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M1 properties, comprising magnetic moments and radiative capture of thermal neutron observables, are studied
in two- and three-nucleon systems. We use meson exchange current derived up to N3LO using heavy baryon
chiral perturbation theory à la Weinberg. Calculations have been performed for several qualitatively different
realistic nuclear Hamiltonians, which permits us to analyze model dependence of our results. Our results are
found to be strongly correlated with the effective range parameters such as binding energies and the scattering
lengths. Taking into account such correlations, the results are in good agreement with the experimental data with
small model dependence.
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I. INTRODUCTION

M1 properties—nuclear magnetic moments as well as
radiative capture cross sections—are the fundamental low-
energy observables of a few nucleon systems and therefore are
ideal to test effective field theories (EFTs). In this regard, M1
properties have been extensively studied using EFT with huge
successes [1–7]. One such example is the ability to describe
σnp, the capture cross section of the np → dγ process, at
threshold with 1% accuracy by applying heavy-baryon chiral
perturbation theory (HBChPT) up to next-next-next-to-leading
order or N3LO [1]. In this work, we extend our up-to N3LO
HBChPT description of the M1 properties to A = 3 systems.
By taking the magnetic moments of 3H and 3He as input to
fix the coefficients of the contact-term operators, a completely
parameter-free theory predictions will be made for the total
cross section and the photon polarization of the thermal
neutron capture process (nd → 3Hγ ). We will also revisit
the theory predictions for the two-body observables: deuteron
magnetic moment µd and σnp.

The purpose of this article is to demonstrate the general
tenet of EFTs by studying the M1 properties of a few-body
systems: once the long-range contributions are taken into ac-
count correctly, EFTs enables accurate and model-independent
results, regardless of the details of the short-range physics.

We begin with a few comments that are generic to all EFTs.
At a certain order in EFTs, there appear contact terms (CTs),
which parametrize the high-energy (or short-range) physics
above the cutoff scale of the theory. The coefficients of CTs,
which we refer to as low-energy constants (LECs), are thus
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sensitive to the short-range physics and depend on the adopted
cutoff value and the regularization/renormalization scheme.
The values of LECs are not fixed by the symmetry alone and
should be determined by either solving the underlying theory
or by fitting them so as to reproduce selected set of known
experimental data. Because the former is currently not feasible,
the latter remains the only practical option. At N3LO, HBChPT
M1 currents contain two nonderivative two-nucleon CTs, one
in isovector and the other in isoscalar channel. These LECs,
g4v and g4s , will be determined in this work by requiring to
reproduce the experimental values of the magnetic moments
of 3H and 3He. Once these LECs fixed, we are left with no
free parameters and can make totally parameter-free theory
predictions for the other M1 observables.1 In EFTs, one should
include all the terms up to the considered order. Omitting part
of them can cause a cutoff dependence that is comparable
to the contribution of the omitted operators [1–5,7–17].2 In
Ref. [1], the CT contributions have been ignored, causing
small but noticeable cutoff dependence in σnp. By taking into
account of the LECs, we will show that σnp becomes virtually
completely cutoff independent. Second comment is about the
accuracy of the adopted wave functions at short range. The
authors of Ref. [16] have developed an approach called EFT∗
or MEEFT (more effective effective field theory) that enables a
consistent and systematic EFT calculations on top of accurate

1There are many other alternatives. For example, one can fix
g4v and g4s from the experimental values of σnp and the deuteron
magnetic moment µd and then make theory predictions on µ(3H) and
µ(3He) [7].

2We remark that a similar observation has also been made for
the nonperturbative renormalization of three-body states, showing
that three-body contact interaction is needed to absorb the cutoff
dependence [18].
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but phenomenological wave functions. The key observations
are following. The model dependence resides mainly in the
short-range region of the wave functions. Because short-range
contributions can be well embodied by local operators at low
energy and because EFT has the machinery to contain all
the relevant local operators (i.e., CTs) in a consistent and
systematic manner, the model dependence due to short-range
physics is to be absorbed into the renormalization procedure
of the LECs. To be more specific, if we adopt other wave
functions that have different short-range behavior, the values
of LECs should also be changed so as to reproduce the
selected experimental data with the adopted wave functions.
By performing this procedure, while the values of LECs—
which are not physical observables—are model dependent,
the resulting net contributions become model independent. An
easy and effective way of proving the model-independence in a
quantitative fashion might be to look at the cutoff dependence
of the results, because the cutoff value is the key parameter that
characterizes the short-range contributions. Such a numerical
proof will be taken in this work. The third comment is
about the long-range contributions. Note that mismatches
in the long-range contributions cannot be cured by finite
set of local operators. The long-range part of the transition
operator is usually governed by the chiral symmetry, leaving
little uncertainty there. However, the long-range part of the
wave functions is controlled by the effective range parameters
(ERPs) such as the nuclear binding energies and the scattering
lengths. For two-nucleon systems, most of the modern realistic
NN potentials reproduce the ERPs with a great accuracy.
However, for nucleon systems with A � 3, situation becomes
highly nontrivial as many of the available potentials fail to
reproduce the relevant ERPs to the desired accuracy.

As we will demonstrate, our results have little cutoff
dependence for all the cases considered, which might be
interpreted that the short-range physics is well under control.
However, the model dependence due to the difference in
long-range part of the wave functions will cause correlations of
the matrix elements with the ERPs. In our work, we observe
rather a strong model dependence and demonstrate how it
is correlated to the model prediction of the triton binding
energy B3. It indicates that the model dependence is due to
the mismatches in the long-range contributions.

To bypass the difficulty and to get model-independent
accurate theory predictions, we have explored two different
approaches. One is to bring prediction of B3 to its experimental
value B

exp
3 = 8.482 MeV, using the observed correlation

curves. The resulting M1 matrix elements are found to be
model independent to a good accuracy and consistent with
the experimental data. Another way is to adjust the trinucleon
interactions (TNIs) to meet the experimental values of the
ERPs.

II. FORMALISM

A. Faddeev equations

During the past few decades several different methods to
solve the three-body bound and scattering problem has been
developed. In this study we solve Faddeev [19] equations (also

often called Kowalski-Noyes equations) in configuration space
to obtain three-body bound and scattering wave functions. We
employ the isospin formalism, i.e., consider proton and neutron
as two degenerate states of the same particle (nucleon), having
the mass fixed to h̄2/m = 41.471 MeV fm. Then three Faddeev
equations become formally identical, having the form

(E − H0 − Vij )�ij,k = Vij (�jk,i + �ki,j ), (1)

where (ijk) are particle indices, H0 is kinetic energy operator,
Vij is two body force between particles i and j,�ij,k is Faddeev
component. It is useful to define cyclic (P +) and anticyclic
(P −) particle permutation operators, which permits trans-
formation of the Faddeev component between two particle
bases: P + = (P −)−1 = P23P12 and P +�ij,k = �jk,i , while
P −�ij,k = �ki,j . The wave function in Faddeev formalism
is the sum of three Faddeev components, which employing
permutation operators can be written as:

� = (1 + P + + P −)�ij,k. (2)

Faddeev components, if represented in its proper coordinate
basis, have simple structure and analytical asymptotic behavior
for the short-range potentials. We use relative Jacobi coordi-
nates xk = (rj − r i) and yk = 2√

3
(rk − r i+rj

2 ), whereas we
expand Faddeev components on a bipolar harmonic basis:

�ij,k =
∑

α

Fα(xk, yk)

xkyk

|[lx(sisj )sx
]jx

(lysk)jy
〉JM

⊗ |(ti tj )tx tk〉T Tz
, (3)

where index α represents all the symmetry allowed combina-
tions of the quantum numbers presented in the brackets, lx and
ly are the partial angular momenta associated with respective
Jacobi coordinates, and si and ti are the spins and isospins
of the individual particles. Functionals Fα(xk, yk) are called
partial Faddeev amplitudes. Three-nucleon system conserves
its total angular momentum J as well as its projection M;
however, due to the presence of charge-dependent terms in
nuclear interaction, total isospin of the system T is not
conserved.

Equation (1) is not complete, it should be complemented
with the appropriate boundary conditions. Boundary condi-
tions can be written in the Dirichlet form. First Faddeev
amplitudes, for bound as well as for scattering states, satisfy
the regularity conditions:

Fα(0, yk) = Fα(xk, 0) = 0. (4)

For the bound-state problem wave function is compact,
therefore the regularity conditions can be completed by forcing
the amplitudes Fα to vanish at the borders of a hypercube
[0, Xmax] × [0, Ymax]:

Fα(Xmax, yk) = Fα(xk, Ymax) = 0. (5)

Finally, we normalize three-nucleon wave function to unity
〈� | �〉 = 1.

Faddeev components describing neutron-deuteron scatter-
ing, for the energies below the breakup threshold, vanish for
xk → ∞. As yk → ∞ interaction between particle k and
cluster ij is negligible and Faddeev components �jk,i and
�ki,j vanish. Then the component �ij,k describes the plane
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wave of the particle k with respect to the bound particle pair
ij :

lim
yk→∞ �ij,k(xk, yk)

= 1√
3

∑
j ′
nl

′
n

|{ψd (xk)}jd
⊗ {Yln(ŷk) ⊗ sk}jn

〉JM

⊗ |(ti tj )td tk〉 1
2 ,− 1

2

i

2

[
h−

ln
(prnd ) − Sjnln,j ′

nl
′
n
h+

ln
(prnd )

]
, (6)

where deuteron, being formed from nucleons i and j , has
quantum numbers sd = 1, jd = 1, and td = 0 and its wave
function ψd (xk) is normalized to unity; p designates the
relative momentum of incoming neutron, rnd = (

√
3/2)yk is

relative distance between neutron and deuteron target, whereas
h±

ln
are the spherical Hankel functions. Expression (6) is

normalized so that the nd scattering wave function has unity
flux.

For zero or very low momentum neutrons, as is the case for
the thermal neutron capture, only relative S-wave amplitudes
survives in the asymptote, whereas expression (6) simplifies
to:

lim
yk→∞ �ij,k(xk, yk)

= 1√
3

∑
j ′
nl

′
n

|{ψd (xk)}jd
⊗ {Yln(ŷk) ⊗ sk}jn

〉JM

⊗ |(ti tj )td tk〉 1
2 ,− 1

2

[
1 −

2J+1and

rnd

]
, (7)

where 2J+1and is neutron-deuteron scattering length. For
the cases where Urbana type three-nucleon interaction (TNI)
are included, noting that the TNI among particles ijk can
be written as sum of three terms Vijk = V k

ij + V i
jk + V

j

ki , we
modify the Faddeev equation (1) into:

(E − H0 − Vij )�ij,k = Vij (P + + P −)�ij,k

+ 1

2

(
V i

jk + V
j

ki

)
�. (8)

B. Electromagnetic current

For a three-body system one has three one-body currents
associated with each particle and three two-body currents
associated with each pair of particles. Thus

Jem =
3∑

i=1,i 	=(j<k)

[
J

(i)
1B + J

(jk)
2B

]
. (9)

Because the wave functions |�〉 in isospin formalism is fully
antisymmetric, the matrix element of the current operators can
be written as

〈�f |Jem|�i〉 =
3∑

i=1,i 	=(j<k)

〈�f |J (i)
1B + J

(jk)
2B |�i〉

= 3〈�f |J (3)
1B |�i〉 + 3〈�f |J (12)

2B |�i〉, (10)

We use the electromagnetic current operators derived from
HBchPT, which contain the nucleons and pions as pertinent

degrees of freedom with all other massive fields integrated
out. In HBchPT the electromagnetic currents and M1 operator
are expanded systematically with increasing powers of Q/�χ ,
where Q stands for the typical momentum scale of the process
and/or the pion mass, �χ ∼ 4πfπ ∼ m ∼ 1 GeV is the chiral
scale, fπ ∼ 92.4 MeV is the pion decay constant, and m

is the nucleon mass. We remark that, while the nucleon
momentum p is of order of Q, its energy (∼ p2

m
) is of

order of Q2/m, and consequently the four-momentum of the
emitted photon qµ = (ω, q) with |q| = ω also is counted as
O(Q2/m). Current operators are obtained up to N3LO. Note
that three-body currents are N4LO or higher order and do not
enter in our work.3

Let us list the relevant current operators. The explicit form
of magnetic moment operators can be found in Ref. [7]. The
one-body current including the relativistic corrections reads

J
(i)
1B(q; r i)

= e−iq·r i

[
Qi

m
p̄i

(
1 − p̄2

i

2m

)
+ 1

2m
iq × σ i

(
µi − Qi

2m2
p̄2

i

)
− ω(2µi − Qi)

8m2
(2i p̄i × σ i) − µi − Qi

16m3
(4iq× p̄iσ i · p̄i)

− w(2µi − Qi)

8m2
q − µi − Qi

16m3
(−2qq · p̄i)

+ (higher orders)

]
, (11)

where Qi and µi represent the charge and magnetic moment

of i-th nucleon and p̄ ≡ 1
2 (i

←
∇ −i

→
∇) should be understood to

act only on the nuclear wave functions.
Corrections to the 1B operator are due to the meson-

exchange currents (MECs). Up to N3LO, as mentioned, only
two-body (2B) contributions enter (Figs. 1 and 2). It is to be
emphasized that MECs derived in EFT are meaningful only
up to a certain momentum scale characterized by the cutoff �.
In our work, we adopt a Gaussian regulator in performing the
Fourier transformation of the MECs from momentum space to
coordinate space [16]. It is to be noted that the contributions
due to high momentum exchanges (above the cutoff scale) are
not simply ignored but, as we will discuss later, are accounted
for by the renormalization of the contact-term coefficients.

We decompose the two-body current into the soft-one-pion-
exchange (1π ), vertex corrections to the one-pion exchange
(1πC), the two-pion-exchanges (2π ), and the contact-term
(CT) contributions,

J
(jk)
2B = J

(jk)
1π + J

(jk)
1πC + J

(jk)
2π + J

(jk)
CT . (12)

It is noteworthy that there can be additional corrections to
the two-body current coming from the so-called fixed term.

3It is worth mentioning that there is a different power counting
scheme where the nucleon mass is regarded as heavier than the chiral
scale, m ∼ �2

χ/Q, see Ref. [20] for details. However, the use of this
alternative counting scheme would not affect the results to be reported
in this work because the difference between the two counting schemes
would appear only at higher orders than explicitly considered here
(N3LO).
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The fixed-term contributions represent vertex corrections to
the soft-one-pion-exchange and fixed completely by Lorentz
covariance. Because the fixed terms make the calculation
highly involved, but give only very small contributions in M1
operator according to our previous study [7], we neglected the
fixed term contributions in the present work.

The soft-one-pion exchange current J
(jk)
1π is NLO and can

be written in terms of Rjk = 1
2 (rj + rk), r = rj − rk, r̂ =

r/|r|, Sjk = 3σ j · r̂ σ k · r̂ − σ j · σ k ,

J
(jk)
1π (r, R)

= e−iq·R
{
−g2

Am2
π

12f 2
π

(τ j × τ k)zr
[
σ j · σ k

(
yπ

0�(r) − δ�(r)

m2
π

)
+ Sjky

π
2�(r)

]
+ i

g2
A

8f 2
π

q ×
[
T̂

(×)
S,jk

(
2

3
yπ

1�(r) − yπ
0�(r)

)
− T̂

(×)
T ,jky

π
1�(r)

]}
,

where

T̂
(�)
S,jk = (τj � τk)z(σ j � σ k),

(13)
T̂

(�)
T ,jk = (τj � τk)z

[
r̂ r̂ · (σ j � σ k) − 1

3 (σ j � σ k)
]
,

� = ±,×, and the regulated delta and Yukawa functions are
defined as

δ�(r) ≡
∫

d3k
(2π )3

e−k2/�2
eik·r

yπ
0�(r) ≡

∫
d3k

(2π )3
e−k2/�2

eik·r 1

k2 + m2
π

(14)

yπ
1�(r) ≡ −r

∂

∂r
y0�(r), yπ

2�(r) ≡ r

m2
π

∂

∂r

1

r

∂

∂r
y0�(r).

The one-loop vertex correction to the one-pion exchange has
been investigated in detail in Refs. [1,2],

J
(12)
1πC = e−iq·Riq ×

{
− g2

A

8f 2
π

(c̄ω + c̄�)

×
[

(T̂ (+)
S + T̂

(−)
S )

ȳπ
0�

3
+ (T̂ (+)

T + T̂
(−)
T ) yπ

2�

]
+ g2

A

8f 2
π

c̄�

[
1

3
T̂

(×)
S ȳπ

0� − 1

2
T̂

(×)
T yπ

2�

]
− 1

16f 2
π

N̄WZτ 1 · τ 2
[
(σ 1 + σ 2)ȳπ

0�

+ (3r̂ r̂ · (σ 1 + σ 2) − (σ 1 + σ 2))yπ
2�

]}
, (15)

The values of the LECs (c̄ω, c̄�, N̄WZ) should in principle
be fixed either by solving the underlying theory, QCD, or by
fitting to suitable experimental observables. Because this has
not yet been done, we adopt here the estimates given in Refs. [1,
2] based on the resonance saturation assumption and the Wess-
Zumino action, (c̄ω, c̄�, N̄WZ) � (0.1021, 0.1667, 0.02395).

The two-pion exchange diagrams give rise to

J
jk

2π = e−iq·R

128π2f 4
π

{
iq × [(T̂ (+)

S − T̂ −
S )LS(r)

+ (T̂ (+)
T − T̂ −

T )LT (r)] − (τj × τk)zr̂
d

dr
L0(r)

}
,

(16)

where

LS(r) = −g2
A

3
r

d

dr
K0 + g4

A

3

×
(

−2K0 + 4K1 + r
d

dr
K0 + 2r

d

dr
K1

)
LT (r) = g2

A

2
r

d

dr
K0 + g4

A

2

(
4KT − r

d

dr
K0 − 2r

d

dr
K1

)
(17)

L0(r) = 2K2 + g2
A(8K2 + 2K1 + 2K0)

− g4
A(16K2 + 5K1 + 5K0) + g4

A

d

dr
(rK1),

and the loop functions K’s are defined in Refs. [1,16].
Finally, contact-term contributions have the form

J
(jk)
CT = e−iq·R i

2mp

q× [g4S(σ j + σ k) + g4V T
(×)
S ]δ�(r) (18)

where g4S = mpg4 and g4V = −mp(GR
A + 1

4E
V,R
T ). We re-

mark that three contact terms were introduced in Refs. [1,2],
whose coefficients are denoted as g4,G

R
A, and E

V,R
T . However,

due to Fermi-Dirac statistics, only two of them are independent
and consistent with Eq. (18). A similar reduction has been
noticed for the Gamow-Teller operator, where only one linear
combination of two CTs is required [16].

C. n-d radiative capture

In center-of-mass frame, each currents can be written in the
form of

Jem = e−iq·x(iq × jµ + j c), (19)

where x is r i for J
(i)
1B and Rjk for J

(jk)
2B .

To calculate neutron radiative capture observables we will
use multipole expansion. First we introduce a shorthand
notations for the multipoles:

FJM(r̂) = jJ (qr)YJM(r̂),
(20)

FM
JL (r̂) = jL(qr)YM

JL1(r̂),

where jL(qr) is the spherical Bessel function; YJM and YM
JL1

are spherical and vector-spherical harmonics, respectively;
r is a vector describing the particle (nucleon or meson),
which interacts with EM field. Then the electric and magnetic
multipoles read

MJM = FM
JJ (r̂) · j c + iq

[(
J + 1

2J + 1

)1/2

FM
JJ−1(r̂)

−
(

J

2J + 1

)1/2

FM
JJ+1(r̂)

]
· jµ,
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EJM = i

[(
J + 1

2J + 1

)1/2

FM
JJ−1(r̂)

−
(

J

2J + 1

)1/2

FM
JJ+1(r̂)

]
· j c + qFM

JJ (r̂) · jµ.

(21)

With the explicit expressions of the FM
1L(r̂),M1 multipoles can

also be written as

M1M = i

√
3

8π
j1(qr)(r̂ × j c)

+ iq√
6π

{
j0(qr) jµ − 1

2
j2(qr)[ jµ − r̂(r̂ · jµ)]

}
.

(22)

In terms of the reduced matrix elements (RMEs) [21,22],

X̃ JiJf

J =
√

6π

qµN

√
4π

〈
�

Jf

b.s.

∥∥XJM

∥∥�
Ji

scat

〉
, (23)

where XJM = (MJM, EJM), the total nd capture cross section
is given by

σnd = 2

9

α

(vrel/c)

(
h̄c

2mc2

)2 ( q

h̄c

)3

×
∑
Ji

Ji+ 1
2∑

J=1

(∣∣ẼJi ,
1
2

J

∣∣2 + ∣∣M̃Ji ,
1
2

J

∣∣2)
. (24)

Thermal neutron capture proceeds only from doublet J�
i = 1

2
+

and quartet J�
i = 3

2
+
nd scattering states, because only these

two states comprise nd S-wave asymptote and thus dominate
low-energy scattering. Because final state (the triton) is J�

f =
1
2

+
, therefore only magnetic dipole transition elements m2 ≡

M̃
1
2 , 1

2
1 , m4 ≡ M̃

3
2 , 1

2
1 and electric quadrupole transition element

e4 ≡ Ẽ
3
2 , 1

2
2 do not vanish. Notice that magnetic dipole moments

are purely imaginary, while the electric quadrupole moment is
real.

Experimentally, in addition to capture cross section, photon
polarization parameter Rc can also be measured. This param-
eter is given by Ref. [22]

Rc = 1

3

[
7
2 |m4|2 + √

8Re(m2m
∗
4) + 5

2 |e4|2 + √
24Im(m2e

∗
4) − √

3Im(m4e
∗
4)

|m2|2 + |m4|2 + |e4|2
− 1

]
. (25)

Calculations using expression (10) are numerically stable
for all the two- and one-body current terms except the ones
entering into impulse approximation of the M1 operator. This
issue has been observed and the special numerical procedure
developed in Ref. [23]; we have successfully followed it.

III. RESULTS

A. Binding energies and scattering lengths

In this work we have performed rigorous calculations for
several qualitatively different realistic nuclear Hamiltonians,
which are based on NN potentials defined both in configura-
tion and momentum spaces. Argonne Av18 [24] is an accurate
local NN potential in configuration space. Semirealistic con-
figuration space potential INOY has been recently derived by
Doleschall [25], which can describe binding energies of three-
nucleon systems with only two-nucleon forces. ISUJ [26]—a
recent revision of INOY—further improves description of np

and pp data and at low energies provides solution for the
long-standing “Ay puzzle” of N -d scattering. We have also
tested some chiral N3LO potentials defined in momentum
space: Idaho group potential [27] (referred to as I-N3LO), and
three different parametrizations of chiral N3LO potential of
Bonn-Bochum group [20]. In particular Bonn-Bochum group
potentials parameterized with set of cutoff values {�, �̃} =
{450, 500}, {450, 700}, and {600, 700} MeV have been used

and are referred to as B1-N3LO, B2-N3LO, and B3-N3LO,
respectively.

All the NN potentials mentioned above describe the
NN data quite accurately. And all but Bonn-Bochum group
potentials reproduce experimental deuteron binding energy Bd

and the singlet np scattering length 1anp with at least four sig-
nificative digit accuracy. Values of these observables obtained
using Bonn-Bochum group potentials are summarized in
Table I.

Our three-body calculations have been carried out consid-
ering isospin breaking effects, which allow admixture of total
isospin T = 3/2 in the wave functions. The Argonne UIX
three-nucleon interaction [28] also has been taken into account
in the combination with Av18 NN potential.

The relevant properties of three-body systems obtained
with the adopted models are summarized in Table II. These
values are in perfect agreement with ones obtained by the other

TABLE I. Values for np singlet scattering
length and deuteron binding energy obtained
using Bonn-Bochum group potentials.

Model 1anp (fm) BH2 (MeV)

B1-N3LO −23.60 2.215
B2-N3LO −23.72 2.218
B3-N3LO −23.64 2.220
Exp. −23.74 2.225
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TABLE II. Three-nucleon properties as calculated with different realistic Hamiltonians. They contain: nd doublet (2and ) and quartet (4and )
scattering lengths in fm; bound-state properties comprising binding energy (BE), average kinetic energy (〈T 〉) in MeVs, and rms radius
rrms =

√
〈r2〉 in fm. These values are compared to other theoretical calculations and experimental results.

Hamiltonian Ref. nd 3H 3He

2and
4and BE 〈T 〉 rrms BE 〈T 〉 rrms

Av18 This work 1.266 6.331 7.623 46.71 1.769 6.925 45.67 1.810
[29,31] 1.248 6.346 7.623(2) 6.924(1)

Av18+UIX This work 0.598 6.331 8.483 51.29 1.683 7.753 50.23 1.716
[29,31] 0.578 6.347 8.478(2) 7.748(2)

INOY This work 0.551 6.331 8.483 33.00 1.666 7.720 32.22 1.704
[25] 8.482 7.718

ISUJ This work 0.523 6.330 8.484 32.95 1.667
[26] 8.482 7.718

I-N3LO This work 1.101 6.337 7.852 34.54 1.760 7.159 33.83 1.797
[32] 7.854

B1-N3LO This work 1.263 6.334 7.636 33.60 1.816 6.904 32.79 1.860
[33] 7.64

B2-N3LO This work 1.024 6.339 7.930 31.70 1.777 7.210 31.01 1.815
[33] 7.97

B3-N3LO This work 1.781 6.329 7.079 47.25 1.863 6.403 46.17 1.909
[33] 7.09

Exp. 0.65 ± 0.04 [30] 6.35 ± 0.02 [30] 8.482 – 7.718 –

groups [25,29,31–33]. In Ref. [34] we have already published
three-nucleon properties for INOY and Av18 models, the small
difference in fourth digit of those results compared with current
ones is due to the small admixture of isospin T = 3/2 states.
One should note that only INOY, ISUJ, and Av18+UIX models
reproduce experimental three-nucleon binding energies as
well as neutron-deuteron doublet (J = 1

2 ) scattering length
accurately. Chiral potentials at N3LO comprise already two
irreducible three-nucleon interaction diagrams with contact
terms. The strength of these contact terms may be a priori
adjusted so as to reproduce three-nucleon binding energy and
scattering length [35]. In this work, however, only two-nucleon
interaction part of N3LO models was considered.

B. Magnetic moments and thermal neutron capture

In Table III, we present M1 RMEs obtained for INOY
Hamiltonians with � = 700 MeV, listing the contributions
from each chiral order. Note that the one-body contribution

of the isoscalar M1 RME, m2, is strongly suppressed due
to the pseudo-orthogonality between initial- and final-wave
functions. The chiral convergence is, however, not much
illuminating, i.e., N3LO contributions appear about the same
size of NLO. This behavior is mainly due to the accidental
cancellation between two NLO contributions, the seagull and
pion-pole diagrams [36].

As explained, M1 currents contain two nonderivative
contact terms at N3LO. Because the coefficients of them, g4S

and g4V , cannot be determined from the underlaying theory
yet, we fit these constants by requiring that magnetic moments
of 3H and 3He are correctly reproduced. The resulting values
obtained with INOY potential are given in Table IV. We remark
that g4S and g4V depend on cutoff � as well as on particular
choice of nuclear Hamiltonian.

Table V shows the cutoff dependence of our results. One-
body contributions are cutoff independent by their construc-
tion. NLO results bring sizable cutoff dependence, indicating
that some important pieces are omitted at this level. As is

TABLE III. Matrix elements calculated for magnetic moments and thermal neutron capture. These results are
obtained using INOY Hamiltonians with � = 700 MeV.

µ(2H) µ(3H) µ(3He) 1
i
M̃0,1

1
1
i
M̃

1
2 , 1

2
1

1
i
M̃

3
2 , 1

2
1 Ẽ

3
2 , 1

2
2

LO: 1B 0.8593 2.6567 −1.8100 395.5000 −13.6196 13.1149 −0.0741
N3LO: 1B −0.0057 −0.0199 0.0080 −0.1653 0.4106 0.1048 0.0032
NLO: 1π 0.0000 0.1515 −0.1501 7.0970 −2.5712 −0.4289 0.1562
N3LO: 1πC −0.0029 0.0839 −0.0926 3.1860 −2.7674 −0.3465 0.0000
N3LO: 2π 0.0000 0.0374 −0.0362 1.1290 −1.2504 −0.1223 −0.0019
g4S 0.0338 0.0457 0.0449 0.0000 −0.9855 0.2647 0.0000
g4V 0.0000 0.0733 −0.0712 2.3130 −2.5179 −0.2267 0.0000
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TABLE IV. Values of contact term coefficients
g4s and g4V , which are obtained by fitting magnetic
moments of triton and 3He, for INOY Hamiltonians.

� (MeV) g4s g4V

500 0.2747 1.8746
700 0.2313 0.8021
900 0.1997 0.4613

indicated in the table, going N3LO but without taking the CTs
does not help in resolving the situation. It is only after the CTs
taken into account that the results become almost independent
of the cutoff, which implies that the CTs are quite effective
in renormalizing away the details residing in the short-range
region.

Results with varying model Hamiltonians are given in
Table VI, with some relevant low-energy properties of the
potentials. From the table, one observes that µ(2H) and σnp

are rather insensitive, Rc is moderately sensitive and the nd

capture cross section, σnd , is highly sensitive on the model
Hamiltonian. To understand the sensitivity, let us consider the
model dependence of the effective-range parameters (ERPs),
which govern the long-range part of the RMEs. The most
important ERPs are the binding energies and the scattering
lengths, which should strongly influence M1 RMEs through
the coupling of the long-range parts of the three-nucleon wave
functions. And indeed, as shown in Fig. 3, the M1 RMEs
are strongly correlated with the triton binding energy B3. The
correlation is found to be almost perfect for m4, while with
some fluctuation for m2. These behavior can be explained
with simple arguments: let us first concentrate on the quartet
RME, m4. In spin-quartet states, Pauli principle inhibits three
nucleons from gathering altogether, and thus observables are
insensitive to short-range part of three-nucleon interaction.
As a result, the nd quartet scattering length 4and has little
model dependence; all the models considered here reproduce

4and in excellent agreement with the experimental data. This
explains the perfect correlation of m4 with B3. On the contrary,
spin-doublet states are free from the exclusion principle and
sensitive to the short-range three-nucleon interaction. This
makes the scattering length 2and largely model dependent (see
Table VI), and we might expect that m2 depends not only on B3

but also on 2and . However, 2and and B3 are correlated, which
is known in terms of the Phillips line [37].4 The correlation
of 2and with B3 is not perfect, showing small deviations from
the Phillips line. These arguments are in good accordance with
what we observe in Fig. 3, which shows the correlation of m2

with respect to B3 with some scatters.
For noble two-body processes, the effective range expan-

sion technique often allows an even algebraic relation of the
RMEs in terms of ERPs; see, for example, Ref. [17] for the
Gamow-Teller matrix element of the p + p → d + e+ + ν

process. The problem at hand is, however, too complicated to
allow such mathematical rigor, and we will limit ourselves to
an empirical curve fitting. We take the trial function as

m(i)
n � φn

[
B

(i)
3

]
(26)

with
φn(B3) = m0

n + tn
[(

B3
/
B

exp
3

)ν − 1
]
, (27)

where the superscript i is the model index; that is, m(i)
n (n =

2, 4) and B
(i)
3 stands for the RMEs and 3H BE obtained with

the i-th model potential, respectively. Varying the value of ν,
values of m0

n and tn are searched by a χ2 fit. The resulting
χ2 is found to be parabola shape with minimum at around
ν = −2.5. The solution with ν = −2.5 is

φ2(B3) = (−21.87 ± 0.24) − 10.76
[(

B3
/
B

exp
3

)−2.5 − 1
]
,

(28)

φ4(B3) = (12.24 ± 0.05) + 11.35
[(

B3
/
B

exp
3

)−2.5 − 1
]
.

4See, for example, Ref. [18] for the discussion of the Phillips line
in the context of modern EFT.

TABLE V. Dependence of M1 observables for two- and three-nucleon systems on cutoff value �. These
results are obtained using INOY Hamiltonians.

� (MeV) µ(2H) µ(3H) µ(3He) σnp (mb) σnd (mb) Rc

LO
– 0.8593 2.657 −1.810 309.7 0.2785 −0.2369

NLO
500 0.8593 2.760 −1.913 318.7 0.2972 −0.3026
700 0.8593 2.808 −1.960 320.9 0.3296 −0.3538
900 0.8593 2.829 −1.980 321.9 0.3480 −0.3753

N3LO without contact term
500 0.8499 2.836 −2.011 324.1 0.3612 −0.3896
700 0.8507 2.910 −2.081 327.5 0.4237 −0.4366
900 0.8515 2.937 −2.105 328.8 0.4526 −0.4504

N3LO
500 0.8584 2.9790 −2.1276 330.9 0.5012 −0.4659
700 0.8585 2.9790 −2.1276 330.5 0.4946 −0.4649
900 0.8583 2.9790 −2.1276 330.4 0.4959 −0.4650
Exp. 0.8574 2.9790 −2.1276 332.6 ± 0.7 0.508 ± 0.015 −0.420 ± 0.030
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TABLE VI. Predictions for the deuterons magnetic moment and the observables of the thermal neutron capture on
protons and deuterons. These calculations have been realized by fixing contact terms of the meson exchange current
to reproduce magnetic moments of the triton and 3He. These values turns to be insensitive to the cutoff parameter in
the interval � = (500, 900) MeV; if, however, variation was larger than one affecting the fourth significant digit it is
given in parentheses. The constructed Av18+UIX∗ model gives 2and = 0.623 fm, 4and = 6.331 fm and BE(3He) =
7.718 MeV; the I-N3LO+UIX∗∗ results are 2and = 0.634 fm, 4and = 6.339 fm and BE(3He) = 7.737 MeV. Both
these models are adjusted to reproduce experimental triton binding energy of BE(3H) = 8.482 MeV.

Model µ(2H) σnp (mb) σnd (mb) Rc

Av18 0.8575 331.9(1) 0.680(3) −0.435
Av18+UIX 0.8604 330.6(2) 0.478(3) −0.458
INOY 0.8585 330.6(2) 0.498(3) −0.465
ISUJ 0.8585 331.1(2) 0.501(2) −0.466
I-N3LO 0.8574 330.4(3) 0.626(2) −0.441
B1-N3LO 0.8577 328.7(6) 0.688(4) −0.438(1)
B2-N3LO 0.8588 331.0(4) 0.609(4) −0.448(1)
B3-N3LO 0.8549 330.9(7) 0.879(8) −0.411(2)
Av18+UIX∗ 0.8614(1) 330.9(3) 0.476(2) −0.457(1)
I-N3LO+UIX∗∗ 0.8590(1) 329.7(3) 0.477(3) −0.468(1)
Exp. 0.8574 332.6 ± 0.7 [38] 0.508 ± 0.015 [39] −0.420 ± 0.030 [40]

The solution is drawn in solid line in the figure. The above
curve fitting procedure turns out to be quite robust. For
example, the curves and the values of m0

n with ν = −1.5
are almost the same as those with ν = −2.5. Even if we
try a simple-minded linear fit, ν = 1, we have φ2(B3) =
−21.73 + 33.65(x3 − 1) and φ4(B3) = 12.14 − 35.69(x3 −
1), x3 ≡ EH3/E

exp
H3 . Thus the values of φn(Bexp

3 ) = m0
n are

quite insensitive to the fitting parameter ν. Furthermore,
with the resulting values of φn(Bexp

3 ) = m0
n, we have Rc =

−0.462 ± 0.03 and σnd = 0.490 ± 0.008 mb, which are close
to the experimental data. Therefore one can conclude that
the observed strong model dependence in M1 properties
of three-body systems can be traced to the different model
predictions of B3 and that, once we have correct B3, the theory
predictions should be very close to the experimental data with
little model dependence.

We have also tried to adjust the nuclear potentials to have
correct ERPs. As mentioned, B3 and 2and are the relevant
ERPs. But because the two ERPs are strongly correlated
to each other, simultaneous reproduction of both is rather
tricky. This correlation in particular strong due to on-shell
NN interaction part, nevertheless three-nucleon interaction
can break it. Note that UIX TNI potential consists of two
terms. In our calculation, we have readjusted the parameters of
those terms to reproduce B3 and 2and simultaneously with the
Av18 and I-N3LO NN potential. We refer, respectively, to the

resulting Hamiltonians as Av18+UIX∗ and I-N3LO+UIX∗∗.
In addition some charge dependence has been added to UIX∗,
permitting Av18+UIX∗ to reproduce also 3He binding energy.
The corresponding results are given in the bottom lines of
the Table VI. The most important observation to be made
is that, while the results of Av18, Av18+UIX, and I-N3LO
differ dramatically, the modified Hamiltonians Av18+UIX∗
and I-N3LO+UIX∗∗ give us almost identical results, which
confirms the argument that our theory predictions are model
independent once the ERPs are correctly encoded. The
resulting σnd and Rc are close to the experimental data, but
with discrepancy of about two σ s of the data.

Before closing this section, we compare with other cal-
culations for the processes considered in this article. Viviani
et al. [41,42] has calculated the M1 properties of A = 2, 3
systems with the currents deduced from the adopted nuclear
potentials using gauge invariance, adding model-dependent
pieces for those part that are not fixed by the gauge symmetry
alone. Their results have some variations depending on the
adopted potentials [41] and the details of the treatment of
the currents. Without model-dependent current part capture
cross section is underestimated σnd = (0.418 ∼ 0.462) mb,
nevertheless one gets Rc = −(0.429 ∼ 0.446) quite close to
experimental value [42]. Model-dependent currents enable
reproduction of the experimental cross section; however, the
photon polarization parameter Rc = −(0.469) becomes larger

(a) (b) (c) (d) (e)

FIG. 1. Tree diagrams for the electromagnetic current operators. Soft one-pion-exchange, the sum of the “seagull” (a) and the “pion-pole”
(b) diagrams contribute to the J1π . Diagrams (c)–(e) contribute to the J1πC at N3LO. The dot represents the vertex corrections coming from
NLO or N2LO Lagrangian.
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(a) (b) (c) (d)

(i)

(e) (f) (g) (h)

(j)

FIG. 2. Diagrams that contribute to J2π (a)–(i) and JCT(j) at N3LO.

than that of the experimental data. Currents related with
three-nucleon force further increase capture cross section and
photon polarization parameters. A result very similar to our
calculation has been recently achieved by Pastore et al. [43],
in which electromagnetic current operators have been obtained
up to N3LO within the EFT framework. �-isobar as well as
pions and nucleons are treated as pertinent degrees of freedom.
And they have applied the currents up to N2LO to A = 2
and A = 3 systems. To this order, the CT terms—that play a
crucial role in removing the model dependence at short-range
physics—do not appear, and they have observed a large cutoff
dependence with substantial underpredictions for σnd and

FIG. 3. (Color online) Radiative capture of thermal neutron by
deutron: correlation of M1 doublet and quartet RME’s with triton
binding energy.

Rc, σnd = (0.450 ∼ 0.315) mb and Rc = −(0.437 ∼ 0.331)
for the momentum cutoff � = (500 ∼ 800) MeV. We also
acknowledge that, using the so-called pionless EFT approach,
Sadeghi et al. [5] have performed up to N2LO (in their counting
scheme) calculation for the σnd and Rc, achieving a perfect
agreement with the data. In their calculations, the np cross
section as well as the nd scattering lengths and the binding
energies (of A = 2 and A = 3 systems) are taken as inputs
needed to fix their parameters, the magnetic moments have
not been considered. Because magnetic moments are sensitive
to the D-wave components of the wave functions, it may not
be trivial to have accurate theory predictions for the magnetic
moments using the pionless EFT. A further study in this issue
will be extremely interesting.

IV. DISCUSSIONS

The most natural candidate for the remaining small
discrepancy might be the three-body current contributions,
which are N4LO. It is not difficult to notice that the leading
three-body contributions are suppressed for both M1 currents
and the nuclear potentials [18,44,45], for exactly the same
reason. Furthermore, the soft one-pion-exchange appears as
the leading two-body contributions for both of them. Thus
we expect that the ratio of the three-body contribution to the
two-body contribution is the same order for the M1 RMEs and
the nuclear potentials,

M3B

M2B
∼ 〈V 〉3B

〈V 〉2B
∼ (0.05 ∼ 0.1). (29)

Because the TNIs play a crucial role in reproducing the ERPs
of three-body systems accurately, we may naively guess that
the same will also be true for the relation between three-body
currents and the M1 properties. More quantitatively, Eq. (29)
with Table III tells us that the three-body current contribution
will be about (2 ∼ 4)% for m2 and m4, which is just the needed
size to remove the discrepancy of σnd and Rc. The same has
been demonstrated by Viviani et al. [42], where three-nucleon
currents have let to increase neutron thermal capture cross
section by 0.033 mb. In this regard, taking into account the
three-body current contribution—while ignoring other pieces
of N4LO for simplicity—might be extremely interesting.

V. CONCLUSION

In this article M1 properties, comprising magnetic moments
and radiative capture of thermal neutron observables are
studied in two- and three-nucleon systems. We utilize meson
exchange current derived up to N3LO using heavy baryon
chiral perturbation theory à la Weinberg. At N3LO, two
unknown parameters, g4s and g4v , enter as the coefficients
of contact terms. Following the MEEFT strategy, we have
fixed them by imposing the renormalization condition that the
magnetic moments of tritium and 3He are reproduced. Then
we analyze the predictions for other M1 properties: magnetic
moment of deuteron, as well as observables of the thermal
neutron capture on proton and deuteron. Analysis comprises
several qualitatively different realistic nuclear Hamiltonians,
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which allows us to judge the model dependence of our
results. We obtain stable, cutoff independent results, which
reconfirms efficiency of MEEFT procedure. Model predictions
for two-body observables (deuteron magnetic moment and
thermal np capture cross section) scatter closely around the
experimentally measured values.

Radiative capture cross section of thermal neutron on
deuterons varies quite a bit from one Hamiltonian to the
other. We have demonstrated that this variation is mostly
due to the correlation of the capture cross section with
a model-predicted three-nucleon binding energy. By fixing
three-nucleon binding energy to the experimental value one
can reduce model dependence below a 2% level and obtain
model-independent predictions for thermal capture cross
section σnd = 0.490 ± 0.008 mb and photon polarization pa-
rameter Rc = −0.462 ± 0.03. Within these model-dependent
error bars capture cross section agrees with experimentally
measured value 0.508 ± 0.015 mb [39]. However, the photon
polarization parameter Rc is obtained slightly too large, like
in other studies based on realistic nuclear Hamiltonians and

currents [42]. The remaining discrepancy is comparable in
size with higher-order terms of the EFT, which have been
neglected here. We believe that in particular three-nucleon
currents, which first appear at N4LO in our power counting
scheme, should be important.
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