potential-energy surfaces of several nuclei.

F. Identifying the ground state

In our work, we include essential refinements that in
practice are not possible to consider in self-consistent HF
calculations. To illustrate one issue, namely, that it is non-
trivial to determine which of several minima is the ground
state, we show in Fig. 7 a comparison of calculated [13] and
observed Qα values for the first 278113 α-decay chain that
was observed at RIKEN [55]. The cusps at N = 165 in the
FRDM and FRLDM models occur because of a change in
ground-state deformation from deformed to spherical. Since
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FIG. 7. Calculated and observed Qα values in the α decay of
element 278113. The cusps in the FRDM and FRLDM curves occur
because the calculated ground-state shape changes from deformed at
Z = 113 to spherical at Z = 115. The cusp at Z = 111 in the HFB-8
curve occurs because the minimum identified as the ground state for
Z = 111 has a deformation of β2 = 0.21, while that for Z = 113 has
β2 = 0.42. As discussed in the text, we believe that for 278113 another
minimum should have been chosen as the ground state in the HFB-8
calculation.

no decay has been observed from 282115, it is obviously not
known at this point if the calculation is correct in this respect.
But, the occurrence of such cusps in Qα in α-decay chains that
traverse magic numbers, or any substantial gap in level spectra,
is well-established experimentally and is understood. In the
HFB-8 calculation [56], the origin of the cusp is somewhat
different. It occurs because of a deformation change from
β2 = 0.21 at Z = 111 to β2 = 0.42 at Z = 113. However,
although the more deformed minimum is the lowest found in
the HFB-8 calculation, in our experience, a minimum for such
a heavy nucleus with such a large deformation will have a
very low barrier with respect to fission. Therefore, if it exists,
a higher-energy, less deformed minimum which has a higher
barrier to fission should be tabulated as the ground state. An
example of this type of situation occurring in our calculation is
illustrated in Fig. 8, which shows a contour plot of calculated
potential energies for 305125. The deepest axially symmetric
minimum is at ε2 = 0.375 with E ≈ −7.5 MeV. However,
the saddle at ε2 = 0.500, γ = 22.5 indicates a barrier of only
about a 2 MeV height. For this isotope, we should instead
designate the minimum with the highest barrier with respect
to fission as the ground state (an even more sophisticated
approach would be to calculate the half-life with respect to all
decay modes for all minima, but we do not take this step here).
This strategy leads us to assign the minimum at ε2 = 0.25 and
γ = 60 and E ≈ −5.5 MeV as the ground state. Equivalently,
the ground state is oblate with ε2 = −0.25. The saddle is at
ε2 = 0.425 and γ = 40.0 and E ≈ −0.5 MeV. The barrier
with respect to fission is therefore about 5.0 MeV, sufficiently
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FIG. 8. (Color online) Calculated potential-energy surface for
305125. The filled dots indicate local minima, the X symbols significant
saddles. The large (blue) filled dot designates the ground state.
Although this minimum is not the lowest minimum it has the highest
barrier with respect to fission and is therefore considered to be the
ground-state minimum, because it would be the shape most stable to
fission decay.
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FIG. 9. (Color online) Potential energy for 228Th. Beyond the
ground state at ε2 = 0.175 there are two additional minima, one at
ε2 = 0.375 and the other at ε2 = 0.525 and associated saddle points.
In situations where there are several minima in addition to the ground
state, it is not unambiguous which minimum and associated saddle
should be compared with the “experimental” inner saddle and fission
isomeric state. See text for details.

high to result in a fission half-life that is long enough to permit
observation. We use for all nuclei in our fission studies and
nuclear-mass calculations, the immersion technique to assign
the ground state to the correct minimum. So far, HFB mass
calculations do not use such techniques and might therefore
choose the wrong deformation and energy for the ground state.

IV. DETAILED BARRIER STRUCTURE

To study the effect of axial asymmetry in the inner barrier
region, we use a three-dimensional deformation space in
ε2, ε4, and γ . To visualize the results, we generate contour
plots for the 5254 nuclei studied, six of which are shown in
Figs. 8–13. These contour maps are constructed in the
following way. For each point ε2 and γ, we find the lowest
energy obtained for the 14 ε4 values calculated. The contour
lines are generated from the 2D energy function defined in
this way. We have emphasized in Sec. III A that in many
situations such a strategy does not give reasonable results.
One situation is when the surface contains multiple local
minima versus ε4 [10,12]. However, we are using the method
only for the purpose of displaying the results in a way that
is relatively simple to understand. As a matter of fact, we
find for the relatively modest deformations studied here that
this 2D potential-energy-surface approximation to the full 3D
potential usually approximates the location of the saddle points
and minima of the full 3D space reasonably closely. However,
all our barrier parameters, including those of the first barrier
peaks displayed in Figs. 23–32, are obtained from a complete
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FIG. 10. (Color online) Potential energy for 236U. The structure of
this potential-energy surface is uncomplicated with an unambiguous
fission isomeric state at ε2 = 0.525 and an inner saddle, which is
stable with respect to axial asymmetry at ε2 = 0.45. The shallow local
minimum at an energy around 7 MeV at ε2 = 0.675 and γ = 32.5 is
expected to be of little consequence for the properties of this nucleus.

analysis of the full 3D space. If we obtain a lower first saddle
in the 5D 3QS parametrization this is used instead. The actual
location and energies of the minima and saddles in the contour
plots are not defined by the 2D approximate function, but
instead come from the actual values determined in the full 3D
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FIG. 11. (Color online) Potential energy for 243Am. This isotope
and some other Am isotopes have an axially asymmetric, low-lying
shape isomer near the ground-state minimum.
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FIG. 12. (Color online) Potential energy for 252Cf. The height of
the inner barrier peak is lowered by about 1.4 MeV due to axial
asymmetry.

calculation. The minima in the plots are shown as dots and the
saddle points as X symbols. Most potential-energy surfaces
in the inner barrier region exhibit more than one minimum,
namely, the ground-state minimum and additional minima.
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FIG. 13. (Color online) Potential energy for element Z = 113,
currently one of the heaviest known elements; the isotope 278113 was
recently observed for the first time at RIKEN [56]. The structure
of this surface is interesting. This nucleus is in a transition region
between deformed and spherical shapes. It has two almost equally
deep minima below −6 MeV, one at ε2 = 0.175 and another at ε2 = 0,
and several additional much shallower, less bound minima.
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FIG. 14. (Color online) Fission-barrier structure for 238Am cal-
culated in two parametrizations. The black curve with round solid
dots and the cyan curve with diamond symbols give results obtained
in the constrained β parametrization with two different elongation
constraints as discussed in the text; all other results are obtained in
the full 5D 3QS calculation involving deformation spaces of millions
of points. The dots and other symbols on the curves show the spacing
of the deformation grid.

For actinide nuclei near β stability, there is often just one
additional minimum, which is the fission-isomeric state. But
a more complex structure is also possible, as our results in
Fig. 13 show for one of the heaviest nuclei known, 278

113X
[55].

The calculated 5D fission potential-energy surfaces are
more complex. In Figs. 14 and 15, we present some aspects of

Fission-Barrier Structure for 242Am 
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FIG. 15. (Color online) Fission-barrier structure for 242Am cal-
culated in two parametrizations. The black curve with round solid
dots and the cyan curve with diamond symbols give results obtained
in the constrained β parametrization with two different elongation
constraints as discussed in the text; all other results are obtained in
the full 5D 3QS calculation involving deformation spaces of millions
of points. It is significant that the constrained calculations overshoot
the true saddle by 5 MeV or more and that minor differences in
the type of elongation constraint give rise to quite different “saddle”
energies. The dots and other symbols on the curves show the spacing
of the deformation grid.
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our analysis of the multidimensional potential-energy surfaces
in two different shape parametrizations: the (constrained) β

parametrization and the full 5D 3QS parametrization. For each
calculated 5D potential-energy surface, we tabulate minima,
saddles between pairs of minima, valleys as functions of Q2,
and ridges between all pairs of valleys. First we locate all
minima in the potential-energy surface. We then determine
by immersion the saddles between each pair of minima.
We retain as significant only those minima for which all
saddles are higher than 0.2 MeV relative to the higher of
the two minima. Such minima are indicated by downward-
pointing blue triangles and the saddles by upward-pointing
red triangles. Interestingly, only a very few minima in the
calculated potential are deeper than 0.2 MeV. This makes the
interpretation of our results less involved than might otherwise
have been the case.

Beyond the fission isomer, we also look for “valleys” in
the calculated potential-energy surface. We define a valley in
the following manner. We fix Q2 at one of our grid values
and determine minima in the restricted 4D space (“slice”)
that results. Saddles between the minima in this 4D slice
correspond to ridges between valleys in the full 5D space.
We may find several minima, but retain only minima deeper
than a prescribed value. Specifically we generate four tables of
valleys corresponding to criteria of minimum ridge heights of
2.0, 1.0, 0.5, and 0.2 MeV. Valleys are defined as a sequence
of similar minima that persist for successive Q2 values. By
“similar” we mean that shape parameters such as reflection
asymmetry, nascent-fragment deformation, and neck radius
change only gradually as Q2 increases.

For simplicity, we display in Figs. 14 and 15 only two
of the valleys we find and the corresponding ridge between
them. There is a good overlap in both energy and deformation
between the fission-isomeric minimum obtained in the β

parametrization at Q2/b1/2 ≈ 5.5 and the minimum indicated
by a downward-pointing blue triangle, which is obtained
in the 3QS parametrization. The saddle for 238Am found
beyond the isomer in the β parametrization with the “r”
elongation constraint overlaps with the saddle obtained in
the 3QS parametrization. This overlap between the two
parametrizations in the outer saddle region is a further test
of the model implementations. When instead β2 is used as the
elongation constraint, the “saddle” is more than 1 MeV higher
than the correct saddle. For 242Am, the constrained calculation
develops catastrophic problems near the outer barrier. The
saddle in the r-constrained calculation is 4.5 MeV higher than
the correct saddle, and with the β2 constraint it is 7 MeV
higher than the correct saddle. We give more details of the
nature of the discrepancies in the shapes and energies found
in the constrained calculation compared with the 5D one in
the Appendix. This clearly demonstrates that minimization
methods are deficient. In some cases, a reasonable saddle is
found; while for a neighboring nucleus, wildly incorrect results
can occur. Which will occur for a particular isotope is totally
unpredictable a priori. It is particularly noteworthy that two
reasonable choices of elongation constraints can give very
different results. In HFB calculations, it is often assumed that
when elongation constraints are “cleverly” chosen, problems
like those we demonstrate can be avoided. Since such big

differences occur for slightly different types of elongation
constraint, one must conclude that it is not possible to make
a clever choice of elongation constraints in such calculations
which can be guaranteed to not lead to problems. Regardless of
these difficulties, the overlaps between results from different
parametrizations, when they do occur, are excellent checks
of our calculations and our methods for finding minima and
saddles. For the ground state, there is a slight non-overlap
between the results obtained in the 5D 3QS parametrization
and the β parametrization. But it is well known that the 3QS
parametrization cannot access some nuclear shapes that occur
as ground-state shapes for some nuclei as well as a multipole
expansion can [15]. This poses no difficulty, since we choose
for saddle points and minima the lowest-energy result found
in the three parametrizations.

In Figs. 16 and 17, we show calculated asymmetric and
symmetric fission modes for 232Th and 243Am and nuclear
shapes associated with these two modes. For 243Am, we also
show a shape on the ridge separating these two modes. In
the lowest-energy mode, the mass-asymmetric one, shapes
for both fissioning systems evolve toward separation into a
large spherical “Sn-like” fragment and a smaller elongated
deformed fragment. This is consistent with the long-postulated
explanation for the predominantly mass-asymmetric character
of fission for actinide nuclei; in fission, the system strives to
exploit the 10 MeV or so extra binding of spherical fragments
near doubly magic 132Sn. However, it is only our recent cal-
culations based on large-dimensional deformation spaces that
present a sufficiently exact and detailed theoretical description
which verifies this basic mechanism in mass-asymmetric
fission. Indeed, in our discovery papers [8–10,57,58], we
calculated the mean mass division in asymmetric fission to an
average accuracy of three nucleons for 31 even-even fissioning
systems.
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FIG. 16. (Color online) Fission barriers for 232Th corresponding
to different fission modes. The initial part of the barrier starting
to the left of the ground state at (Q2/b)1/2 = 3.0 extending to the
fission isomeric minimum at (Q2/b)1/2 = 5.5 is calculated in the β

parametrization. Beyond the fission isomer the results are obtained in
the 3QS parametrization. There are two distinct modes separated by
a high ridge. Shapes associated with the barrier curves are displayed
for representative points.
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Fission Barrier and Associated Shapes  for 243Am 
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FIG. 17. (Color online) Fission barriers for 243Am corresponding
to different fission modes. The initial part of the barrier to the left of
the ground state at (Q2/b)1/2 = 3.0 extending to the fission isomeric
minimum at (Q2/b)1/2 = 5.5 is calculated in the β parametrization.
Beyond the fission isomer the results are obtained in the 3QS
parametrization. We find two distinct modes separated by a ridge.
Since the ridge becomes lower than the fission saddle points at rather
modest elongations, before the scission configuration is reached, one
expects less well separated fission modes for this system than for
232Th. The symbols on the ridge indicate the spacing along the Q2

direction of our grid. Shapes associated with the barrier curves are
displayed for representative points.

The energy thresholds for the two fission modes (valleys)
are different, because different saddles or mountain passes
provide access to the different valleys. When the ridge
separating the two valleys is higher than the higher of the two
saddles, it is straightforward to use our immersion algorithm
to establish this. And it is only in such situations that different
fission modes are clearly expressed in fission-fragment data
such as the variation of mass and kinetic-energy distributions
with energy. However, we cannot find the higher of the two
saddles by blindly applying our immersion method. Referring
again to Fig. 6, there are two distinct valleys V1 and V2 reached
by corresponding saddles S1 and S2. The energy at S2 is higher
than that at S1. The exit point for V1 is a solid circle, while the
exit point for V2 is a solid square. If we check at what level
the square point becomes wet when we fill the ground-state
minimum, it turns out we find the same energy as we do for V1.
This is because the water will flow over S1, down V1, and then
back up V2 without encountering S2. To locate the saddle S2
we need to block the water flow down V1 to prevent backflow
up V2. We do this by inserting a wall (schematically indicated
by the dashed line in Fig. 6) beyond the outer saddles and
then checking when the square exit point becomes wet as the
ground-state minimum is filled. The wall needs to be placed
so that at the wall the ridge separating the two valleys has a
higher energy than S2. In the computer program, we “build a
wall” by restricting the value of Q2 to be less than or equal
to that at the wall. One could equally well define the wall by
inserting large values in the energy matrix at points along the
wall, as we do when building a “dam.”

A key question is how the valleys we find in the calculated
potential-energy surfaces are reflected in observed fission

properties. A reasonable expectation is that in systems for
which valleys are persistent, that is, they exist for a large
range of Q2 values and are stabilized by a high ridge, these
features will leave more clear signatures on fission than will
happen for systems where these features are less prominent.
For example, for light actinides, we find two and only two very
distinct fission valleys separated by a high ridge beyond the
fission-isomeric minimum. One of the valleys corresponds to
shapes evolving toward separation with a compact asymmetric
mass division while the other valley leads to more elongated
symmetric fragments. These results correspond closely to
observations of two modes of fission in the light actinide
region associated with distinct saddle points of different
heights, different mass divisions, and different fragment total
kinetic-energy distributions in the two modes [59,60]. A clear
case is 232Th in Fig. 16. In a nuclide like 243Am shown in
Fig. 17 the ridge separating the two modes is less prominent.
The ridge becomes sufficiently low before scission that
a nucleus starting in the symmetric valley at the energy
corresponding to the fission barrier could energetically cross
the ridge before scission. This kind of qualitative argument
does not allow a definite prediction of where the transition
between the obvious bimodal fission of lighter actinides and
the predominately asymmetric fission of heavier systems will
occur, but our results are definitely consistent with the fact that
this transition occurs and with the observed asymmetric mass
distribution for 243Am.

An important task for the future is to understand how to
take advantage of our significantly enhanced knowledge of the
static fission potential-energy surface to improve modeling
of a large number of fission properties, such as fission-
fragment mass distributions, kinetic-energy distributions,
neutron-emission probability as a function of fragment mass,
and neutron-induced fission cross sections. The challenge is to
develop global models for these quantities based on the rich
structure we observe here. For a limited number of nuclei some
steps in this direction have recently been taken, for example, in
Ref. [61]. It is not obvious how to take into account the complex
fission-barrier structure we now obtain in such calculations.
We limit ourselves to giving below one illustration of possible
impact, namely, on level densities. The main scope of the
paper is to present our methods and consistent results on the
fission-barrier heights for a large number of heavy nuclei.
This information is valuable for many considerations, for
example, the design of experiments to reach superheavy nuclei,
for electron-capture delayed fission, and how high in Z the
N = 126 isotone might be populated.

V. FISSION-BARRIER HEIGHTS

Because the calculated potential-energy surfaces are
very complex, it is not always possible to present results
of our calculations in a straightforward way. Traditionally,
experimental data for actinide nuclei in the range 90 � Z � 99
have been analyzed in terms of a double-humped fission
barrier: a ground state, a first barrier peak, a second
fission-isomeric minimum, and an outer barrier peak. We
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TABLE I. Calculated double-humped fission-barrier energies.

N A EA

(MeV)
EII

(MeV)
EB

(MeV)
N A EA

(MeV)
EII

(MeV)
EB

(MeV)
N A EA

(MeV)
EII

(MeV)
EB

(MeV)

Z = 90 (Th) Z = 93 (Np) Z = 96 (Cm)
135 225 4.18 4.74 7.59 141 234 3.86 3.50 4.63 153 249 6.38 3.87 6.56
136 226 3.68 4.24 7.20 142 235 4.20 3.40 4.83 154 250 5.87 3.71 6.25
137 227 3.39 3.92 6.98 143 236 4.64 3.29 4.80 155 251 5.27 3.55 6.09
138 228 2.94 3.43 6.53 144 237 4.95 3.08 4.86 156 252 4.79 3.37 5.68
139 229 2.85 3.34 6.06 145 238 5.36 3.05 5.20 Z = 97 (Bk)
140 230 2.65 3.10 5.65 146 239 5.57 2.98 5.42 144 241 6.14 2.63 3.70
141 231 3.00 3.02 5.55 147 240 5.98 3.10 6.01 145 242 6.63 2.71 4.10
142 232 3.18 2.79 5.45 148 241 6.05 3.13 6.15 146 243 6.91 2.70 4.36
143 233 3.56 2.63 5.47 149 242 6.34 3.40 6.75 147 244 7.28 2.86 4.64
144 234 3.59 2.34 5.37 Z = 94 (Pu) 148 245 7.22 2.96 4.95
145 235 4.04 2.39 5.81 141 235 4.04 3.23 4.09 149 246 7.32 3.37 5.39
146 236 4.25 2.39 6.04 142 236 4.49 3.22 4.36 150 247 7.18 3.59 5.68
147 237 4.68 2.56 6.64 143 237 5.00 3.14 4.42 151 248 7.27 3.96 6.28

Z = 91 (Pa) 144 238 5.27 2.99 4.47 152 249 7.00 4.07 6.40
134 225 4.09 4.64 6.83 145 239 5.73 2.97 4.65 153 250 6.59 3.95 6.38
135 226 3.90 4.50 6.91 146 240 5.99 2.94 4.91 154 251 6.05 3.78 6.21
136 227 3.47 4.04 6.52 147 241 6.35 3.05 5.54 155 252 5.45 3.60 6.01
137 228 3.27 3.81 6.26 148 242 6.42 3.07 5.72 156 253 4.93 3.35 5.59
138 229 3.03 3.51 5.59 149 243 6.65 3.34 6.38 157 254 4.52 3.32 5.50
139 230 2.98 3.49 5.28 150 244 6.59 3.45 6.47 Z = 98 (Cf)
140 231 2.93 3.25 4.99 151 245 6.67 3.77 6.93 147 245 6.98 2.59 4.16
141 232 3.26 3.20 4.97 152 246 6.34 3.86 7.07 148 246 7.15 2.70 4.34
142 233 3.54 2.99 4.99 153 247 6.05 3.84 7.12 149 247 7.35 3.16 4.88
143 234 3.81 2.91 5.14 Z = 95 (Am) 150 248 7.24 3.38 5.18
144 235 4.11 2.65 5.34 142 237 4.80 3.13 4.04 151 249 7.31 3.76 5.74
145 236 4.48 2.68 5.75 143 238 5.34 3.17 4.22 152 250 7.09 3.87 5.92
146 237 4.73 2.64 5.99 144 239 5.67 3.08 4.42 153 251 6.64 3.78 5.94
147 238 5.18 2.79 6.57 145 240 6.12 3.06 4.68 154 252 6.07 3.55 5.83

Z = 92 (U) 146 241 6.34 3.02 4.87 155 253 5.51 3.36 5.62
137 229 3.23 3.74 4.95 147 242 6.73 3.12 5.17 156 254 5.00 3.11 5.27
138 230 3.02 3.52 4.28 148 243 6.80 3.15 5.36 157 255 4.63 3.08 5.21
139 231 3.11 3.52 4.46 149 244 6.99 3.45 6.10 158 256 4.35 2.86 4.82
140 232 3.17 3.39 4.73 150 245 6.80 3.56 6.28 159 257 4.38 2.95 4.56
141 233 3.56 3.36 4.79 151 246 6.88 3.88 6.84 160 258 4.43 2.91 4.23
142 234 3.80 3.22 4.89 152 247 6.62 3.94 6.83 Z = 99 (Es)
143 235 4.20 3.12 4.87 153 248 6.20 3.90 6.91 145 244 6.28 2.13 3.04
144 236 4.45 2.87 5.03 154 249 5.69 3.79 6.59 146 245 6.53 2.21 3.40
145 237 4.87 2.81 5.44 Z = 96 (Cm) 147 246 6.89 2.41 3.82
146 238 5.08 2.75 5.64 143 239 5.48 2.80 3.64 148 247 7.07 2.56 4.12
147 239 5.52 2.87 6.21 144 240 5.84 2.74 3.92 149 248 7.44 3.06 4.58
148 240 5.65 2.92 6.37 145 241 6.32 2.81 4.27 150 249 7.38 3.29 4.95
149 241 5.98 3.20 6.93 146 242 6.56 2.78 4.45 151 250 7.48 3.68 5.50
150 242 5.95 3.33 7.10 147 243 6.97 2.87 4.85 152 251 7.24 3.81 5.69

Z = 93 (Np) 148 244 6.92 2.94 5.07 153 252 6.79 3.70 5.70
137 230 3.14 3.65 3.81 149 245 7.12 3.33 5.58 154 253 6.22 3.45 5.47
138 231 3.01 3.47 3.81 150 246 7.01 3.50 5.87 155 254 5.67 3.26 5.36
139 232 3.16 3.57 4.14 151 247 7.11 3.82 6.49 156 255 5.04 2.99 5.01
140 233 3.40 3.49 4.36 152 248 6.80 3.95 6.65

therefore in Table I represent, for 135 nuclei, our calculations
in terms of such a double-humped structure for this range
of proton number Z for a range of neutron numbers
that corresponds to available data plus some additional
proton- and neutron-rich isotopes for each element. Since

most fission barriers cannot be represented in terms of
a double-humped fission barrier, but do have a unique
fission-barrier height, defined as the maximum height on
the optimum path between the ground state and scission,
we present in Table II this barrier height for 1585 heavy nuclei.
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TABLE II. Calculated fission-barrier heights.

N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)

Z = 78 (Pt) Z = 79 (Au) Z = 80 (Hg) Z = 82 (Pb) Z = 83 (Bi) Z = 84 (Po)
93 171 11.36 108 187 15.33 123 203 25.55 94 176 7.58 106 189 8.60 121 205 18.08
94 172 11.73 109 188 16.01 124 204 26.11 95 177 7.74 107 190 9.15 122 206 19.02
95 173 12.23 110 189 16.57 125 205 27.09 96 178 7.99 108 191 9.45 123 207 20.01
96 174 12.39 111 190 17.16 126 206 27.21 97 179 8.15 109 192 9.99 124 208 20.81
97 175 12.52 112 191 17.99 127 207 26.10 98 180 8.47 110 193 10.59 125 209 22.24
98 176 12.38 113 192 18.87 128 208 25.51 99 181 8.48 111 194 11.14 126 210 22.14
99 177 12.48 114 193 19.26 129 209 24.37 100 182 8.62 112 195 11.79 127 211 21.33

100 178 12.82 115 194 19.96 130 210 23.32 101 183 8.65 113 196 12.31 128 212 20.27
101 179 13.34 116 195 20.54 131 211 22.17 102 184 8.92 114 197 13.29 129 213 18.99
102 180 13.78 117 196 21.47 132 212 21.27 103 185 9.12 115 198 14.23 130 214 17.76
103 181 14.43 118 197 22.31 Z = 81 (Tl) 104 186 9.61 116 199 15.22 131 215 16.47
104 182 14.90 119 198 23.16 92 173 9.11 105 187 9.83 117 200 16.18 132 216 15.42
105 183 15.46 120 199 23.97 93 174 8.96 106 188 10.32 118 201 16.99 133 217 14.56
106 184 16.09 121 200 25.07 94 175 9.13 107 189 10.63 119 202 17.90 134 218 13.85
107 185 16.66 122 201 25.78 95 176 9.19 108 190 11.18 120 203 18.71 135 219 12.93
108 186 17.06 123 202 26.53 96 177 9.04 109 191 11.68 121 204 19.59 136 220 12.47
109 187 17.59 124 203 27.01 97 178 9.01 110 192 12.85 122 205 20.47 Z = 85 (At)
110 188 17.75 125 204 27.95 98 179 8.81 111 193 13.57 123 206 21.42 99 184 4.12
111 189 18.26 126 205 28.03 99 180 8.65 112 194 14.50 124 207 22.28 100 185 4.39
112 190 18.80 127 206 27.09 100 181 8.86 113 195 14.77 125 208 23.23 101 186 4.68
113 191 19.60 128 207 26.36 101 182 8.98 114 196 15.66 126 209 23.88 102 187 5.00
114 192 20.08 129 208 25.36 102 183 9.49 115 197 16.36 127 210 22.74 103 188 5.44
115 193 20.84 Z = 80 (Hg) 103 184 9.87 116 198 17.28 128 211 21.76 104 189 5.56
116 194 21.47 91 171 10.03 104 185 10.44 117 199 18.09 129 212 20.49 105 190 5.94
117 195 22.26 92 172 9.81 105 186 10.97 118 200 18.89 130 213 19.17 106 191 6.02
118 196 23.01 93 173 9.79 106 187 11.48 119 201 19.67 131 214 17.89 107 192 6.76
119 197 23.67 94 174 9.63 107 188 12.11 120 202 20.48 132 215 16.79 108 193 7.24
120 198 24.54 95 175 9.77 108 189 12.74 121 203 20.91 133 216 16.05 109 194 7.67
121 199 25.52 96 176 9.62 109 190 13.49 122 204 21.91 134 217 15.65 110 195 7.96
122 200 26.30 97 177 9.41 110 191 14.31 123 205 23.08 135 218 15.16 111 196 8.33
123 201 27.06 98 178 9.32 111 192 15.13 124 206 23.94 Z = 84 (Po) 112 197 8.63
124 202 27.51 99 179 9.68 112 193 15.99 125 207 24.76 97 181 3.89 113 198 9.10
125 203 28.34 100 180 9.81 113 194 16.38 126 208 24.95 98 182 4.35 114 199 9.95
126 204 28.50 101 181 10.27 114 195 17.08 127 209 23.97 99 183 4.89 115 200 10.80
127 205 27.64 102 182 10.85 115 196 18.04 128 210 22.91 100 184 5.49 116 201 11.73
128 206 26.98 103 183 11.32 116 197 18.85 129 211 21.88 101 185 5.93 117 202 12.66
129 207 25.77 104 184 11.92 117 198 19.73 130 212 20.77 102 186 6.35 118 203 13.70
130 208 24.77 105 185 12.43 118 199 20.63 131 213 19.87 103 187 6.64 119 204 14.72

Z = 79 (Au) 106 186 12.99 119 200 21.66 132 214 19.13 104 188 6.92 120 205 15.41
92 171 10.83 107 187 13.50 120 201 22.23 133 215 18.43 105 189 7.27 121 206 16.63
93 172 10.94 108 188 13.98 121 202 23.29 134 216 17.95 106 190 7.55 122 207 17.46
94 173 10.94 109 189 14.52 122 203 24.04 135 217 17.48 107 191 7.89 123 208 18.31
95 174 10.64 110 190 15.22 123 204 24.80 136 218 16.83 108 192 8.25 124 209 19.10
96 175 11.00 111 191 16.02 124 205 25.49 Z = 83 (Bi) 109 193 8.66 125 210 19.99
97 176 11.28 112 192 16.75 125 206 26.38 95 178 5.33 110 194 9.46 126 211 20.27
98 177 11.07 113 193 17.56 126 207 26.50 96 179 5.40 111 195 9.59 127 212 19.37
99 178 11.23 114 194 18.10 127 208 25.55 97 180 5.69 112 196 10.29 128 213 18.56

100 179 11.36 115 195 18.79 128 209 24.72 98 181 5.73 113 197 10.66 129 214 17.35
101 180 11.83 116 196 19.65 129 210 23.55 99 182 6.40 114 198 11.52 130 215 16.03
102 181 12.28 117 197 20.48 130 211 22.42 100 183 6.53 115 199 12.37 131 216 14.99
103 182 12.76 118 198 21.45 131 212 21.58 101 184 7.16 116 200 13.31 132 217 14.16
104 183 13.20 119 199 22.24 132 213 20.79 102 185 7.38 117 201 14.18 133 218 13.31
105 184 13.84 120 200 23.23 133 214 19.97 103 186 7.75 118 202 15.14 134 219 12.46
106 185 14.31 121 201 24.05 Z = 82 (Pb) 104 187 7.75 119 203 16.15 135 220 12.12
107 186 15.03 122 202 24.79 93 175 7.62 105 188 8.14 120 204 17.02 136 221 11.75
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TABLE II. (Continued.)

N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)

Z = 85 (At) Z = 87 (Fr) Z = 88 (Ra) Z = 89 (Ac) Z = 90 (Th) Z = 91 (Pa)
137 222 11.64 105 192 4.43 115 203 6.89 126 215 13.36 138 228 6.52 150 241 7.43
138 223 11.13 106 193 4.38 116 204 7.49 127 216 12.19 139 229 6.06 151 242 7.87
139 224 11.03 107 194 4.35 117 205 8.51 128 217 11.08 140 230 5.66 Z = 92 (U)

Z = 86 (Rn) 108 195 4.48 118 206 9.75 129 218 10.40 141 231 5.55 111 203 1.21
100 186 4.19 109 196 4.58 119 207 10.82 130 219 10.03 142 232 5.44 112 204 1.14
101 187 4.43 110 197 5.18 120 208 11.70 131 220 9.71 143 233 5.47 113 205 1.74
102 188 4.45 111 198 5.82 121 209 12.54 132 221 9.34 144 234 5.38 114 206 2.27
103 189 4.62 112 199 6.39 122 210 13.26 133 222 9.13 145 235 5.80 115 207 3.24
104 190 4.54 113 200 7.10 123 211 14.00 134 223 8.69 146 236 6.04 116 208 3.84
105 191 4.49 114 201 7.62 124 212 14.40 135 224 8.50 147 237 6.64 117 209 4.59
106 192 4.63 115 202 8.33 125 213 15.11 136 225 8.05 148 238 6.84 118 210 5.44
107 193 5.02 116 203 8.92 126 214 14.94 137 226 7.71 149 239 7.35 119 211 6.51
108 194 5.43 117 204 9.64 127 215 13.93 138 227 7.53 150 240 7.53 120 212 7.18
109 195 6.05 118 205 10.94 128 216 13.01 139 228 7.24 Z = 91 (Pa) 121 213 7.85
110 196 6.41 119 206 11.98 129 217 11.80 140 229 6.68 109 200 2.18 122 214 8.30
111 197 6.83 120 207 12.85 130 218 11.25 141 230 6.49 110 201 2.08 123 215 8.82
112 198 7.40 121 208 13.71 131 219 10.81 142 231 6.24 111 202 2.06 124 216 9.25
113 199 8.09 122 209 14.60 132 220 10.25 143 232 6.19 112 203 2.08 125 217 9.78
114 200 8.61 123 210 15.40 133 221 10.03 144 233 6.08 113 204 2.64 126 218 9.67
115 201 9.39 124 211 16.02 134 222 9.57 145 234 6.16 114 205 3.04 127 219 8.54
116 202 10.29 125 212 16.72 135 223 9.20 146 235 6.27 115 206 4.01 128 220 7.62
117 203 11.16 126 213 16.66 136 224 8.78 147 236 6.89 116 207 4.74 129 221 7.06
118 204 12.10 127 214 15.65 137 225 8.40 148 237 7.08 117 208 5.62 130 222 6.46
119 205 13.20 128 215 14.81 138 226 8.23 149 238 7.61 118 209 6.55 131 223 5.87
120 206 14.20 129 216 13.46 139 227 8.02 Z = 90 (Th) 119 210 7.44 132 224 5.65
121 207 15.14 130 217 12.74 140 228 7.61 108 198 2.53 120 211 8.19 133 225 5.81
122 208 15.94 131 218 12.40 141 229 7.31 109 199 2.77 121 212 8.97 134 226 5.59
123 209 16.75 132 219 11.57 142 230 7.04 110 200 2.69 122 213 9.33 135 227 5.48
124 210 17.61 133 220 11.33 143 231 7.01 111 201 2.89 123 214 9.97 136 228 5.13
125 211 18.47 134 221 10.81 144 232 6.94 112 202 2.86 124 215 10.35 137 229 4.94
126 212 18.63 135 222 10.47 145 233 6.97 113 203 3.61 125 216 10.93 138 230 4.28
127 213 17.65 136 223 10.02 146 234 6.90 114 204 3.85 126 217 10.81 139 231 4.46
128 214 16.69 137 224 9.64 147 235 7.16 115 205 4.79 127 218 9.68 140 232 4.72
129 215 15.45 138 225 9.22 148 236 7.33 116 206 5.44 128 219 8.60 141 233 4.79
130 216 14.24 139 226 9.02 Z = 89 (Ac) 117 207 6.43 129 220 8.20 142 234 4.89
131 217 13.52 140 227 8.61 106 195 3.40 118 208 7.57 130 221 7.55 143 235 4.87
132 218 12.83 141 228 8.36 107 196 3.29 119 209 8.55 131 222 6.93 144 236 5.03
133 219 12.02 142 229 8.12 108 197 3.24 120 210 9.39 132 223 6.91 145 237 5.43
134 220 11.47 143 230 8.04 109 198 3.44 121 211 10.11 133 224 7.03 146 238 5.63
135 221 11.18 144 231 7.96 110 199 3.45 122 212 10.66 134 225 6.84 147 239 6.21
136 222 10.82 145 232 8.01 111 200 3.64 123 213 11.34 135 226 6.91 148 240 6.38
137 223 10.57 146 233 7.92 112 201 4.05 124 214 11.68 136 227 6.51 149 241 6.93
138 224 10.30 147 234 8.09 113 202 4.81 125 215 12.34 137 228 6.26 150 242 7.10
139 225 9.72 Z = 88 (Ra) 114 203 5.19 126 216 12.17 138 229 5.59 151 243 7.50
140 226 9.45 104 192 3.92 115 204 5.72 127 217 11.02 139 230 5.28 152 244 7.46
141 227 9.26 105 193 3.77 116 205 6.49 128 218 9.99 140 231 4.99 153 245 7.39
142 228 9.04 106 194 3.76 117 206 7.42 129 219 9.17 141 232 4.97 154 246 7.21
143 229 8.88 107 195 3.46 118 207 8.46 130 220 8.45 142 233 4.99 Z = 93 (Np)
144 230 8.81 108 196 3.72 119 208 9.50 131 221 8.27 143 234 5.13 113 206 1.16
145 231 8.81 109 197 4.12 120 209 10.58 132 222 7.99 144 235 5.33 114 207 1.66
146 232 8.82 110 198 3.99 121 210 11.31 133 223 8.20 145 236 5.76 115 208 2.52

Z = 87 (Fr) 111 199 4.63 122 211 12.03 134 224 7.85 146 237 5.99 116 209 3.05
102 189 4.24 112 200 5.12 123 212 12.65 135 225 7.59 147 238 6.57 117 210 3.72
103 190 4.44 113 201 5.85 124 213 12.99 136 226 7.20 148 239 6.72 118 211 4.49
104 191 4.33 114 202 6.26 125 214 13.52 137 227 6.98 149 240 7.27 119 212 5.21
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TABLE II. (Continued.)

N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)

Z = 93 (Np) Z = 94 (Pu) Z = 95 (Am) Z = 97 (Bk) Z = 98 (Cf) Z = 99 (Es)
120 213 6.09 135 229 2.95 149 244 6.99 127 224 3.98 145 243 6.55 161 260 4.64
121 214 6.67 136 230 3.07 150 245 6.80 128 225 3.44 146 244 6.69 Z = 100 (Fm)
122 215 7.00 137 231 3.05 151 246 6.88 129 226 2.84 147 245 6.99 126 226 2.84
123 216 7.52 138 232 3.23 152 247 6.83 130 227 2.17 148 246 7.16 127 227 2.08
124 217 7.83 139 233 3.50 153 248 6.91 131 228 2.17 149 247 7.35 128 228 0.80
125 218 8.28 140 234 3.83 154 249 6.59 132 229 1.93 150 248 7.24 129 229 0.90
126 219 8.26 141 235 4.09 155 250 6.37 133 230 1.72 151 249 7.31 130 230 0.79
127 220 7.32 142 236 4.49 Z = 96 (Cm) 134 231 1.64 152 250 7.09 131 231 0.85
128 221 6.47 143 237 5.00 119 215 3.04 135 232 1.81 153 251 6.64 132 232 1.25
129 222 6.01 144 238 5.26 120 216 3.31 136 233 1.94 154 252 6.07 133 233 1.39
130 223 5.28 145 239 5.74 121 217 3.78 137 234 2.27 155 253 5.62 134 234 1.46
131 224 4.96 146 240 5.98 122 218 4.09 138 235 2.71 156 254 5.27 135 235 1.56
132 225 4.43 147 241 6.35 123 219 4.59 139 236 3.37 157 255 5.21 136 236 1.87
133 226 4.17 148 242 6.41 124 220 4.99 140 237 3.99 158 256 4.82 137 237 2.39
134 227 3.78 149 243 6.66 125 221 5.62 141 238 4.55 159 257 4.56 138 238 2.88
135 228 3.70 150 244 6.59 126 222 5.64 142 239 5.16 160 258 4.43 139 239 3.49
136 229 3.81 151 245 6.93 127 223 4.85 143 240 5.76 161 259 4.57 140 240 4.14
137 230 3.81 152 246 7.07 128 224 4.16 144 241 6.14 162 260 4.64 141 241 4.50
138 231 3.81 153 247 7.12 129 225 3.69 145 242 6.63 Z = 99 (Es) 142 242 4.88
139 232 4.14 154 248 6.80 130 226 3.02 146 243 6.91 125 224 2.29 143 243 5.29
140 233 4.37 155 249 6.59 131 227 2.68 147 244 7.28 126 225 2.51 144 244 5.57
141 234 4.63 156 250 6.17 132 228 2.11 148 245 7.22 127 226 1.80 145 245 5.94
142 235 4.83 Z = 95 (Am) 133 229 1.99 149 246 7.32 128 227 0.98 146 246 6.13
143 236 4.81 117 212 2.40 134 230 1.87 150 247 7.18 129 228 1.01 147 247 6.48
144 237 4.94 118 213 3.13 135 231 2.00 151 248 7.27 130 229 0.70 148 248 6.73
145 238 5.36 119 214 3.57 136 232 2.10 152 249 7.00 131 230 1.30 149 249 7.12
146 239 5.57 120 215 4.03 137 233 2.24 153 250 6.59 132 231 1.30 150 250 7.22
147 240 6.01 121 216 4.56 138 234 2.61 154 251 6.21 133 232 1.44 151 251 7.38
148 241 6.15 122 217 4.81 139 235 3.23 155 252 6.01 134 233 1.46 152 252 7.16
149 242 6.76 123 218 5.32 140 236 3.81 156 253 5.59 135 234 1.56 153 253 6.74
150 243 6.87 124 219 5.60 141 237 4.34 157 254 5.50 136 235 1.83 154 254 6.24
151 244 7.35 125 220 6.19 142 238 4.92 158 255 5.10 137 236 2.38 155 255 5.72
152 245 7.27 126 221 6.23 143 239 5.48 Z = 98 (Cf) 138 237 2.96 156 256 5.11
153 246 7.39 127 222 5.46 144 240 5.85 123 221 3.09 139 238 3.59 157 257 4.75

Z = 94 (Pu) 128 223 4.74 145 241 6.32 124 222 3.39 140 239 4.32 158 258 4.52
115 209 1.72 129 224 4.33 146 242 6.56 125 223 3.89 141 240 4.95 159 259 4.54
116 210 2.25 130 225 3.80 147 243 6.97 126 224 4.04 142 241 5.32 160 260 4.62
117 211 3.05 131 226 3.61 148 244 6.92 127 225 3.41 143 242 5.70 161 261 4.68
118 212 3.59 132 227 2.91 149 245 7.13 128 226 2.65 144 243 5.98 162 262 4.82
119 213 4.39 133 228 2.71 150 246 7.02 129 227 1.99 145 244 6.28 163 263 4.75
120 214 5.09 134 229 2.50 151 247 7.11 130 228 1.39 146 245 6.53 164 264 4.49
121 215 5.70 135 230 2.46 152 248 6.80 131 229 1.58 147 246 6.90 165 265 4.23
122 216 6.01 136 231 2.51 153 249 6.56 132 230 1.58 148 247 7.07 166 266 3.94
123 217 6.45 137 232 2.65 154 250 6.25 133 231 1.67 149 248 7.44 Z = 101 (Md)
124 218 6.78 138 233 2.79 155 251 6.09 134 232 1.57 150 249 7.38 128 229 0.70
125 219 7.28 139 234 3.27 156 252 5.68 135 233 1.50 151 250 7.48 129 230 0.84
126 220 7.34 140 235 3.80 157 253 5.57 136 234 1.64 152 251 7.24 130 231 0.74
127 221 6.44 141 236 4.33 158 254 5.20 137 235 2.10 153 252 6.79 131 232 0.89
128 222 5.62 142 237 4.80 Z = 97 (Bk) 138 236 2.69 154 253 6.22 132 233 1.03
129 223 5.07 143 238 5.34 121 218 2.90 139 237 3.34 155 254 5.67 133 234 1.30
130 224 4.47 144 239 5.66 122 219 3.16 140 238 4.01 156 255 5.05 134 235 1.57
131 225 4.24 145 240 6.12 123 220 3.65 141 239 4.64 157 256 5.01 135 236 1.72
132 226 3.74 146 241 6.34 124 221 3.93 142 240 5.22 158 257 4.50 136 237 2.01
133 227 3.43 147 242 6.72 125 222 4.49 143 241 5.83 159 258 4.32 137 238 2.49
134 228 2.93 148 243 6.80 126 223 4.66 144 242 6.16 160 259 4.43 138 239 2.86
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TABLE II. (Continued.)

N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)

Z = 101 (Md) Z = 102 (No) Z = 104 (Rf) Z = 105 (Db) Z = 107 (Bh) Z = 109 (Mt)
139 240 3.25 155 257 5.52 139 243 2.01 160 265 6.36 152 259 5.66 145 254 1.96
140 241 3.64 156 258 4.98 140 244 2.28 161 266 6.80 153 260 5.87 146 255 2.37
141 242 4.09 157 259 5.00 141 245 2.54 162 267 6.99 154 261 6.01 147 256 2.76
142 243 4.46 158 260 4.93 142 246 2.95 163 268 7.00 155 262 6.20 148 257 3.22
143 244 4.80 159 261 5.26 143 247 3.33 164 269 6.59 156 263 6.20 149 258 3.58
144 245 5.11 160 262 5.11 144 248 3.64 165 270 6.13 157 264 6.39 150 259 4.20
145 246 5.47 161 263 5.26 145 249 3.95 166 271 5.62 158 265 6.34 151 260 4.65
146 247 5.74 162 264 5.36 146 250 4.36 167 272 5.18 159 266 6.71 152 261 5.13
147 248 6.03 163 265 5.40 147 251 4.76 Z = 106 (Sg) 160 267 6.97 153 262 5.48
148 249 6.24 164 266 5.01 148 252 5.09 138 244 1.15 161 268 7.20 154 263 5.70
149 250 6.70 165 267 4.72 149 253 5.53 139 245 1.27 162 269 7.60 155 264 5.91
150 251 6.98 166 268 4.19 150 254 5.87 140 246 1.44 163 270 7.69 156 265 5.88
151 252 7.23 Z = 103 (Lr) 151 255 6.24 141 247 1.73 164 271 7.39 157 266 5.88
152 253 7.01 132 235 1.07 152 256 6.26 142 248 2.11 165 272 6.94 158 267 6.04
153 254 6.61 133 236 1.18 153 257 6.02 143 249 2.38 166 273 6.38 159 268 6.28
154 255 6.13 134 237 1.44 154 258 5.65 144 250 2.67 167 274 5.93 160 269 6.70
155 256 5.69 135 238 1.75 155 259 5.49 145 251 3.16 168 275 5.30 161 270 7.14
156 257 5.09 136 239 1.95 156 260 5.36 146 252 3.59 169 276 5.13 162 271 7.49
157 258 4.84 137 240 2.12 157 261 5.56 147 253 4.02 170 277 4.80 163 272 7.68
158 259 4.67 138 241 2.28 158 262 5.59 148 254 4.44 171 278 4.82 164 273 7.41
159 260 4.92 139 242 2.46 159 263 5.61 149 255 4.86 Z = 108 (Hs) 165 274 7.11
160 261 4.99 140 243 2.79 160 264 5.79 150 256 5.30 142 250 1.02 166 275 6.59
161 262 5.05 141 244 3.18 161 265 6.27 151 257 5.70 143 251 1.55 167 276 6.16
162 263 5.12 142 245 3.49 162 266 6.43 152 258 5.93 144 252 1.97 168 277 5.63
163 264 4.89 143 246 3.89 163 267 6.43 153 259 5.82 145 253 2.39 169 278 5.44
164 265 4.59 144 247 4.19 164 268 6.03 154 260 5.84 146 254 2.82 170 279 5.31
165 266 4.31 145 248 4.50 165 269 5.60 155 261 5.88 147 255 3.22 171 280 5.47
166 267 3.99 146 249 4.81 166 270 5.10 156 262 5.91 148 256 3.64 172 281 5.48
167 268 3.75 147 250 5.26 167 271 4.72 157 263 6.17 149 257 4.01 173 282 5.79

Z = 102 (No) 148 251 5.55 168 272 4.28 158 264 5.98 150 258 4.54 174 283 5.88
130 232 0.83 149 252 5.97 Z = 105 (Db) 159 265 6.27 151 259 4.93 175 284 6.30
131 233 0.75 150 253 6.27 136 241 1.31 160 266 6.69 152 260 5.39 Z = 110 (Ds)
132 234 0.97 151 254 6.70 137 242 1.44 161 267 7.08 153 261 5.65 146 256 1.76
133 235 1.03 152 255 6.60 138 243 1.55 162 268 7.29 154 262 5.88 147 257 2.12
134 236 1.27 153 256 6.27 139 244 1.68 163 269 7.30 155 263 6.01 148 258 2.68
135 237 1.59 154 257 5.90 140 245 1.94 164 270 6.92 156 264 6.13 149 259 3.15
136 238 2.05 155 258 5.52 141 246 2.18 165 271 6.48 157 265 6.26 150 260 3.70
137 239 2.35 156 259 5.21 142 247 2.59 166 272 5.94 158 266 6.26 151 261 4.17
138 240 2.55 157 260 5.39 143 248 2.88 167 273 5.48 159 267 6.47 152 262 4.68
139 241 2.82 158 261 5.37 144 249 3.21 168 274 4.96 160 268 6.59 153 263 4.99
140 242 3.18 159 262 5.52 145 250 3.53 169 275 4.70 161 269 7.04 154 264 5.27
141 243 3.58 160 263 5.48 146 251 4.01 170 276 4.39 162 270 7.37 155 265 5.35
142 244 3.94 161 264 5.73 147 252 4.44 Z = 107 (Bh) 163 271 7.49 156 266 5.34
143 245 4.32 162 265 5.97 148 253 4.81 140 247 1.13 164 272 7.30 157 267 5.47
144 246 4.62 163 266 6.03 149 254 5.26 141 248 1.33 165 273 6.93 158 268 5.48
145 247 4.98 164 267 5.63 150 255 5.67 142 249 1.70 166 274 6.45 159 269 5.95
146 248 5.24 165 268 5.22 151 256 6.05 143 250 1.91 167 275 6.08 160 270 6.45
147 249 5.61 166 269 4.81 152 257 6.22 144 251 2.45 168 276 5.52 161 271 6.92
148 250 5.83 167 270 4.36 153 258 6.01 145 252 2.88 169 277 5.68 162 272 7.31
149 251 6.25 Z = 104 (Rf) 154 259 5.76 146 253 3.27 170 278 5.50 163 273 7.48
150 252 6.50 134 238 1.11 155 260 5.81 147 254 3.74 171 279 5.18 164 274 7.27
151 253 6.93 135 239 1.28 156 261 5.76 148 255 4.10 172 280 5.27 165 275 6.90
152 254 6.76 136 240 1.53 157 262 5.94 149 256 4.54 173 281 5.62 166 276 6.49
153 255 6.38 137 241 1.67 158 263 5.90 150 257 5.00 174 282 5.51 167 277 6.09
154 256 5.94 138 242 1.82 159 264 6.08 151 258 5.41 Z = 109 (Mt) 168 278 5.59

144 253 1.59
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TABLE II. (Continued.)

N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)
N A Bf

(MeV)

Z = 110 (Ds) Z = 112 (X) Z = 114 (X) Z = 117 (X) Z = 119 (X) Z = 123 (X)
169 279 5.64 163 275 6.71 171 285 8.82 162 279 4.83 180 299 7.72 175 298 5.84
170 280 5.69 164 276 6.59 172 286 9.00 163 280 5.21 181 300 7.37 176 299 5.60
171 281 5.86 165 277 6.36 173 287 9.23 164 281 6.01 Z = 120 (X) 177 300 5.54
172 282 5.94 166 278 5.99 174 288 9.18 165 282 6.30 167 287 6.35 178 301 5.45
173 283 6.46 167 279 5.78 175 289 9.61 166 283 6.69 168 288 6.85 179 302 5.45
174 284 6.70 168 280 5.89 176 290 9.89 167 284 7.27 169 289 7.35 180 303 5.01
175 285 7.25 169 281 6.25 177 291 9.97 168 285 7.79 170 290 7.70 181 304 4.93
176 286 7.26 170 282 6.51 178 292 9.98 169 286 8.34 171 291 8.26 182 305 4.25
177 287 7.45 171 283 6.99 Z = 115 (X) 170 287 8.70 172 292 7.36 183 306 3.69
178 288 7.45 172 284 7.41 157 272 3.08 171 288 8.57 173 293 7.44 184 307 2.95

Z = 111 (Rg) 173 285 8.00 158 273 3.47 172 289 8.61 174 294 7.57 185 308 1.94
148 259 2.32 174 286 8.24 159 274 3.86 173 290 8.90 175 295 7.71 Z = 124 (X)
149 260 2.71 175 287 8.40 160 275 4.29 174 291 8.88 176 296 7.69 176 300 5.64
150 261 3.20 176 288 8.53 161 276 4.75 175 292 8.99 177 297 7.54 177 301 5.77
151 262 3.62 Z = 113 (X) 162 277 5.20 176 293 8.96 178 298 7.33 178 302 5.63
152 263 4.21 153 266 3.06 163 278 5.61 177 294 9.04 179 299 7.48 179 303 5.45
153 264 4.42 154 267 3.25 164 279 6.51 178 295 9.06 180 300 7.01 180 304 4.12
154 265 4.75 155 268 3.25 165 280 6.70 179 296 9.17 181 301 6.68 181 305 3.90
155 266 4.72 156 269 3.38 166 281 6.82 Z = 118 (X) 182 302 6.07 182 306 3.32
156 267 4.80 157 270 3.80 167 282 7.18 163 281 4.73 183 303 5.55 183 307 2.74
157 268 4.88 158 271 4.26 168 283 7.60 164 282 5.49 184 304 4.86 184 308 2.01
158 269 5.10 159 272 4.77 169 284 8.18 165 283 5.88 Z = 121 (X) 185 309 1.85
159 270 5.70 160 273 5.22 170 285 8.58 166 284 6.31 169 290 7.07 186 310 1.75
160 271 6.13 161 274 5.70 171 286 8.96 167 285 6.85 170 291 6.46 187 311 1.74
161 272 6.62 162 275 6.09 172 287 9.20 168 286 7.37 171 292 6.82 188 312 1.66
162 273 6.96 163 276 6.38 173 288 9.42 169 287 8.12 172 293 6.89 Z = 125 (X)
163 274 7.20 164 277 6.31 174 289 9.29 170 288 8.32 173 294 7.31 178 303 5.64
164 275 7.01 165 278 6.06 175 290 9.53 171 289 8.85 174 295 7.03 179 304 5.45
165 276 6.71 166 279 6.12 176 291 9.60 172 290 8.39 175 296 7.19 180 305 4.93
166 277 6.37 167 280 6.41 177 292 9.76 173 291 8.41 176 297 7.16 181 306 4.44
167 278 6.06 168 281 6.66 Z = 116 (X) 174 292 8.41 177 298 7.05 182 307 3.71
168 279 5.70 169 282 6.98 159 275 3.32 175 293 8.53 178 299 6.99 183 308 1.81
169 280 6.01 170 283 7.35 160 276 3.79 176 294 8.48 179 300 7.10 184 309 1.08
170 281 6.03 171 284 7.93 161 277 4.25 177 295 8.46 180 301 6.66 185 310 1.96
171 282 6.37 172 285 8.33 162 278 4.91 178 296 8.36 181 302 6.31 186 311 1.80
172 283 6.64 173 286 8.72 163 279 5.35 179 297 8.49 182 303 5.64 187 312 1.98
173 284 7.26 174 287 8.75 164 280 6.21 180 298 8.05 183 304 5.11
174 285 7.55 175 288 8.92 165 281 6.41 181 299 7.76 Z = 122 (X)
175 286 8.06 Z = 114 (X) 166 282 6.66 182 300 7.15 172 294 6.32
176 287 7.87 155 269 2.76 167 283 7.16 Z = 119 (X) 173 295 6.54
177 288 7.90 156 270 2.97 168 284 7.65 165 284 5.51 174 296 6.53

Z = 112 (X) 157 271 3.37 169 285 8.23 166 285 6.19 175 297 6.31
150 262 2.65 158 272 3.79 170 286 8.47 167 286 6.70 176 298 6.33
151 263 3.15 159 273 4.26 171 287 8.76 168 287 7.34 177 299 6.28
152 264 3.61 160 274 4.69 172 288 9.02 169 288 7.90 178 300 6.19
153 265 3.79 161 275 5.15 173 289 8.95 170 289 8.06 179 301 6.23
154 266 4.05 162 276 5.53 174 290 8.94 171 290 7.62 180 302 5.60
155 267 4.11 163 277 5.85 175 291 9.08 172 291 7.80 181 303 5.51
156 268 4.06 164 278 6.55 176 292 9.26 173 292 8.05 182 304 4.87
157 269 4.25 165 279 6.97 177 293 9.35 174 293 8.12 183 305 4.33
158 270 4.72 166 280 7.13 178 294 9.46 175 294 8.29 184 306 3.62
159 271 5.18 167 281 7.18 179 295 9.49 176 295 8.06 185 307 2.60
160 272 5.63 168 282 7.33 180 296 9.10 177 296 8.07 186 308 1.82
161 273 6.10 169 283 7.65 Z = 117 (X) 178 297 7.94 Z = 123 (X)
162 274 6.51 170 284 8.09 161 278 4.14 179 298 8.10 174 297 6.09
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Because of the finite precision of the storage of energies on
the points of the coordinate grid, the energies in Tables I and
II sometimes differ by 0.01 MeV.

If we were to calculate potential-energy surfaces in only
one deformation space, for example, the 3D space spanned by
ε2, ε4, and γ discussed in Sec. III F, it would be straightforward
to calculate the fission-barrier height. We would just subtract
the energy of the minimum identified as the ground state,
with zero-point energy added, from the associated saddle-point
energy. However, in our current study we make calculations in
several different deformation spaces and want to optimally use
information from all. We also need to use computer programs
to analyze the results from the different deformation spaces
and determine the barrier height. There are two reasons for
this. First, we need to ensure that we use a consistent decision
process; second, it is impractical to deal manually with 5254
nuclei.

As a starting point for obtaining the barrier parameters in
Table I, we tabulate a ground-state and a saddle-point energy
as obtained in the 3D calculation for each nucleus. We then
minimize in a 4D space, as discussed in Sec. II A1, all the
minima we find on the oblate and prolate axes in the 3D
calculation. For each nucleus we tabulate the lowest minimum.
We compare the shape coordinates of the lowest 4D minimum
to those of the ground-state minimum determined from the
barrier condition in the 3D space. The barrier condition yields
a minimum with a significantly different deformation for 270
nuclei. Only seven of the nuclei in this group have A � 292.
These are all in the group 99 � Z � 102 and 128 � N � 130,
meaning they are very proton-rich nuclei emerging from the
N = 126 shell having very low barriers. For all 270 nuclei
in this group, we use only the 3D calculation to determine
the barrier height. For some superheavy nuclei in this group,
we obtain a substantial barrier, which would not occur if we
were to analyze only axially symmetric deformation spaces.
In particular for some specific cases, such at that shown in
Fig. 8, choosing as the ground state the lowest-energy mini-
mum may lead to a 1 MeV barrier, whereas the actual barrier
exceeds 5 MeV.

For the remaining nuclei that are not in the group of 270, we
use the 5D 3QS calculation as the starting point to determine
the barrier parameters. To generate the barrier parameters for
the nuclei in Table I, we start by selecting from those minima
having a deformation not too different from those known for
fission-isomer states that minimum with the highest saddle-
point energy with respect to the ground state. When more than
one minimum shares this highest saddle, the lowest-energy
minimum is chosen as the fission isomer. If a minimum with
a corresponding Q2 is found in the 3D calculation and/or
in the constrained β-parametrization calculation, we tabulate
as the energy of the second minimum the lowest of these
values. We then determine in the β and 5D spaces the energy
of the saddle between the second minimum and the ground
state. We compare these saddle energies to the energy of the
corresponding saddle in the 3D space and choose the lowest
one as the energy of the first saddle. For some nuclei, the
axial asymmetry included in the 3D calculation leads to a
considerably lower energy for the first saddle compared with
the energy obtained in the axially symmetric calculations, a

result which has been known since about 1970. The outer
barrier peak is determined using only the 5D calculation as
the optimum saddle between the second minimum and the
lowest potential-energy point at our highest Q2 value. The
energies tabulated in Table I are: EA, the difference between
the energies of the inner saddle and the ground state, EII, the
difference between the energies of the second minimum and
the ground state, and EB, the difference between the energies
of the outer saddle and the ground state. In all cases, before the
difference is taken, a zero-point energy taken from our FRLDM
(1992) model [13] is added to the energies of the ground state
and second minimum. For a few nuclei EII > EA. This occurs
because the calculated potential energy at the first saddle may
be only marginally higher than the calculated potential energy
at the isomeric minimum. To obtain EII we have added a zero-
point energy to the potential energy at the second minimum,
which sometimes has the consequence that EII > EA.

The highest saddle on the optimum path between the
ground-state and scission configurations, which is tabulated
in Table II, could in principle be obtained as just the larger
of EA and EB determined as described above. However,
since it is difficult, and sometimes impossible, to determine
a two-humped barrier structure outside the narrow range of
nuclei tabulated in Table I, we obtain the barrier heights in
Table II from a somewhat different analysis. For the group of
270 nuclei discussed above, we still use only the 3D calculation
as the basis for calculating a barrier height. For the other
nuclei, we start by determining in the 5D potential-energy
calculation the energy of the optimum saddle between the
ground state and scission. If the deformation of that saddle is
similar to the deformation of the first saddle obtained in the
3D calculation, which includes axial asymmetry, we check if
the saddle energy in the 3D calculation is lower. If not, the
optimum saddle energy is that found in the 5D calculation.
But if the saddle in 3D space is lower (usually because of
axial asymmetry), that energy is a tentative candidate for the
optimum saddle energy. We then check for a second, outer
saddle in the 5D calculation, which will have an energy lower
than that of the original 5D inner saddle. If one does not exist,
the optimum saddle will be the 3D one already tentatively
identified. Otherwise, the saddle point will be the one having
the higher energy. We again calculate the barrier height as
the difference between the energy of the chosen saddle point
and the ground-state energy found in the 4D minimization
including the zero-point correction, and tabulate this value in
Table II. When the identical nucleus is tabulated in Table I,
we expect that the higher of the EA and EB values in Table I
will equal the value in Table II. This is indeed the case. Since
different decision pathways are used to generate the numbers,
this constitutes a good check on the implementation of this
logic. This implementation is nontrivial due to numerous
issues we do not feel are very enlightening to discuss here;
one example is the occurrence of some very pathological
potential-energy surfaces for certain heavy nuclei.

VI. SHAPES AND LEVEL DENSITIES

Our calculations also give information about the saddle-
point symmetry properties and the corresponding microscopic
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FIG. 18. Calculated proton single-particle levels for 232Th at
the saddles corresponding to the symmetric and asymmetric fission
modes. The single-particle level density at the Fermi surface given
by the dashed line is much lower at the asymmetric saddle than at the
symmetric saddle. This is consistent with the shapes corresponding to
these saddles. At the asymmetric saddle, one of the nascent fragments
is a spherical nearly doubly magic system, cf. Fig. 16, resulting in a
lower level density compared with the symmetric saddle.

level structure at the saddles. Since we determine more realistic
saddle-point shapes than previously, we investigate the impact
of the more realistic shapes on level densities.

We show in Figs. 18 and 19 calculated single-particle levels
at the symmetric and asymmetric saddle points of 232Th, see
also Fig. 16. We find that the single-particle level density near
the Fermi surface is lower at the asymmetric saddle than at
the symmetric saddle. This is as expected, since the partially

TABLE III. Fermi-gas level-density parameters determined from
adjustments of parameters of the Fermi-gas model to microscopic
calculations of intrinsic level densities. The numbers in parentheses
are (1) for an asymmetric saddle, and (2) for a symmetric saddle.
B and C refer to the second and third saddle, respectively, for a
triple-humped barrier, see Fig. 14.

Nucleus Q
1/2
2 Density Fit Log Fit

(barn1/2)
a Eshift a Eshift

(MeV)−1 (MeV) (MeV)−1 (MeV)

Even-even systems
232Th (1) 7.75 17.708 2.483 15.403 1.177
232Th (2) 7.56 20.538 2.492 18.963 1.898

Odd-even systems
239Am (1) 6.04 19.369 1.275 16.906 0.607
241Am (1) 6.04 19.879 1.232 19.156 0.980
243Am (1) 6.04 20.281 1.097 17.828 0.470

Odd-odd systems
238Am (1B) 6.20 19.041 0.810 19.125 0.700
238Am (1C) 7.56 17.259 0.232 17.814 0.420
242Am (1) 6.04 19.740 0.618 21.961 0.980

232Th Neutrons at Saddles 
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FIG. 19. Calculated neutron single-particle levels for 232Th at
the saddles corresponding to the symmetric and asymmetric fission
modes. The single-particle level density near the Fermi surface given
by the dashed line is much lower at the asymmetric saddle than at the
symmetric saddle. This is consistent with the shapes corresponding to
these saddles. At the asymmetric saddle one of the nascent fragments
is a spherical nearly doubly-magic system, cf. Fig. 16, resulting in
a lower level density compared with the symmetric saddle. Some of
the levels near the Fermi surface at the symmetric saddle are partially
overlapping so the level density is higher than might be inferred from
the figure alone.

formed spherical Sn-like fragment at the asymmetric saddle
(see Fig. 16) is responsible for this lower level density. We
use the approach outlined in Sec. II C to calculate the total
level density versus excitation energy for the nucleus 232Th at
the asymmetric and symmetric outer saddle points. The results
are shown in Fig. 20, where the solid curve gives the result at
the reflection-asymmetric saddle and the dot-dashed curve the
reflection-symmetric saddle, respectively. The results are given
with respect to both the ground-state energy and the saddle
energies. The slopes of the level densities at the two saddles
differ considerably, which is a consequence of the underlying
single-particle level structure close to the Fermi surface shown
in Figs. 18 and 19. The level density is very sensitive to
this single-particle structure, since the intrinsic (noncollective)
part roughly behaves as ρintr(E) ∼ exp(2

√
aE) where a =

π2

6 (gp + gn) is the level-density parameter and gp and gn are the
proton and neutron single-particle level densities at the Fermi
surface, respectively [39]. For this nucleus, a spherical, nearly
doubly magic nascent fragment lowers the single-particle level
density at the Fermi surface at the reflection-asymmetric saddle
giving rise to a more slowly increasing total level density. As
examples of calculated total level densities for odd-even nuclei,
we show three isotopes of Am (239Am, 241Am, and 243Am) in
Fig. 21; and for odd-odd nuclei we show two other isotopes of
Am (238Am and 242Am) in Fig. 22. We determine equivalent
Fermi-gas-model parameters by performing least-squares fits
of shifted Fermi-gas models for level densities to our calculated
densities; these are tabulated in Table III. By “Density Fit”
we mean a fit to the actual calculated level densities, which
emphasizes the higher-energy region, while the “Log Fit”
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FIG. 20. Calculated total level densities at the mass-asymmetric
(lower-energy) and mass-symmetric outer saddles of 232Th. The
different slopes of the total level densities at the two saddles clearly
reflect the difference between the intrinsic level structure at the
symmetric and asymmetric fission saddle points.

is a fit to the logarithm of the calculated densities. The
latter gives roughly equal weight to all excitation energies.
Noticeably different Fermi-gas parameters are obtained in the
two schemes. The root cause is that the Fermi-gas expression
in Eq. (25) is a poor approximation to the microscopic
level-density-model results. A significant result is that there
is considerable variation between systems, due to differences
in the microscopic level structure at the saddle points. See
Sec. VII E for a discussion on experimental data on level densi-
ties for the asymmetric and symmetric fission modes of 232Th.

VII. COMPARISONS WITH DATA AND OTHER MODELS

We present calculated barrier heights for 1585 nuclei. After
analysis of additional calculated potential-energy surfaces, we
plan to present a data base of barrier heights for all nuclei
between the proton and neutron drip lines from A = 170
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FIG. 21. Calculated total level densities at the outer saddles of
239Am, 241Am, and 243Am. The slopes of the different total level-
density curves are fairly similar. Because these systems are odd-even
the level density is higher than at the 232Th saddles in Fig. 20.
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FIG. 22. Calculated total level densities at the outer saddles of
238Am and 242Am. The slopes of the different total level-density curves
are fairly similar. Because these systems are odd-odd the level density
is higher than at the 232Th saddles in Fig. 20 and at the saddles of the
odd-even Am systems in Fig. 21.

to nuclei so heavy that stability with respect to fission is
completely lost. This data base will provide barrier heights
for more than 5000 nuclei. In this discussion, we would like
to investigate whether our calculations can be expected to be
reliable for such extrapolations. We therefore compare our
results with several different types of data that are affected
by fission-barrier heights. First, we compare calculated barrier
heights with barrier heights deduced from experimental reac-
tion data. It is not straightforward to compare calculated barrier
parameters with experimental data. First, the experimental
barrier parameters are determined from fits of models to
cross-section data. The “experimental” fission-barrier heights
depend strongly on model assumptions. Second, the barrier
may have more than two barrier peaks and more than one
fission mode; analysis in terms of a two-peaked barrier is
therefore only a crude approximation. But on the other hand,
analysis in terms of a more complicated structure introduces
a large number of additional parameters to be fitted to data,
which leads to other difficulties.

Double-humped fission-barrier parameters have only been
experimentally determined for a fairly limited number of
nuclei, mainly actinide nuclei. To obtain insight about the
reliability of our results for larger regions of nuclei, we
therefore also discuss how our results compare with other types
of experimental data that depend strongly on fission-barrier
heights, specifically fission half-lives and β- or electron-
capture-delayed fission. We show that our results are consistent
with such data. We also discuss how our results compare with
other calculations, in particular HFB calculations.

A. Fission-barrier heights

In Figs. 23–32 we compare our calculated barrier pa-
rameters (solid lines) with the experimental evaluations by
Madland [62] (black circles) and the RIPL-2 evaluation [44,45]
(red squares). The evaluation by Madland is based on data in
Refs. [36,63–65].

It is of interest to try to understand if the barrier calculations
are reliable outside the region of nuclei to which the model
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FIG. 23. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Th isotopes, compared with experi-
mental data where available.

parameters were adjusted. The FRLDM (2002) parameters we
use here were determined in 2002 [12]. It was not reasonable
to retain the FRLDM (1992) parameter set because our vastly
more general deformation spaces for fission potential-energy
calculations now include millions of deformation points
compared with 175 deformation points for the potential-energy
surfaces on which the FRLDM (1992) was based; a more than
10 000 fold increase. This leads to a systematic lowering of
all calculated barrier heights by up to 3 MeV [8,57]. The
experimental mass data set [66] used in the 2002 parameter
determination is identical to the set used for the 1995 mass
table [13]. Thirty-one outer barrier heights were used in the
fission-barrier-height data set. The rms error between barrier
heights derived from experimental data is 0.999 MeV; the
mass-model error for 1654 nuclei is 0.752 MeV. If we assume
that the intrinsic model errors are randomly distributed and are
of the same magnitude for saddle points as for ground states,
and that the saddle and ground-state errors are uncorrelated,
then one expects, due to the subtraction required to extract
a barrier height from the saddle-point and the ground-state
energies, that the error σbar should fulfill

σbar =
√

2σmass. (26)
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FIG. 24. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Pa isotopes, compared with experi-
mental data where available.

This requirement is consistent with the error estimates in the
FRLDM (2002) model, but was not for the FRLDM (1992)
model, for which the estimate for σbar was about 1.4 MeV.

For light actinide nuclei, we consistently obtain that the
outer peak, beyond the fission isomeric minimum, is split into
two about equally high peaks (denoted EB and EC), separated
by a shallow minimum (denoted EIII) which is 0.5 to 1 MeV
deep. It has been argued [7] that it is the inner of these peaks
that should be compared with what in experimental evaluations
has been tabulated as the first barrier peak. That would bring
the calculated and experimental values for the height of the
first barrier peak into much better agreement with each other.
However, experimental (n,f) data for 232Th and nearby nuclei
were subsequently analyzed in terms of a three-humped barrier
structure [67]. A general feature of the results of this analysis
for 230Th, 231Th, 233Th, and 237U is that the barriers of these
nuclei do exhibit a triple-humped structure. The heights of
the saddles and minima depend on the K quantum number
of the fission channel. For the first peak, the results in MeV
are 5.40–6.14, 5.11–5.50, 5.10–6.00, and 5.00–5.20, for 230Th,
231Th, 233Th, and 237U, respectively. At the lower end of the
range of values, these experimental values are up to one MeV
lower than those given by the experimental evaluations used in
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FIG. 25. (Color online) Calculated first and second saddle heights
and fission-isomer energies for U isotopes, compared with experimen-
tal data where available.

Figs. 23 and 25. In the outer barrier region this experimental
study deduces that the conventional outer saddle is split into
two peaks by a shallow “third” minimum about 0.5 MeV deep.
Each of the outer peaks is about 6 MeV high. For the lighter
nuclei in this sequence, it is the outer of the two peaks that is
the higher by 0.5 MeV or so; for 237U, it is the inner of the
two peaks that is the higher. For details, see Ref. [67]. Our
results for the outer-barrier region are in very good agreement
with this analysis, as can be seen in Fig. 16. We also reproduce
the experimentally deduced trend of the relative height of EB

and EC with neutron number. However, our inner barrier EA

is still lower than those resulting from this refined analysis
of the experimental data. Calculated first barrier peaks that
are lower than values obtained from analysis of experimental
data for light actinides is a well-known, still unresolved issue,
and are obtained in many theoretical studies, for example, in
Refs. [7,53,68–74].

For Pu, Am, Cm, and Cf, the calculated second barrier
heights for neutron number N in the range 150–155 appear
too high compared with experimental data. The lighter of
the fission fragments in fission of these nuclei corresponds
to a region near 108Ru where we have recently shown that
the ground-state mass is lowered by up to 0.7 MeV by
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FIG. 26. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Np isotopes, compared with experi-
mental data where available.

allowing axially asymmetric shapes [75]. We know that some
fragment properties already begin to emerge at the outer saddle
point in fission. It would be interesting to include triaxial
shape degrees of freedom at the outer saddle point, since
the fragments are already partially formed there. This will
be a formidable task, since it requires that the three-quadratic-
surface parametrization be extended to allow triaxial shapes,
and that in order to allow different amounts of triaxiality for
each nascent fragment, the dimensionality of the deformation
space must increase from five to seven.

B. Other models

To gain additional insight into the reliability of our results
and those of other models, we wish to compare them with
other efforts that study several nuclear properties (universality)
such as nuclear ground-state masses, deformations, and fission
barriers for a large number of nuclei (globality). We are aware
of only one other set of studies that fit into this category,
namely, the Brussels/Montreal HFB-1, . . . , HFB-n (where n

stands for model version and currently is about 15) [56,76,77].
We compare our fission-barrier results with studies based on
the HFB-n framework. This work is often presented as “self-
consistent,” “fundamental,” and “microscopic,” and our work
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FIG. 27. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Pu isotopes, compared with experi-
mental data where available.

is referred to as “phenomenological;” this characterization
is given as evidence that our work must be expected to be
less reliable when used to predict properties of currently
unknown nuclei. This claim is misleading. To begin with,
the values of the parameters defining the effective two-body
interaction used in this type of model are adjusted to nuclear
properties, including masses (phenomenological). Second, in
mass studies, the HFB calculations use other phenomenolog-
ical terms with adjustable parameters, for example, terms to
describe what is referred to as the Wigner energy. Third, in the
latest work on barriers [77], an admittedly phenomenological
“collective correction” term with three or four parameters
is added. The authors of this work mention that the good
reproduction of experimental barriers in this model “is entirely
the result of the three extra fitting parameters provided by this
term.” Therefore, the HFB work is also phenomenological,
no longer self-consistent, and actually a type of macroscopic-
microscopic model. Certainly, its microscopic content is higher
than that in our model, with the effective volume, surface, and
Coulomb energies arising from the microscopically calculated
densities. Both the HFB model and our model have spin-orbit
effective interactions that are not derived from fundamental
considerations. The form and strength of the spin-orbit term
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FIG. 28. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Am isotopes, compared with experi-
mental data where available.

provide some of the major sources of uncertainty for any model
applied to nuclei far from stability.

This being said, what are the current accomplishments of
the two efforts and what kind of reliability can we expect of
our fission-barrier calculations? It may seem straightforward to
compare calculated barrier heights with “experimental” barrier
heights. However, the experimental barrier heights are not
measured as directly as nuclear masses can be measured. They
are, as we have discussed, deduced from modeling measured
fission cross-section excitation functions. But it is a standard
comparison. Both our calculation and the HFB-14 calculation
yield good agreement with data for actinides, with about a
1 MeV average error. It is difficult to evaluate the reliability of
extrapolation of the models to extremely neutron-rich nuclides
that are relevant for the r-process. The only direction of
extrapolation directly accessible is to lower values of Z. From
Fig. 5 of [77], one can infer a systematic overestimation
of the barrier heights in the Z = 80–87 region. This is
typical of self-consistent microscopic models, all of which
have a very large effective curvature energy [78,79], which
tends to increase the energy of the more deformed saddle points
characteristic of lighter nuclei. HFB-14 results for systems
with Z < 80 are not given. Our model, on the other hand,
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FIG. 29. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Cm isotopes, compared with experi-
mental data where available.

has been compared with barriers down to Z = 34, with
no apparent increase of average deviation for the lighter
nuclei [12]. It is also possible to make indirect comparisons
of calculated barrier heights with other types of data. For
example, the calculated barrier heights should be sufficiently
high that they are compatible with observed half-lives. In the
HFB and the somewhat related ETFSI studies in the region
Z � 107 [53,55], many of the fission barriers for nuclei that
have been observed are in the 2–3 MeV range, which is too low
to be compatible with observations of 100% α-decay branches
with half-lives in the ms range. Another area in which our
model has been shown to extrapolate well compared with
HFB-n is in predicting the masses of superheavy elements,
which although not yet measured, do lead to the observed
α-decay Q values for the elements with Z = 110 to Z = 113.
Our predictions for these elements [13,22], which predate the
measurements, give a good reproduction of the Q values for all
α-decay chains which have so far been measured in this mass
region; an example is shown in Fig. 7. Since barriers in the HFB
model do not extrapolate as well as those in our model, either in
the direction of lower Z and A or to the superheavy region, we
remain skeptical of how well it may extrapolate in the large-N
direction. There is no evidence presented in Ref. [77] for the
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FIG. 30. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Bk isotopes, compared with experi-
mental data where available.

claim “Model HFB-14 . . . is well suited for a new calculation
of all the barriers involved in the r-process.” We cannot claim
to know how well our model extrapolates to fission barriers in
the r-process region, but have at least some confidence because
of the above points, and because of its good historical record
of extrapolating to regions of nuclear masses that were not
known when the mass tables were published [20,80].

C. Heavy-element stability

We display 1122 of the barrier heights tabulated in Table II
in terms of a contour diagram in Fig. 33. Our calculated barrier
heights agree well with experimentally deduced barrier heights
as we discussed above. We now discuss a number of other
observed fission-related properties and how they compare with
our calculations.

Heavy nuclei primarily decay by α and β decay and by
fission. We have earlier provided extensive tables of α- and
β-decay half-lives [81]. The β half-lives were calculated in
a microscopic model which is accurate to about a factor
of three [82]. If parent and daughter masses are known the
α- and β-decay half-lives can be estimated from simple
Q-value systematics to within one or two orders of magnitude.
However, theoretical fission half-lives are more difficult to
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FIG. 31. (Color online) Calculated first and second saddle heights
and fission-isomer energies for Cf isotopes, compared with experi-
mental data where available.

calculate than α-decay half-lives and are subject to greater
uncertainties.

To calculate spontaneous-fission half-lives, it is necessary
to know the fission potential energy, the inertia associated
with the motion through the barrier and the path from the
ground state through the barrier. Conceptually it is appealing
to calculate the potential energy and inertia tensors in terms
of several shape variables and then determine the least-
action trajectory for barrier penetration by use of dynamical
programming techniques; see, for example, Ref. [83]. Al-
though this technique is theoretically very appealing, it has
in practice had results which are not an improvement over
simpler, semiempirical techniques [18,31,84–88]. In the semi-
empirical technique, optimum saddle points and minima are
obtained from the multidimensional potential-energy surface.
A one-dimensional fission barrier is then constructed by
connecting neighboring minima by third-degree polynomials
whose first derivatives are zero at the maxima and minima.
This completely defines the barrier. The inertia is given by a
semiempirical model in which certain boundary conditions
are imposed on the inertia. The model was introduced
35 years ago [84] and has been used in many studies; see
Ref. [21] for a more recent review. It turns out that the
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FIG. 32. Calculated first and second saddle heights and fission-
isomer energies for Es isotopes, compared with experimental data
where available.

semiempirical inertia in practice agrees well with microscopic
cranking-model results [83,89]. Another reason for not using
the microscopic approach here is that it has never been applied
in five dimensions, which would be extremely cumbersome.
We therefore use the semiempirical method here to predict
a few fission half-lives based on our current potential-energy
surfaces. The parameters of the semiempirical inertia are those
determined in 1976 [87] with generalizations introduced in
1987 [31] to allow studies of compact symmetric fission
modes. We tabulate the calculated fission and α half-lives
in Table IV. We also provide experimental values where
available. For the first five entries in Table IV, we have
selected representative actinide nuclei to benchmark our
calculations. We find excellent agreement between calculated
and experimental half-lives, especially considering the ex-
treme sensitivity of the calculated fission half-lives to small
changes in calculated barrier energies. Results are especially
sensitive to changes in the ground-state energy. A 1 MeV
change in this energy will give rise to a change in the
calculated half-life of six orders of magnitude. It was stated in
Refs. [21,30] that one could expect average deviations between
calculated and experimental fission half-lives of about three
orders of magnitude. For Fm, the calculated half-lives are
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TABLE IV. Fission and α-decay half-lives for selected nuclei.
The experimental fission half-lives are from Ref. [90]. The cal-
culated and experimental α half-lives are from Refs. [22] and
[91], respectively. The top five entries are comparisons between
calculations and experimentally available fission and α-decay half-
lives for representative (and somewhat challenging) actinide nuclei.
The three middle entries represent predicted stability for even-even
nuclides with N = 126 heavier than the last observed N = 126
nuclide (218U). The next three entries illustrate the much shorter
half-lives just beyond the N = 126 shell in the transition region
between spherical and well-deformed nuclei. The last entry is for a
Z = 112 deformed “superheavy” nucleus.

Nuclide Log10(T f
1/2/y) Log10(T α

1/2/y)

Z N A Calc. Exp. Calc. Exp.

92 144 236 14.31 16.39 8.18 7.37
94 138 232 −1.29 −3.21 −4.19
94 146 240 9.22 11.05 4.51 3.93

100 152 252 6.06 2.09 −1.14 −2.54
100 158 258 −7.34 −10.91

96 126 222 9.41 −4.12
98 126 224 1.65 −4.70

100 126 226 −3.03 −5.29

96 128 224 −2.16 −8.35
96 134 230 −10.76 −1.48
98 132 230 −15.96 −4.52

112 165 277 −5.37 −11.91 −11.11

three to four orders of magnitude too large. However, the
average deviation for the five cases is within the expected
three-order-of-magnitude accuracy of the approach. And it is
noteworthy that we get quite reasonable results over the 27(!)
order-of-magnitude variation of the experimental half-lives.
For 258Fm, we have used the mass parameter we associate with
the compact fission valley [31]. For 232Pu, fission has not been
observed experimentally; the α-decay half-life is 34 min. Our
calculated fission half-life is 19 days. This is compatible with
observing only an α branch at almost 1000 times the calculated
fission decay rate. We were surprised by this long fission
half-life because the fission-barrier height in Table II is only
3.23 MeV. However, in the fission half-life calculations, we
use additional information from our potential-energy surfaces.
The barrier for 232Pu is double-humped and both the inner and
outer peak are about 3 MeV. The fairly long fission half-life is
a consequence of the barrier being relatively wide.

There is some interest in experimentally investigating
stability for constant N = 126. Currently the heaviest known
N = 126 isotone is 218U. After our satisfactory benchmarking
of our methods, we have some confidence in applying the
model to unknown nuclei and show on the next three lines of
Table IVpredicted half-lives for fission and α decay of 222Cm,
224Cf, and 226Fm. Clearly these nuclei would be fairly stable
and decay mainly by α decay according to our predictions,
if there were a sufficiently large evaporation-residue cross
section in reactions that might be employed to produce them.

Although fission barriers or fission half-lives have not
been systematically determined for nuclei with 107 � Z � 113
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FIG. 33. (Color online) Calculated fission-barrier heights for
1122 heavy nuclei. As discussed in the text we find that the calculated
barrier heights agree well with experimental data related to barrier
heights (for example half-lives and regions of EC-delayed fission
occurrence) for nuclei throughout the heavy region. Red color
indicates barrier heights above 8 MeV (9 MeV and higher may be
included).

discovered during the last 25 years or so [55,92–97], we
know that α decay usually is the dominant mode of decay.
Consequently, fission barriers have to be sufficiently high
to correspond to fission-decay half-lives that are longer than
the observed α half-lives. We compare the calculated fission
half-life of 277112 to its calculated and measured α half-life
in the last entry in Table IV. It is many orders of magnitude
larger than the observed α half-life, so our results are consistent
with the observations. The HFB and ETFSI 2 MeV barriers
obtained for many such heavy systems are not consistent with
these results. By artificially raising the ground state in our
calculated potential barrier, we find that we need at least a
4.5 MeV barrier to obtain 1 ms or longer half-lives for
fission. This may seem contradictory to our result for 232Pu,
for which we obtained a 19 day half-life with only a
3.23 MeV barrier. However, that system has a two-peaked
barrier whereas 277112 only has a first barrier peak, which
leads to a much narrower barrier and consequently a much
higher penetrability for a given barrier height. Our current
results remain consistent with this explanation.

D. EC-delayed fission

An additional way to indirectly compare calculated fission-
barrier heights with data is to consider EC-delayed fission
data. Electron-capture delayed fission (ECdf) can be expected
to be an observable decay branch if QEC is sufficiently high
compared with the barrier height in the daughter of the EC
decay. A rough rule-of-thumb is that

QEC >≈ Bf − 2 MeV. (27)

In Fig. 34 we show the magnitude of the window for ECdf
and indicate where ECdf has been observed experimentally.
There is limited experimental data available in the light Pb
region [98–101]. More extensive and systematic studies have
been carried out in the actinide region [102–112].

In Table V, we compare QEC values obtained in the
FRDM (1992) mass model [13] (experimental masses are not
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FIG. 34. (Color online) Window for fission in the daughter of EC
decay. When the window is negative electron capture only populates
daughter states at energies below the barrier saddle point. For states
not too far below the barrier saddle some fission branching is still
possible, see text for further discussion. New data in the neutron-
deficient Pb region provide challenging tests for fission theory,
far from the well-studied actinide region. Function values below
−3 MeV are not plotted; red color indicates function values 5 MeV
and higher (6 MeV and higher may be included).

available) with our calculated barrier heights in the daughters
following EC capture, for systems in which EC-delayed fission
has been observed. Thirteen of the seventeen entries in the table
fulfill the simple rule given by Eq. (27). All five deviations
occur for nuclei near Z ≈ 100 and 146 � N � 154, and the
possibility exists that our calculated ground states here are too

TABLE V. Calculated Q values QEC for electron capture and
calculated fission-barrier heights Bf in the daughter of the EC
decay for reactions where EC-delayed fission has been observed
experimentally.

Reaction QEC (MeV) Bf (MeV) QEC − Bf (MeV)

180
81Tl

EC=⇒ 180
80Hg 10.44 9.81 0.63

188
83Bi

EC=⇒ 188
82Pb 10.83 10.32 0.51

192
85At

EC=⇒ 192
84Po 10.33 8.25 2.08

194
85At

EC=⇒ 194
84Po 9.42 9.46 −0.04

196
85At

EC=⇒ 196
84Po 9.10 10.29 −1.19

228
93Np

EC=⇒ 228
92U 4.26 5.13 −0.87

232
95Am

EC=⇒ 232
94Pu 4.88 3.23 1.65

234
95Am

EC=⇒ 234
94Pu 4.12 3.83 0.29

238
97Bk

EC=⇒ 238
96Cm 4.77 4.92 −0.15

240
97Bk

EC=⇒ 240
96Cm 3.85 5.85 −1.99

242
99Es

EC=⇒ 242
98Cf 5.22 6.16 −0.94

244
99Es

EC=⇒ 244
98Cf 4.45 6.69 −2.24

246
99Es

EC=⇒ 246
98Cf 3.69 7.16 −3.47

248
99Es

EC=⇒ 248
98Cf 2.98 7.24 −4.26

246
101Md

EC=⇒ 246
100Fm 6.28 6.13 0.14

248
101Md

EC=⇒ 248
100Fm 5.28 6.73 −1.45

250
101Md

EC=⇒ 250
100Fm 4.58 7.22 −2.64

deep by 1 MeV or so. Figure 31 hints at this possibility. This
would also be consistent with our four-order-of-magnitude too
long half-life for 252Fm in Table IV. Raising the ground-state
energy by 1 MeV decreases the calculated half-life by six
orders of magnitude. However, in general, this comparison
supports the overall reliability of our results. We are consistent
with the data for EC delayed fission in the Pb region, so
there is no obvious indication of divergence from data for
very proton-rich nuclei near the proton drip line.

E. Bimodal fission

Fission data for some nuclei have been interpreted as
showing the presence of at least two separate modes of
fission. Such coexistence in the data of two modes can
involve, for example, two separated peaks in kinetic-energy
distributions, symmetric and asymmetric peaks in fragment
mass distributions, and separate thresholds for the onset of
asymmetric and symmetric fission. Of particular interest are
the correlations that can be observed among such properties.
Early detailed observations of such features in the Ra region
are in Refs. [59,113–115]. Later, different coexisting fission
modes were also observed in nuclei near 258Fm [116,117].
These authors coined the phrase “bimodal fission” for this
type of fission.

We previously showed [10] that our potential-energy
surfaces for 228Ra are very consistent with the experimental
observation of well-separated symmetric and asymmetric
fission modes, the symmetric mode having an about 2 MeV
higher fission threshold and lower fragment kinetic energies
than the asymmetric mode. Similar results were obtained for
234U; in this case the ridge separating the two modes is lower.
In Fig. 16 we show that two well-separated modes are also
present in the results for 232Th. We find that the existence of
two well-separated fission modes is a quite general feature in
our results for light actinide nuclei.

A large Japanese collaboration has more recently performed
extensive and systematic studies of bimodality in fission of a
substantial number of other light actinide nuclei; see, for ex-
ample, Refs. [60,118–123]. In their analysis, they see evidence
of bimodal fission in many systems, from 232Th to 244Cm. Our
calculations here are consistent with several aspects of their
results. We find that our scission shapes are more elongated
for the symmetric fission mode, compared with the asymmetric
fission mode. This is consistent with the observation that the
fission-fragment kinetic energies are higher in asymmetric
fission than in symmetric fission. Furthermore, in the analysis
of their data in terms of two modes of fission, they also
observe that they must assume that the level-density parameter
is 3–15% larger in the symmetric mode than in the asymmetric
mode [120]. We find for 232Th that the symmetric level-density
parameter is 15% higher than the asymmetric level-density
parameter with the weights implied by a density fit, and 23%
with the log fit, see Table III. Thus, we are consistent with
the result of a larger level-density parameter in the symmetric
mode than in the asymmetric mode. The analysis of bimodal
aspects of actinide fission [120], furthermore concludes that
the barrier corresponding to the symmetric mode is about
2 MeV higher than the barrier corresponding to the asymmetric
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mode. This is in contrast to our results. We find that
the barrier leading to the symmetric mode becomes more
nearly equal to the asymmetric barrier in Am isotopes, see
Figs. 14, 15, and 17. However, in the analysis of Ref. [120],
many simplifying assumptions are made that may have a
significant impact on the barrier parameters that are obtained.
For example, both the symmetric and asymmetric barriers are
assumed to be single-peaked parabolic barriers. The barrier
curvature parameters are not fitted, they are imposed, and
simple phenomenological Fermi-gas models are used for level
densities. A definite conclusion on how realistic the parameters
of our calculated barriers for the symmetric and asymmetric
modes are can probably not be drawn until a more refined
analysis of the experimental data is carried out. At this point
there is no standard approach available for such an analysis.
It is our hope that our more detailed potential-energy-surface
predictions can stimulate developments in this direction.

For nuclei near 258Fm, the bimodal features are somewhat
reversed compared with the observations for the lighter
actinides. In particular, in spontaneous fission, two peaks in
the kinetic-energy distributions are observed simultaneously,
and it is the symmetric mode that is associated with the higher
kinetic energy. It had been assumed that the two modes would
correspond to different fission barriers, one corresponding to
symmetric fission and high fission-fragment kinetic energy and
a second mode corresponding to asymmetric fission and lower
kinetic energy. A perceived mystery at the time of these studies
was why different barriers could yield similar probabilities for
spontaneous fission, as both modes were observed in the same
experiment with not too different probabilities. This was taken
to mean that the spontaneous fission half-lives for the different
barriers had to be similar. However, just adding two neutrons
to 256Fm, which is predominantly asymmetric, decreased the
half-life from 2.63 days to 0.37 ms in 258Fm, possessing
a significant symmetric component. This corresponds to a
seven order-of-magnitude change. So it was assumed that
the mystery was why there was not a similar difference in
the probabilities of the two modes when they were observed
in the same nucleus, because barriers corresponding to the
different modes must surely differ just as substantially as the
barrier difference between 256Fm and 258Fm. In Ref. [117],
the Abstract stated that “. . . no physical grounds have been
advanced that would allow the near equal populations traveling
each path. We suggest that this failure to find a reason for
the somewhat equal branching may be a fundamental flaw of
current fission models.”

It is unfortunate that such a strong statement was made,
when in fact physical grounds had been advanced some three
years previously in Ref. [31]. As is common in mysteries, a
large part of a mystery arises because the problem is (unknow-
ingly) deceptively presented. The question was asked, “How
can two (different, totally uncorrelated) barriers correspond to
similar half-lives?” The parenthesized words were not always
explicitly expressed but were implied. The answer is, of course,
they cannot. But the fact here is that the barriers are not
uncorrelated nor are they totally different. The calculations
of potential-energy surfaces for 258Fm and nearby nuclei in
Ref. [31] were only based on about 300 deformation points,
but were sufficiently informative to lead to the explanation.

The key observation is that the barriers or paths defining
the asymmetric and symmetric barriers only become separate
after the second minimum, and the barrier penetrability is
dominated by the first peak. From Ref. [31], “. . . the same
barrier is penetrated in the two cases except for a tiny portion
at the end of the penetration process.”

In our current calculations, the essential features of
the previous results are retained (see Ref. [10], especially
Fig. 6 and the associated discussion.) The principle behind
the simultaneous observation of the characteristic signatures
of both modes in the same experiment is further elucidated in
Refs. [18,21,124]. We illustrate by a test half-life calculation
the insensitivity of the half-lives to realistic differences in the
two relatively tiny sections of the outer barrier that define the
two fission modes. In the fifth line of Table IV, we present
the calculated half-life for compact fission into the new valley
(cf. Ref. [31] for terminology), and note that we agree to within
four orders of magnitude. The first barrier, second minimum,
and second barrier with respect to the ground state are 5.32,
2.27, and 4.69 MeV. We add a zero-point energy of 0.8 to the
ground-state energy leading in Table IV to the barrier height of
4.52 MeV. To study the sensitivity of the half-life to changes
in the outer barrier where the only difference between the two
modes originates, we now calculate the half-life for a 1 MeV
higher outer barrier and obtain for the log of the lifetime −6.82,
compared with −7.34; for the barrier we actually calculated.
In Ref. [31], the barrier along the switchback path, the tiny
outer part of the barrier that takes you into the “old” valley
leading to elongated fragments and low-kinetic-energy events,
was found to be only 0.3 MeV higher than the compact-mode
barrier. Of course the switchback path is associated with a
different inertia than is the compact path, and possibly a
different path length, but since the parts of the barrier that
differ between compact and elongated fission modes are such
small fractions of the complete barrier, we expect that these
differences, just like differences in barrier height, will only
have a small influence on the total barrier penetrabilities.
Thus, 20 years ago we presented a physical picture that allows
nearly equal populations of the two fission modes. Since the
paths associated with the two modes only separate along a tiny
portion of the barrier, where the inertia is much lower than in
the common section of the barrier, this explanation is relatively
model-insensitive and robust.
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242Am shown in Fig. 15, with shapes for selected points displayed.
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APPENDIX

In this appendix, we discuss in more detail the nature of
the difficulties encountered when applying the minimization
method in the neighborhood of the second barrier in 242Am,

shown in Fig. 15. In the calculation in which β2 is constrained,
we increase it in steps of 0.02. In the calculation in which r

is constrained, it is increased in steps of 0.015. In Fig. 35,
we reproduce the barrier structure from Fig. 15 along with
some selected shapes. The isomer shape (1) is essentially the
same in all three calculations. It is a reflection-symmetric
shape comprising prolate spheroids with a neck having a
large curvature joining them. The second saddle uncovered by
immersion in the 3QS analysis has a very different shape (2),
exhibiting reflection asymmetry and no neck. Both constrained
calculations follow a sequence of similar reflection symmetric
shapes with end bodies of decreasing eccentricity and necks
with increasing curvature. In the r-constrained calculation, the
last shape in this sequence (3) is found at r = 1.335, which has
Q2 = 37.6. The shape that immediately follows (4), with r =
1.350, lies in a different family, being asymmetric with no neck
and having Q2 = 44.5. Even though the energy for increasing
Q2 values is very close to that of the 5D symmetric path
(gold squares), the shapes possess an increasing asymmetry,
and are different from those along the 5D path. The solid
black line connecting the two points before and after the jump
is only to guide the eye, as the energies in the intermediate
region are not defined in this constrained calculation. When
β2 is the constraint, the last shape in the initial family (5)
occurs at β2 = 0.98, with Q2 = 39.8. The β2 = 1.00 shape
(6) jumps to still another family with reflection symmetry and
Q2 = 62.6, having an equatorial bulge in place of a neck. This
solution jumps again between β2 = 1.12 and β2 = 1.14 to a
still different symmetric family having larger β4 and β6 values
and with Q2 jumping from 71.6 to 77.9. The cyan line is again
only to guide the eye, with the energies from Q2 = 40 to 60
not defined.

We discussed above that there is a more systematic way
of identifying the proliferation of valleys which can lead any
constrained calculation astray. Using this method we find that
the 4D space corresponding to Q2 = 80 is intersected by five
valleys, each at least 0.2 MeV deep, one of which is reflection
symmetric.
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[82] P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802
(2003).

[83] A. Baran, K. Pomorski, A. Łukasiak, and A. Sobiczewski, Nucl.
Phys. A361, 83 (1981).

[84] E. O. Fiset and J. R. Nix, Nucl. Phys. A193, 647 (1972).
[85] J. Randrup, C. F. Tsang, P. Möller, S. G. Nilsson, and S. E.
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J. Randrup, A. Łukasiak, and A. Sobiczewski, in Proceedings
of the 4th IAEA Symposium on the Physics and Chemistry of
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