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Nuclear structure of lowest 229Th states and time-dependent fundamental constants
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The electromagnetic transition between the almost degenerate 5/2+ and 3/2+ states in 229Th is deemed to be
very sensitive to potential changes in the fine structure constant α. State of the art Hartree-Fock and Hartree-
Fock-Bogoliubov calculations are performed to compute the difference in Coulomb energies of the two states that
determines the sensitivity of the transition frequency ν on variations in α. The kinetic energies are also calculated
that reflect a possible variation in the nucleon or quark masses. As the two states differ mainly in the orbit occupied
by the last unpaired neutron the Coulomb energy difference results from a change in the nuclear polarization of
the proton distribution. This effect turns out to be rather small and to depend on the nuclear model. The sensitivity
qs of the frequency shift δν on δα/α(δν = qsδα/α) varies for the different models between about +1020 Hz and
−1020 Hz. Therefore, much more effort must be put into the improvement of the nuclear models before one can
draw conclusions from a measured drift in the transition frequency on the size of a temporal drift of α.

DOI: 10.1103/PhysRevC.79.064303 PACS number(s): 21.60.Jz, 06.20.Jr, 27.90.+b

I. INTRODUCTION

Measurements of a suspected temporal variation of the
fine structure constant α by means of atomic transitions have
reached a limit for δα/α of less than 10−16 per year [1–8]. A
tempting idea to decrease the limit is to use the transition
between two nuclear states with very different Coulomb
energies, because the drift in transition frequency

δν = �VC

h

δα

α
, (1)

according to the Hellmann-Feynman theorem, is given by
the difference �VC in Coulomb energies of the two states
involved in the transition times the relative drift δα/α [9].
The sensitivity qs = �VC/h on relative changes in α can be
very large. Typical Coulomb energies in big nuclei are of the
order of VC ≈ 109 eV so that even a small difference �VC like
105 eV would give a sensitivity qs ≈ 2 × 1019 Hz.

A promising candidate for that is the transition between the
3/2+ isomeric state of the nucleus 229Th to its 5/2+ ground
state [10,11]. Recent measurements yield hν = 7.6 ± 0.5 eV
[12] that on nuclear energy scales is an accidental almost
degeneracy. A sensitivity of 2 × 1019 Hz would transform a
drift of 10−16 in δα/α to a shift in frequency of δν ≈ 2000
Hz. This implies that a measurement of δν more accurate than
2000 Hz would improve the present limit on δα/α.

The accuracy for measuring δα/α is in principle limited by
the width � of the decaying state

δα

α
= hδν

�VC

± �

�VC

. (2)

� has been estimated in Refs. [13,14] to be of the order
10−17 to 10−19 eV corresponding to a lifetime T1/2 =
(50 · · · 5000) s. Assuming again �VC ≈ 105 eV reduces the
uncertainty in δα/α to 10−22 to 10−24, see Eq. (2). This
accuracy would be 6 to 8 orders of magnitude better than
the presently reached 10−16 by atomic transitions.

The difference between a nuclear and an atomic transition is
that in atomic transitions, both the frequency and the sensitivity
are determined by the electromagnetic interaction and hence
the sensitivity is always of the order of a few 1015 Hz [15–
19]. In the nuclear case the transition frequency is mainly
determined by the strong interaction and the sensitivity by
the Coulomb energy. Therefore the nuclear energies contain a
contribution linear in α, differing from the atomic case where
the energies depend on α2. For this reason the sensitivity qs

defined here differs from the atomic one by a factor of two.
A big drawback of this idea is that the Coulomb energies

cannot be measured but have to be calculated with sufficient
accuracy in a nuclear model. Differences in charge radii and
quadrupole moments of the nuclear states are in principle
experimentally accessible. Their measurement would reduce
the uncertainty.

In a simplified picture the two states differ by the occupation
of the last neutron orbit. The change in the Coulomb energy
is thus due to a modified neutron distribution in the excited
state that will polarize via the strong interaction the proton
distribution in a slightly different way than in the ground state.

In this article we investigate in how far state of the art
nuclear models can provide reliable answers. In Sec. II we
discuss first the Hellmann-Feynman theorem in context with
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the employed models because the delicate origin of the effect,
as explained above, requires models that are variational to
achieve sufficient precision. After introducing the nuclear
models in Sec. III we discuss in Sec. IV the sensitivity of a
temporal drift of fundamental constants like the fine structure
constant or the nucleon mass on the transition frequency.

For the nuclear candidate 229Th we perform in Sec. V self-
consistent nuclear structure calculations and determine via the
Hellmann-Feynman theorem the derivatives of the transition
frequency with respect to the fine structure constant and the
nucleon mass. A critical assessment is made on the predictive
power when calculating observables other than the energy.
Finally, we summarize.

II. HELLMANN-FEYNMAN THEOREM REVISITED

In this section we discuss the Hellmann-Feynman theorem
for the models we are going to use. As we will see below, the
difference of Coulomb energies between ground and excited
state of 229Th is about four orders of magnitude smaller than the
Coulomb energies themselves. Therefore a precise prediction
can only be expected from variational models that fulfill the
Hellmann-Feynman theorem.

Let the Hamiltonian H (c) depend on a set of external
parameters c = {c1, c2, . . .}, like the strength of an interaction
or the mass of the particles. The steady-state solutions of
the time-dependent Schrödinger equation are given by the
eigenvalue problem

H (c)|�n; c〉 = En(c)|�n; c〉. (3)

Both, the energies En(c) and the eigenstates |�n; c〉 depend on
c. When discussing intermolecular forces in 1933 H. Hellmann
[20] and later in 1939 R. P. Feynman [21] showed that a small
variation of an external parameter in the Hamiltonian (distance
between nuclei) leads to a change in the energy given by:

∂

∂ci

En(c) =
〈�n; c| ∂

∂ci
H (c)|�n; c 〉

〈�n; c|�n; c〉 . (4)

The proof hinges on |�n; c〉 being an eigenstate of the
Hermitian H (c).

As was shown in Ref. [22] an analog statement holds for
extremal points of an energy functional. Let E(c, x) be the en-
ergy of a physical system that depends on external parameters
c and on a set of variational parameters x = {x1, x2, . . .} that
characterize the state of the system. x may also represent a
set of functions in which case partial derivatives are replaced
by functional derivatives. For example, in the Hartree-Fock
approximation, x is the set of occupied single-particle states
that form a Slater determinant. In an energy density functional
x could be the local density ρ(�r), and so on.

Steady-state solutions x(n)(c), n = 0, 1, 2, . . . of the system
are obtained by the condition

0 = ∂E
∂xk

(c, x). (5)

At the stationary points the energy assumes the values

En(c) = E(c, x(n)(c)), n = 0, 1, 2, . . . . (6)

Both the energies and the parameters x(n)(c) characterizing the
stationary states depend on the constants c. In the ground state
given by x(0) the energy E(c, x) is in an absolute minimum with
respect to variations in x, while the other possible solutions
x(n), n �= 0, represent saddle points.

A variation of the external parameters at the stationary
points leads to

δEn(c) =
∑

i

∂

∂ci

En(c)δci =
∑

i

{
∂E
∂ci

(c, x(n)(c))

+
∑

k

∂E
∂xk

(c, x(n)(c))
∂x

(n)
k

∂ci

(c)

}
δci . (7)

Due to the stationarity condition (5) the second part in the
square brackets vanishes so that we obtain for stationary
solutions

∂

∂ci

En(c) = ∂E
∂ci

(c, x(n)(c)). (8)

The derivative of the energy at the stationary solutions is
just the partial derivative of the energy functional with respect
to the external parameter calculated with the stationary state.

III. MODELS

In this section we discuss briefly the Hartree-Fock (HF)
method when a Hamiltonian is used, the extension to HF
with density-matrix functionals and the inclusion of pairing
correlations. We show that in all cases the generalized
Hellmann-Feynman relation holds. We also explain in short
the quantities discussed in the section containing calculations
for 229Th.

A. Hartree-Fock with Hamiltonian

In the HF approximation one uses a single Slater determi-
nant

|�HF〉 = a
†
1a

†
2 · · · a†

A|∅〉 (9)

as the many-body trial state. The creation operators a†
ν that

create the occupied single-particle states |φν〉,
a†

ν |∅〉 = |φν〉 =
∑

i

c
†
i |∅〉 Diν, (10)

are represented in a working basis |i〉 = c
†
i |∅〉. Thus, the

expansion coefficients Diν represent the set x = {Diν ; ν =
1, . . . , A, i = 1, 2, . . .} of variational parameters.

The general definition of the one-body density operator

ρ̂ =
∑
i,k

|i〉 ρik 〈k| (11)

is given in terms of the expectation values of c
†
kci , where the

creation operators c
†
i create the single-particle basis |i〉. In the

HF case:

ρik = 〈�HF|c†kci |�HF 〉
〈�HF|�HF〉 =

∑
ν Diν(Dkν)∗

〈�HF|�HF〉 . (12)
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The energy of the HF Slater determinant can be expressed in
terms of the idempotent (ρ̂2 = ρ̂) one-body density as

EHF[c, ρ̂] = 〈�HF|H (c)|�HF 〉
〈�HF|�HF〉

=
∑
ij

tij (c) ρji + 1

4

∑
ijkl

vik,j l(c)ρjiρlk

+ 1

36

∑
ijklmn

vikm,jln(c)ρjiρlkρnm + · · · (13)

where tij (c) denotes the matrix elements of the kinetic energy,
vij,kl(c) the antisymmetrized matrix elements of the two-body
interaction, vikm,jln(c) of the three-body interaction, and so
on. The dependence on the parameter set c that includes the
nucleon masses, coupling strengths, interaction ranges, etc.,
will not be indicated again until required. The variational
parameters x = {Diν} reside in the one-body density matrix
ρ̂ as given in Eq. (12). To work with familiar expressions in
this section we will write ρ̂ instead of x.

Variation of the energy given in Eq. (13) with respect to ρ̂

leads to the HF equations

ĥHF[ρ̂] ρ̂ = ρ̂ ĥHF[ρ̂]. (14)

The one-body HF Hamiltonian

ĥHF[ρ̂] =
∑
i,k

|i〉 hHF[ρ̂]ik 〈k| (15)

is a functional of the one-body density and its matrix elements
are given by

hHF[ρ̂]ik = ∂

∂ρki

EHF[c, ρ̂], (16)

or in short notation

ĥHF[ρ̂] = δ

δρ̂
EHF[c, ρ̂]. (17)

The eigenstates |φν〉 of ĥHF[ρ̂] represent the basis in which
both, ĥHF[ρ̂] and ρ̂ are diagonal:

ĥHF[ρ̂] =
∑

ν

|φν〉εν〈φν | (18)

ρ̂ =
∑

ν

|φν〉nν〈φν |, (19)

where εν denotes the single-particle energy and nν are the
single-particle occupation numbers that are zero or one in the
case of a single Slater determinant. Equation (14) represents
the stationarity condition (5) and hence the HF approximation
fulfills the Hellmann-Feynman theorem.

In nuclear structure theory the microscopic nucleon-
nucleon interaction induces strong short-range correlations
that cannot be represented by a single Slater determinant.
Therefore the HF method as explained here cannot be used. For
example, the strong short-ranged repulsion makes all two-body
matrix elements vik,lm positive and large so the HF Slater
determinant does not give bound objects. The way out is
to use effective interactions that incorporate the short-range
correlations explicitly; see, for example, Ref. [23–25]. Another

approach is the density-matrix functional theory we discuss in
the following section.

B. Hartree-Fock with density-matrix functionals

It has turned out that bypassing the construction of an
effective microscopic Hamiltonian by postulating an ansatz
for the energy as functional of the one-body density-matrix ρ̂,
as originally proposed by Skyrme for the no-relativistic and
by J. Boguta and A. R. Bodmer [26] and D. Walecka [27]
for relativistic nuclear physics (or by Kohn and Sham [28]
for the atomic case), is very successful in describing ground-
state properties. The energy functional EDF[c, ρ̂] contains a
finite number of parameters, c, that are adjusted by fitting
observables to nuclear data. The shape of the functional is
subject of past and present research [29–31] and is being
improved to also apply for nuclei far off stability. Differing
from the HF case with Hamiltonian, Eq. (13), the densities
may appear also with noninteger powers and the exchange
terms are not calculated explicitly but absorbed in the form of
the energy functional.

Not all of the information residing in the one-body density-
matrix ρ̂ is used. Usually one uses the proton and neutron
density ρp(�r), ρn(�r), kinetic energy densities τp(�r), τn(�r),
current densities �j (�r), etc.

EDF[c, ρ̂] = EDF[c, ρp(�r), ρn(�r), τp(�r), τn(�r), �j (�r), . . .].

(20)

To keep densities and currents consistent and corresponding
to fermions they are expressed in terms of the single-particle
states |φν〉

|φν〉 =
∑

i

|i〉 Diν (21)

that represent the occupied states of a single Slater determinant.
As they are expanded in terms of a working basis |i〉 the energy
EDF[c, ρ̂] is, like in the HF case, a function of the variational
parameters x = {Diν ; i, ν = 1, 2, . . .} or x = ρ̂.

The difference to HF with a Hamiltonian is that the mean-
field Hamiltonian ĥMF[ρ̂] obtained by the functional derivative
of the density-matrix functional EDF

ĥMF[ρ̂] = δ

δρ̂
EDF[c, ρ̂] (22)

is no longer given by a microscopic Hamiltonian but rather
by the functional form of EDF and the fitted parameters in the
set c.

The stationarity conditions (5) lead to the self-consistent
mean-field equations

ĥMF[ρ̂] ρ̂ = ρ̂ ĥMF[ρ̂] (23)

that have the same structure as the HF equations.
Because the self-consistent solution is obtained by search-

ing for solutions of the stationarity conditions (5), the
Hellmann-Feynman theorem (8) is fulfilled, even if one can no
longer refer to a microscopic Hamiltonian and a many-body
state.
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One should note that it is not mandatory that the single-
particle states |φν〉 with lowest single-particle energies are
occupied. Any combination of occupied states leads to a
stationary solution fulfilling Eq. (23).

Another interesting case is a one-body density with frac-
tional occupation numbers 0 � nν � 1 that may also commute
with the mean-field Hamiltonian and hence fulfills the sta-
tionarity condition (23) so the Hellmann-Feynman theorem is
applicable. In such a situation one cannot attribute a single
Slater determinant to the one-body density, because ρ̂ �= ρ̂2 is
not idempotent.

In any case the occupation numbers play the role of external
parameters and should be regarded as members of the set c and
not as variational parameters.

C. Hartree-Fock-Bogoliubov

The solution of the eigenvalue problem of ĥMF[ρ̂] provides
not only the coefficients Diν of the occupied single-particle
states but also a representation for empty states so that one
has a complete representation of the one-body Hilbert space.
With that one can define creation operators for fermions for
occupied and empty states

a†
ν =

∑
i

c
†
i Diν, (24)

with

|φν〉 = a†
ν |∅〉 and |i〉 = c

†
i |∅〉. (25)

and their corresponding annihilation operators aν and ci .
Pairing correlations in the many-body state can be incorpo-

rated by Bogoliubov quasiparticles that are created by

α†
ν = uνa

†
ν − vνaν̄

(26)
α
†
ν̄ = uνa

†
ν̄ + vνaν

as linear combinations of the creation and annihilation op-
erators, a†

ν, aν̄ , of the eigenstates of the one-body density
matrix (the so-called canonical states). The parameters uν

and vν can be chosen real and the requirement that α†
ν and

α
†
ν̄ are fermionic quasiparticle operators implies u2

ν + v2
ν = 1.

The pairing partner states ν and ν̄ are usually mutually
time-reversed states.

The many-body trial state is expressed as

|�HFB〉 =
∏
µ

a†
µ

∏
ν

(√
1 − v2

ν + vν a†
νa

†
ν̄

)|∅〉, (27)

where the product over µ runs over the so-called blocked states
or unpaired states and ν runs over all other paired states. In
addition to the variational parameters residing in the operators
a†

ν that create eigenstates of the mean-field Hamiltonian the
energy depends now also on the variational parameters vν ,
hence x = {Diν, vν ; i, ν = 1, 2, . . .}.

As the trial state (27) has no sharp particle number the
stationarity conditions Eq. (5) have to be augmented by a con-
straint on mean proton numberZ and mean neutron numberN
to obtain the self-consistent Hartree-Fock-Bogoliubov (HFB)

equations:

EHFB = E − λpZ − λnN . (28)

The proton and neutron chemical potentials, λp and λn,
have to be regarded as members of the set c of external pa-
rameters. The additional constraints do not alter the arguments
leading the Hellmann-Feynman theorem [22], thus it is also
valid in the HFB case.

In HFB it is convenient to introduce a generalized density
matrix

R̂ =
(

ρ̂ κ̂

−κ̂∗ 1 − ρ̂∗

)
, (29)

where ρ̂ is the normal one-body density

ρik = 〈�HFB|c†kci |�HFB 〉
〈�HFB|�HFB〉 (30)

and κ the so-called abnormal density

κik = 〈�HFB|ckci |�HFB 〉
〈�HFB|�HFB〉 . (31)

Both can be expressed in terms of Diν and vν . The generalized
density matrix is idempotent and Hermitian

R̂2 = R̂ and R̂† = R̂ (32)

and the stationarity condition leads to

ĤMF[R̂] R̂ = R̂ ĤMF[R̂] (33)

quite in analogy to the mean-field equations (23) without
pairing correlations. The pseudo-Hamiltonian

ĤMF[R̂] = δ

δR̂
EHFB[c, R̂] =

(
ĥMF − λ �̂

−�̂∗ λ − ĥ∗
MF

)
(34)

contains the mean-field Hamiltonian and the pairing part �̂.
The chemical potentials λ = (λp, λn) determine the mean
proton and neutron number. For details and further reading
see Refs. [32–34].

Let us write down only the one-body density because it
is referred to in the results for 229Th. The one-body density
matrix is given by

ρ̂ =
∑

ν paired

|φν〉v2
ν〈φν | +

∑
µ blocked

|φµ〉nµ〈φµ|, (35)

where the |φν〉 denote canonical basis states. The occupation
numbers are given by nν = nν̄ = v2

ν for the paired states and
are the same for ν and ν̄. For the unpaired or blocked states
nµ = 0, 1. In the application we will consider only one blocked
neutron state for 229Th.

IV. SENSITIVITY

To be more specific let us consider as external parameters
the fine structure constant α and the proton and neutron mass
mp,mn, thus c = {α,mp,mn}. In this section, we write down
expressions pertaining to a Hamiltonian; those characteristic
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to a density functional are entirely analogous, cf. Sec. II. The
partial derivatives of a nonrelativistic Hamiltonian are

∂

∂α
H (α,mp,mn) = 1

α
VC (36)

∂

∂mp

H (α,mp,mn) = Z − 1

mp

Tp (37)

∂

∂mn

H (α,mp,mn) = N − 1

mn

Tn, (38)

where VC denotes the operator for the Coulomb energy,
Z,N the proton and neutron number, respectively, and Tp, Tn

stand for the proton and neutron kinetic energy operator,
respectively.

According to the Hellmann-Feynman theorem a small
variation δα of the fine structure constant results in a variation
of an energy eigenvalue given by

δEn =
(

〈�n|VC |�n 〉 + Z α
dmp

dα
+ N α

dmn

dα

−〈�n|Tp|�n 〉α
dmp

dα

mp

− 〈�n|Tn|�n 〉α
dmn

dα

mn

)
δα

α
. (39)

In principle there could also be a dependence of the nuclear
interaction VN on α, e.g., through meson masses, which we
neglect here. The dependence of the nucleon masses on α can
be estimated from the article by Meißner et al. [35] [Eq. (36)].
Their estimate of the neutron-proton mass difference due to
the electromagnetic interaction is �m(EM)

np = −0.68 MeV that
yields

α
dmp

dα

mp

= −�m(EM)
np

2mp

≈ +0.36 × 10−3

(40)
α dmn

dα

mn

= �m(EM)
np

2mn

≈ −0.36 × 10−3.

A possible variation of some QCD constant c would lead to

δEn =
(

〈�n| d

dc
VN (c)|�n 〉 + Z

dmp

dc
+ N

dmn

dc

−〈�n|Tp|�n 〉
dmp

dc

mp

− 〈�n|Tn|�n 〉
dmp

dc

mn

)
δc (41)

where VN is the nuclear part of the interaction. This variation
is actually linked to the dimensionless ratio c = mq/�QCD,
where mq denotes the current quark mass and �QCD the strong
interaction scale [11,36,37].

While the dependence of the nucleon mass on the current
quark mass has been calculated [38,39], the QCD constants
enter the effective interaction VN (c) in a very complicated
and yet unknown way. In this article we do not consider such
variations of QCD constants explicitly but calculate besides the
total energies the kinetic energies and the Coulomb energies
that then can be combined according to Eqs. (39) or (41) to
obtain the variations with respect to variations of α or QCD
parameters.

As the temporal variation of the fundamental constant α

is tiny, if existent, it has been proposed to consider transition

frequencies

ν = 1

h
[E1(α) − E0(α)] (42)

that can be measured with high precision.
If the two energy levels belong to the same nucleus the

terms with the proton and neutron number drop out and we
obtain for the change δν of the transition frequency

δν = 1

h

(
∂E1

∂α
− ∂E0

∂α

)
δα

=
(

�VC

h
− �Tp

h

α
dmp

dα

mp

− �Tn

h

α dmn

dα

mn

)
δα

α
(43)

with the abbreviation

�X = 〈�1; α|X|�1; α 〉
〈�1; α|�1; α〉 − 〈�0; α|X|�0; α 〉

〈�0; α|�0; α〉 (44)

for the difference of the expectation values of the operators
X = {VC, Tp, Tn} calculated with the stationary states. The
terms in the bracket in Eq. (43) represent the sensitivities [19]
with respect to variations of α.

The results discussed in Sec. V show that �Tn and �Tp

are of the same order as �VC , nevertheless the terms with the
proton and neutron mass variations can be neglected because
of the very small variations of the nucleon masses with respect
to α, see Eq. (40).

When measuring frequencies one has to refer to a clock,
for example, the Cs fountain clock. The temporal shift in
frequency ν with respect to the clock frequency νc due to
temporal changes in α can be written as [7,8]

∂

∂t
ln

ν

νc

= (A − Ac)
∂

∂t
ln α, (45)

where A = qs/ν denotes relative sensitivities. For measured
atomic transitions A − Ac is typically of order one. The
nuclear case of 229Th [10,11] has attracted a lot of interest
as the relative sensitivity A = �VC/(hν) could potentially be
of order 104 that would improve the limit on temporal changes
of α substantially, as discussed in the introduction.

To confirm this the frequency ν has to be measured and the
theoretical task is to investigate the nuclear states carefully to
get a reliable estimate for their Coulomb and kinetic energies.
For the calculation of these quantities we employ in the
following section state-of-the-art mean-field models and also
include the effects of pairing correlations.

V. RESULTS FOR 229Th

The nucleus 229Th with 90 protons and 139 neutrons occurs
in nature as the daughter of the α-decaying 233U and decays
itself with a half-life of 7880 years, again by α emission. This
nucleus has attracted lot of interest as it has the lowest-lying
excited state known. In Fig. 1 the spectrum is arranged in terms
of rotational bands [40]. Two low-lying rotational bands with
Kπ = 5/2+ and 3/2+ can be identified, with band heads that
according to recent measurements differ in energy by only
about 8 eV. The first negative-parity band with Kπ = 5/2−
occurs at 146.36 keV.
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FIG. 1. Measured low lying states of 229Th with spin and parity
assignments [40]. Energies are in keV.

Because of the high sensitivity discussed in Sec. IV the
transition 3/2+ → 5/2+ is regarded as a possible candidate
to measure the time variation of the fine structure constant.
A simple estimate of the moment of inertia for the two
bands assuming a J (J + 1) energy dependence shows that the
two rotational bands have very similar intrinsic deformation.
Therefore, one does not expect a large difference between the
Coulomb energies of the 5/2+ and 3/2+ band heads that would
be due to differences in shapes. Instead, one has to consider
and work out detailed effects due to different configurations
of these states.

A. Hartree-Fock with density-matrix functional theory

To come to more quantitative statements we calculate
the energies of these two states with the best methods
available: density-matrix functional theory without and with
pairing, and a spherical relativistic mean-field theory [41].
In the nonrelativistic case we use the computer program
HFODD (v2.33j) [42,43] and employ two successful energy
functionals, SIII [44] and SkM∗ [45]. Because of large
uncertainties related to polarization effects due to time-odd
mean fields [46], in the present study these terms in the energy
functionals are neglected. The standard Slater approximation
is used to calculate the Coulomb exchange energies. The code
works with Cartesian harmonic oscillator (HO) eigenstates as
working basis |i〉 and allows for triaxial and parity-breaking
deformations, but the states determined in 229Th turn out to
have axial shapes with conserved parity. In our calculations we
have used the basis of HO states up to the principal quantum
number of N0 = 18 and the same HO frequency of h̄ω =
8.05 MeV in all three Cartesian directions.

In the discussion, the resulting basis |φν〉 will be as-
signed Nilsson quantum numbers �π [N,Nz,�] (for de-
tails see Ref. [32,47]) by looking for the largest overlap
|〈�π [N,Nz,�]|φν〉| with a Nilsson state. N = Nx + Ny +
Nz = Nρ + Nz + � denotes the total number of oscillator
quanta and Nz the number of quanta in the direction of the
symmetry axis. � = Nρ,Nρ − 2, . . . 0 or 1 and � = � ± 1

2
are the absolute values of the projection of orbital angular
momentum and total spin on the symmetry axis, respectively.
π = (−1)N is the parity.

It turns out that for both functionals the lowest HF
state has �π = 5/2− and thus corresponds to the intrinsic
state of the Kπ = 5/2− band that is experimentally lo-
cated at 146.36 keV. The total binding energy amounts to
−1739.454 MeV for SkM∗ and −1741.885 MeV for SIII
that should be compared to the experimental energy of
−1748.334 MeV [40]. On this absolute scale the calculated
HF energies are already amazingly good.

To get the experimentally observed parity we perform
the variation procedure in the subspace with positive parity.
For both energy functionals the Slater determinant with the
lowest energy has Kπ = 5/2+. All energies are summarized in
Table I. The last neutron occupies the level labeled with
5/2+[622] in the SkM∗ and with 5/2+[633] in the SIII case.
One should keep in mind that the single-particle states are
superpositions of Nilsson states and the labeling refers only to
the largest component. The states are detailed in Eqs. (46)–(49)
below.

The neutron single-particle energies εν and the occupation
numbers are displayed in Fig. 2(a) for SkM∗ and in Fig. 3(a)
for SIII. The 5/2−[752] state that would be occupied in the
negative-parity case is very close to the 5/2+[633] state; for
SIII they are almost degenerate.

As can be seen from Table I, the total HF binding energy
agrees with the measured one up to about 9 MeV for the SkM∗
and up to about 6 MeV for the SIII energy functional. Keeping
in mind that no parameters have been adjusted to the specific
nucleus considered here it is surprising that these mean-field
models can predict the energy with an uncertainty of only
about 0.5 %.

Putting two neutrons in the 5/2+[622] (for SkM∗) or
5/2+[633] (for SIII) level and one in the 3/2+[642] (for SkM∗)
or 3/2+[631] (for SIII) level and minimizing the total energy
yields an excited HF state that is to be regarded as the intrinsic
state of the experimentally observed Kπ = 3/2+ band. As
can be seen in Table I, the excited states occur at 0.619 MeV
for the SkM∗ and at 0.141 MeV for the SIII density func-
tional. The difference in Coulomb energies �VC amounts to
0.451 MeV for SkM∗ and to −0.098 MeV for SIII. The kinetic
energy differences �Tp and �Tn for protons and neutrons,
respectively, dissent even more. These deviations between the
two energy functionals reflect the differences in the structure
of the intrinsic states as also seen from the difference in the
single-particle states discussed above.

B. Relativistic mean-field calculation

We also performed a spherical relativistic mean-field
calculation with the NL3 parameter set [48] and found that
in the ground state the last neutron occupies a 2g9/2 orbit. For
vanishing deformation the Nilsson state 5/2+[633] belongs to
the subspace spanned by the spherical 2g9/2 orbits so that this
result is not unreasonable when comparing with the deformed
SIII calculation. The leading component for the 3/2+ state is
for SIII the 3/2+[631] orbit (cf. Fig. 3) that for deformation
zero belongs to the 1i11/2 subshell. Therefore we create the
excited state with �π = 3/2+ by a particle-hole excitation
from the 1i11/2 to the 2g9/2 shell so that there are 11 neutrons
in the 1i11/2 and 2 neutrons in the 2g9/2 shell.
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TABLE I. Total, Coulomb, neutron, and proton kinetic energies of the 229Th 5/2+ ground state calculated with
different energy functionals. Differences of these energies between 3/2+ first excited state and 5/2+ ground state.

Exp. SkM∗ SIII NL3 RH

HF HFB HF HFB

5/2+ Ref. [40]
Etot (MeV) −1748.334 −1739.454 −1747.546 −1741.885 −1748.016 −1745.775
VC (MeV) 923.927 924.854 912.204 912.216 948.203
Tn (MeV) 2785.404 2800.225 2783.593 2794.909 2059.640
Tp (MeV) 1458.103 1512.705 1442.018 1477.485 1106.697

3/2+ − 5/2+ Ref. [12]
�Etot(MeV) 0.000 008 0.619 −0.046 0.141 −0.074 2.407
�VC (MeV) 0.451 −0.307 −0.098 0.001 1.011
�Tn (MeV) 2.570 0.954 −0.728 0.087 −2.181
�Tp (MeV) 0.688 0.233 −0.163 −0.022 −1.996

The resulting energies are listed in the last column of
Table I. The total binding energy is similar to the nonrelativistic
one, but the particle-hole excited state is 2.41 MeV higher.
Different from the deformed mean-field the single-particle
states of a spherical potential have good total spin j and
are (2j + 1)-fold degenerated with large gaps between them.
The single-particle energy difference ε9/2 − ε11/2 = 2.74 MeV
explains the large excitation energy of the particle-hole pair of
2.41 MeV, which includes the rearrangement energy.

We conclude that a spherical calculation is not appropriate
for this particular question. In a recent publication [49] a
similar spherical relativistic mean-field calculations comes to
results comparable to ours with a Coulomb energy difference
of 0.7 MeV. Because of the unphysical properties of a spherical
229Th we will not commit ourselves to the spherical case any
longer but proceed to consider the effects of pairing.

C. Hartree-Fock-Bogoliubov

We include the pairing correlations with the Bogoliubov
ansatz (27) and perform a self-consistent HFB calculation
based on the SkM∗ and SIII density-matrix functional. For the
SIII case proton and neutron pairing strengths of V0 = −260
and −180 MeV fm3 (for a volume-type contact force) are
adjusted to reproduce the total binding energies and the
odd-even staggering with the neighboring nuclei. Proton- and
neutron-density matrices and pairing tensors are calculated
by including contributions from quasiparticle states up to
the cutoff energy of 60 MeV. Calculations are performed by
self-consistently blocking the 5/2+ and the 3/2+ quasiparticle
states. In the 5/2+ and 3/2+ configurations, this yields the
average HFB proton and neutron pairing gaps of �p =
2.4 MeV and �n = 0.65 MeV, and �p = 2.4 MeV and
�n = 0.68 MeV, respectively, for the SIII case and slightly
larger values for the SkM∗ case.

The results for the energies are summarized in Table I and
for the mean-field single-particle energies and the occupation
probabilities in Fig. 2(b) and Fig. 3(b). The first to note is that
the excitation energy is improving. Its value decreases from
619 keV down to −46 keV for SkM∗ and from 141 keV down

to −74 keV for SIII. On the accuracy level one can expect
from this model the 5/2+ and the 3/2+ states are degenerate,
like in experiment.

By looking at the occupation numbers displayed in
Figs. 2(b) and 3(b) one sees that about five single particle
levels near the Fermi edge assume fractional occupation
numbers significantly different than 0 or 2. In the SIII case
[Fig. 3(b)] they are almost identical for the 5/2+ and 3/2+
states except for the 5/2+[633] and 3/2+[631] levels that
switch their role. For the SkM∗ case [Fig. 2(b)] the blocked
states are energetically further away from each other, which
causes more deviations in the occupation numbers.

This characteristic pattern of occupation numbers renders
the HFB results qualitatively different than the HF ones.
Indeed, in the HF case either the 5/2+ or the 3/2+ orbital
has the occupation number equal to 1. Therefore, polarization
effects exerted by these two orbitals are able to render different
values of observables calculated for the 5/2+ and 3/2+ states.
In the HFB case, occupation numbers of the 5/2+ and 3/2+
orbitals are close to 1 for both 5/2+ and 3/2+ configurations.
Differences in observables may here only occur due to the
fact that the occupation number of the blocked state is exactly
equal to 1, while that of the other state is approximately equal
to 1, depending on its closeness to the Fermi level.

In the paired case (HFB), we are faced with the situa-
tion, where the zero-order approximation renders observables
calculated in the 5/2+ and 3/2+ exactly equal. Indeed,
such equality would be the case for the 5/2+ and 3/2+
orbitals located exactly at the Fermi surface and having
exactly the same occupation numbers. Note that values of all
observables calculated with the HFB approach depend only
on the canonical states and occupation numbers, irrespective
of which state has been blocked in obtaining them. Of course,
one can obtain different occupation numbers for both orbitals
in question when they are energetically split. However, this
may contradict the experimental energetic degeneracy of the
corresponding configurations. All in all, within a zero-order
paired approach, polarization effects of the 5/2+ and 3/2+
orbitals become exactly averaged out and the anticipated
differences in observables can occur only due to first-order
corrections.
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FIG. 2. (Color online) Neutron single-
particle energies and occupation numbers la-
beled by the asymptotic Nilsson quantum
numbers ν = �π [N, Nz, �] for the SkM∗ en-
ergy functional. (a) HF mean-field energies εν

and occupation numbers nν . Full bars denote
nν + nν̄ = 2, i.e., two particles in degenerate
pair of states with mj = ±�. Half full gray
(pink) bars denote one particle, nµ = 1, nµ̄ = 0.
(b) HFB mean-field energies εν (eigenvalues of
ĥMF) and occupation numbers v2

ν . Length of bars
indicates nν + nν̄ . Gray (pink) bars stand for
blocked states with nµ = 1, nµ̄ = 0.

This fact is perfectly well visible in our results for the
Coulomb energy differences shown in Table I. For the SIII
energy functional, only 1 keV remains for �VC . This reduces
the sensitivity of Eq. (43) to about 1017Hz. For SkM∗ a larger
value of �VC of about 300 keV is obtained due to a larger
splitting of the corresponding single-particle orbitals. From
this one must conclude that pairing correlations result in two
states with even more similar charge distributions than in the
HF calculation.

D. Radii and quadrupole moments

In Table II the rms-radii and quadrupole moments (nor-
malized with proton and neutron number, respectively) of the
neutron and proton point densities are given for the ground
state and as differences for the excited state. The quadrupole

moments of the protons are somewhat larger than those for
the neutrons. When reoccupying the last neutron the neutron
quadrupole moment decreases substantially in the SkM∗-HF
calculation and drags along via the nuclear interaction the
quadrupole moment of the protons. At the same time both
rms radii are decreased. A smaller charge radius and smaller
charge quadrupole moment are consistent with the increase
of the Coulomb energy that explains the large positive �VC

in the SkM∗-HF case. When including pairing the effect goes
in the opposite direction for SkM∗-HFB.

For the SIII functional HF and HFB calculations do not
lead to noteworthy changes in the moments when reoccupying
the last neutron and thus the Coulomb differences remain
also small. This can be anticipated when looking at the
single-particle energies of the involved neutron states and the
occupation numbers (Fig. 3).
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TABLE II. Rms-radius and intrinsic quadrupole moments of
neutron and proton densities of the 229Th 5/2+ ground state calculated
with different energy functionals. Differences of these moments
between 3/2+ first excited state and 5/2+ ground state.

SkM∗ SIII

HF HFB HF HFB

5/2+

Rrms(neutron) (fm) 5.8789 5.8716 5.8971 5.8923
Rrms(proton) (fm) 5.7180 5.7078 5.7817 5.7769
Q20 (neutron) (fm2) 9.4407 9.2608 9.1990 9.0711
Q20 (proton) (fm2) 9.5461 9.3717 9.3542 9.1643

3/2+ − 5/2+

�Rrms(neutron) (fm) −0.0040 0.0036 −0.0008 −0.0005
�Rrms(proton) (fm) −0.0038 0.0039 0.0000 −0.0005
�Q20 (neutron) (fm2) −0.2427 0.2647 −0.0767 −0.0516
�Q20 (proton) (fm2) −0.1824 0.2756 −0.0339 −0.0495

The mean-field single-particle state that corresponds to
the blocked HFB state occupied by the unpaired neutron is
represented in Nilsson orbits for SkM∗-HF as∣∣ 5

2

+〉 = +.509|622〉 + .467|642〉 + .266|862〉
+ .402|633〉 − .397|613〉 + · · ·

(46)∣∣ 3
2

+〉 = −.010|622〉 + .662|642〉 + .249|862〉
+ .305|611〉 − .562|631〉 + · · ·

and for SkM∗-HFB including pairing as∣∣ 5
2

+〉 = +.504|622〉 + .487|642〉 + .248|862〉
+ .418|633〉 − .383|613〉 + · · ·

(47)∣∣ 3
2

+〉 = +.015|622〉 + .642|642〉 + .235|862〉
+ .305|611〉 − .582|631〉 + · · · .

The SIII-HF calculation gives∣∣ 5
2

+〉 = +.066|622〉 + .418|642〉 + .180|862〉
+ .755|633〉 − .398|613〉 + · · ·

(48)∣∣ 3
2

+〉 = +.134|622〉 + .360|642〉 + .165|862〉
+ .428|611〉 − .642|631〉 + · · ·

and the SIII-HFB with pairing∣∣ 5
2

+〉 = +.024|622〉 + .423|642〉 + .159|862〉
+ .775|633〉 − .367|613〉 + · · ·

(49)∣∣ 3
2

+〉 = +.156|622〉 + .342|642〉 + .149|862〉
+ .412|611〉 − .636|631〉 + · · · .

In SIII-HF and SIII-HFB the blocked states exhibit more
concentration on the dominant Nilsson orbits [633] and [631].
As both have the same nodal structure in z direction (Nz = 3)
one expects less difference in the density distribution than in
the SkM∗ case where both states are superpositions of several
Nilsson orbits with similar amplitudes. In the SkM∗ case the

leading component of | 5
2

+〉 is [622] and of | 3
2

+〉 is [642],
which implies a change in nodal structure in the z direction. In
summary the polarization of the proton distribution due to the
reoccupation of the level with the unpaired neutron has less
effect in the SIII than in the SkM∗ case.

In Ref. [50] the finite-range microscopic-macroscopic
model has been used to study the problem. The authors find
small Coulomb energy differences similar to our SIII case.
Also the decomposition of the last neutron orbits1 shows a
mixture of several Nilsson orbits resembling more our SIII
states than the SkM∗ states.

We should like to point out that the Nilsson orbit 5/2+[633]
that is usually used to classify the Kπ = 5/2+ ground-state
band [12,51–53] does not even contain a single-particle spin
jπ = 5/2+. Due to positive parity and � = |ml| = 3 the
orbital angular momenta contained in 5/2+[633] are l =
4, 6, . . . . Thus the lowest possible spin in the 5/2+[633] Nils-
son state is jπ = 7/2+. This implies that in a core plus valence-
neutron picture the 5/2+[633] state needs to be coupled to the
excited Jπ = 2+ state in 228Th to get the ground-state spin
Jπ = 5/2+. In the deformed mean-field description the total
angular momentum Jπ = 5/2+ of the nucleus arises from both
the 5/2+[633] orbital and the underlying deformed 228Th core.

In Refs. [51,53,54] detailed experimental data have been
compared with structure calculations for 229Th that use
the quasiparticle-phonon model (QPM) [55] employing a
phenomenological Nilsson mean field and multipole-multipole
residual interactions. A very good description of the 229Th
level structure has been achieved by an appropriate fit of the
interaction parameters. It has, for example, been found that
the coupling of the single-quasiparticle degrees of freedom
to the collective octupole vibrational state of the 228Th core
is essential to reproduce the parity partner bands observed in
experiment. Despite its success the QPM is not self-consistent
and thus cannot be used for our considerations. But the insight
gained with QPM should be a guide for future variational
models that have to treat higher-order correlations in a self-
consistent way.

In a fully consistent calculation scheme based on a
relativistic density-matrix functional [56] it has been shown
that the coupling to low lying vibrations noticeably improves
the description of the single-particle spectrum around the
Fermi surface, including the ordering of the levels. This model
is, however, programed only for spherical cases.

One has to realize that the situation is not so simple. Valence
and core nucleons have to be considered self-consistently and
in the next generation of nuclear models, in addition to the
projection of the deformed intrinsic state on total spin and
particle number, one also may need to go beyond the mean-
field picture by coupling to low-lying core excitations.

E. Predictive power and accuracy of observables

In the energy-density functional picture one gives up the
explicit knowledge of a microscopic Hamilton operator H (c)

1Please note that in Ref. [50] the authors seem to have mixed up the
right hand sides of Eqs. (1) and (2).
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FIG. 3. (Color online) Same as described in
the caption to Fig. 2 but for the SIII energy
functional.

acting in many-body Hilbert space. Its expectation value is
replaced by the energy functional E[c, ρ̂] from which one
cannot refer back to the Hamiltonian. It is important to note
that one can also not refer back to a many-body state |�〉 that
represents an approximation to a true stationary eigenstate of
H (c). One can, of course, construct a single Slater determinant
with the operators a†

ν that, which create the occupied states, but
this Slater determinant is more an auxiliary object that ensures
quantum properties like Pauli principle or uncertainty relation.
This Slater determinant misses for example various kinds of
typical nuclear correlations that exist in the true eigenstate.

This raises the important question regarding whether one
has predictive power for other observables than the energy.
The belief is that observables that can be calculated from

the one-body densities that appear in the energy functionals
should be trusted. In our case we calculate Coulomb and kinetic
energies, which are given by densities that are included in the
set of variational variables of the energy functional E[c, ρ̂] and
therefore should be predicted with high accuracy.

In addition to these more general considerations there
are also concerns about numerical precision. In the SkM∗
case the Coulomb energy difference �VC = −0.307 MeV =
(924.854 − 925.161) MeV is a result of subtracting two big
numbers that have been calculated numerically. That means
a precision of 10 keV for each of them is desirable. For
SIII-HFB, where �VC = 0.001 MeV, a precision of 0.1 keV is
needed. We have checked that we can reach enough numerical
precision by sufficient iteration steps.
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TABLE III. Violation of the Hellmann-Feynman theorem δ =
α0[∂Etot(α0)/∂α] − ECoul(α0) in HF and HFB calculations with SIII
Skyrme functional for 228Th.

HF HFB (no cutoff) HFB (with cutoff)

0.02 keV 0.5 keV 200 keV

But there is also the quest for accuracy. Let us, for
example, consider the approximate treatment of the exchange
term. Its contribution in HFB-SIII is −34 MeV, a 10% error
means already 3 MeV uncertainty in 〈VC〉 = V direct

C + V exch
C .

However, one would expect that this is mainly a systematic
error that is similar for the two states so that the difference
should be less affected, but 1% still means 0.3 MeV error.
The actual situation for SIII-HFB is �V direct

C = 0.29 keV
and �V exch

C = 0.71 keV that adds up to the �VC =
0.001 MeV listed in Table I. In this case the approximate ex-
change term gives the larger contribution that weakens strongly
the confidence in the calculated value of the sensitivity.

As discussed in Sec. II the proper derivation of the equations
of motion from an energy functional is crucial for the validity
of the Hellmann-Feynman theorem. Without this theorem one
would calculate numerically the derivative of the energy with
respect to α and create a new source of numerical errors.
We tested the validity of the Hellmann-Feynman theorem
by comparing to numerical derivatives using a five-point
formula. In Table III the deviations are listed for the 228Th
ground state of the SIII functional. In the HF calculation
the deviation is within the numerical uncertainty induced
by the five-point formula. In the HFB calculation one gets
also sufficient accuracy when no cutoff in the quasiparticle
subspace contributing to the pairing interaction is applied.
But the accuracy drops by three orders of magnitude when
the density matrices and pairing tensors are calculated by
including contributions from quasiparticle states up to the
cutoff energy of 60 MeV. The reason is that this truncation
violates the variational structure of the HFB equations [57].
For most observables, this violation induces small effects,
and usually can be safely neglected, but it does show up
in the very demanding calculation of the Coulomb energy
differences.

As discussed before, another accuracy issue is the fact that
our model does not contain projection on good total spin and
sharp particle number. Also the possibility that configurations
could admix that consist of the Kπ = 1− band of 228Th coupled
with a single-neutron 5/2− state cannot be excluded. These
questions have to be the task of future investigations.

VI. SUMMARY

We have investigated the lowest two states of 229Th that are
almost degenerate in energy. Two very successful energy func-
tionals SkM∗ and SIII have been employed in a density-matrix
functional theory. Hartree-Fock and Hartree-Fock-Bogoliubov
calculations have been performed and compared. The result is
that for the SkM∗ functional the difference in Coulomb energy

�VC between excited and ground state ranges from 450 keV
without pairing to −300 keV when pairing effects are included.
However, the SIII-HFB result gives �VC = 1 keV only. The
differences in neutron and proton kinetic energies are of similar
size and also quite different for SkM∗ and SIII.

Altogether, the nuclear models we used predict sensitivities,
qs = �VC/h, of the drift of the transition frequency δν/ν on
relative changes δα/α in the fine structure constant, that have
absolute values varying between about 400 keV or 1020 Hz
and 1 keV or 2 × 1017 Hz. We have pointed out and discussed
the fact that the pairing correlations smooth out polarization
effects exerted by the single-particle orbitals. Therefore, such
correlations not only dramatically decrease the anticipated
sensitivity but also make their determination very uncertain,
due to dependence on very detailed properties of the mean-field
and pairing effects.

We have also performed spherical calculations and con-
clude that spherical models should not be consulted as they
are too far from reality to provide serious numbers.

As even the sign of the sensitivity is uncertain, much
more refined calculations are needed that include coupling
to low-lying core excitations and projection on eigenstates
with good total angular momentum and particle number.
Before being able to provide reasonably trustable numbers how
the transition energy varies as function of the fine structure
constant α one has to make sure that the model reproduces
the three low-lying rotational Kπ = 5/2+, 3/2+, 5/2− bands
up to J ≈ 9/2 and the known electromagnetic transitions
within the bands and between them. This would provide more
confidence in the quality of the many-body states and their
Coulomb energy.

In any case the calculations must treat all nucleons (no
inert core) because the whole effect comes from a subtle
polarization of the core protons. Furthermore, the model has to
be of variational type to make use of the Hellmann-Feynman
theorem. Without that one cannot be sure that the polarization
effects caused by the strong interaction are treated consistently
with the necessary accuracy. Rough estimates and simple
minded models are not sufficient.

The experimental endeavor for measuring the drift of
the transition frequency in 229Th has to be accompanied by
substantially improved models on the nuclear theory side and
attempts to gain experimental information on the Coulomb
energies via radii, quadrupole moments, or even form factors.
Without a concerted action of experimental and theoretical
efforts the goal of improved limits on the temporal drift of
fundamental constants cannot be reached.
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[38] V. V. Flambaum, A. Höll, P. Jaikumar, C. D. Roberts, and S. V.
Wright, Few-Body Systems 38, 31 (2006).

[39] V. V. Flambaum, D. B. Leinweber, A. W. Thomas, and R. D.
Young, Phys. Rev. D 69, 115006 (2004).

[40] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 3
(2003).

[41] Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (NY) 198,
132 (1990).

[42] J. Dobaczewski and P. Olbratowski, Comput. Phys. Commun.
158, 158 (2004); J. Dobaczewski, J. Dudek, and P. Olbratowski,
nucl-th/0501008.

[43] J. Dobaczewski, W. Satuła, J. Engel, P. Olbratowski,
P. Powałowski, M. Sadziak, A. Staszczak, M. Zalewski, and
H. Zduczuk, Comput. Phys. Commun. (to be published);
arXiv:0903.1020v1.

[44] M. Beiner, H. Flocard, N. Van Giai, and P. Quentin, Nucl. Phys.
A238, 29 (1975).

[45] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
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