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Electric dipole polarizabilities of hydrogen and helium isotopes
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1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Lawrence Livermore National Laboratory, Livermore, P. O. Box 808, California 94551, USA

(Received 23 April 2009; published 17 June 2009)

The electric dipole polarizabilities of 3H, 3He, and 4He are calculated directly using the Schrödinger equation
with the latest generation of two- and three-nucleon interactions. These polarizabilities are necessary to obtain
accurate nuclear-polarization corrections for transitions involving S waves in one- and two-electron atoms. Our
results are compared to previous results, and it is shown that direct calculations of the electric polarizability of 4He
using modern nuclear potentials are smaller than published values calculated using experimental photoabsorption
data. The status of this topic is assessed in the context of precise measurements of transitions in one- and
two-electron atoms.
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I. INTRODUCTION

Theoretical calculations of transition frequencies in hy-
drogenic atoms and ions have reached a level of preci-
sion where tiny corrections due to nuclear structure and
dynamics are necessary to interpret the results of high-
precision measurements in these systems. This has largely
been the result of recent improvements in quantum elec-
trodynamic (QED) calculations [1–3]. In many cases the
experimental errors and estimated sizes of uncalculated QED
corrections are much smaller than the nuclear corrections,
and one can thus use those measurements (corrected for
QED effects) as an experimental determination of various
nuclear quantities [4,5]. We briefly review several such
determinations.

For S-wave hyperfine transitions in one-electron atoms
and ions [5–7], experimental precision is much greater
than that of all theoretical calculations, while uncalculated
theoretical contributions to transition frequencies (including
QED corrections) are significantly smaller than nuclear ef-
fects. The leading-order (i.e., largest) nuclear contribution
to these hyperfine transitions (called a Low moment [8])
is determined by a correlation between the nuclear charge
and current operators [6,7]. Low moments may be further
decomposed into Zemach moments [9] (viz., utilizing only
ground-state expectation values of the charge and current
operators) and polarization contributions (viz., including only
virtual excited states between the two operators), both of
which play significant roles. For the important proton (i.e.,
1H) case the polarization effects are significantly smaller than
the static (Zemach) corrections because the proton is much
more difficult to excite than any nucleus [10–12]. Although
exceptionally interesting, hyperfine transitions are not the
focus of this article.

The frequencies of transitions between S states in hy-
drogenic atoms and ions can be separated into a reference
value (essentially the Dirac transition frequency modified by
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reduced-mass effects) plus the much smaller Lamb shift. The
Lamb shift contribution is dominated by QED corrections, but
nuclear effects play a significant role in the best measured
transitions. These nuclear corrections can be decomposed into
nuclear finite-size corrections (i.e., determined by nuclear
ground-state charge distributions) plus nuclear polarization
corrections (viz., involving virtual excited states of the nu-
cleus). The latter are typically dominated and determined by
the electric polarizability, which reflects the distortion of the
nuclear charge distribution as it is attracted by (and follows)
the orbiting electron.

The most accurate measurement of such a frequency was
performed in Ref. [13] for the 1S-2S transition in hydrogen,
with a relative error of slightly more than 1.4 parts in
1014 and with an absolute error of 34 Hz. That error is
slightly smaller than the estimated polarization correction of
60(11) Hz from Ref. [14] and is much smaller than the
size correction of about 1000 kHz. The mismatch in the
sizes of these nuclear corrections reflects both their different
dimensional structure [1] and the fact that the proton is difficult
to excite (compared to a nucleus), even though the proton
size is not significantly smaller than that of light nuclei. If
one turns the problem around and extracts the proton-size
correction from the experimental transition frequency [1],
one obtains a value for the proton r.m.s. charge radius of
〈r2〉1/2

ch = 0.877(7) fm, which agrees with a recent direct
determination of that quantity from elastic electron-scattering
data [15,16]: 〈r2〉1/2

ch = 0.897(18) fm. Both the polarization-
correction and experimental errors are much smaller than the
Rydberg constant error [1], which dominates the uncertainty
in the hydrogen atom analysis.

A similar analysis of transitions from the 2S state in
deuterium to a variety of S and D states [1] leads to a value
for the deuteron charge radius of 〈r2〉1/2

ch = 2.1402(28) fm,
which is consistent with the electron scattering value [17,18]
of 〈r2〉1/2

ch = 2.130(10) fm. We note that this is the full charge
radius (containing the finite sizes of the proton and neutron
constituents) and that the atomic value has an uncertainty
nearly four times smaller than the value obtained directly from
electron scattering.
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The determination of the difference in transition fre-
quencies between hydrogen and deuterium for identical
transitions can be used to test our understanding of small
contributions to the charge radius of the deuteron [4]. In
such a difference nuclear-mass-independent terms (includ-
ing difficult-to-calculate QED contributions) cancel, which
greatly simplifies the analysis. Because the finite size of
the proton contributes linearly to the deuteron mean-square
radius (which is the nuclear quantity that determines the
dominant nuclear-size correction in an atom), it largely cancels
out in the frequency difference. Higher-order proton-size
corrections and neutron-size corrections are relatively small
and tractable. The transition-frequency difference (dominated
by calculable reduced-mass effects) was reported in Ref.
[19] for 1S-2S transitions with a relative error of 2.2 parts
in 1010 and an absolute error of 0.15 kHz. The nuclear
electric polarizability of deuterium contributes 19.26(6) kHz
[20], which is more than two orders of magnitude greater
than the experimental error, while the deuteron-size cor-
rection is greater than 5000 kHz. The weak binding of
the deuteron makes possible the calculation of the bulk
of the polarization and nuclear-size corrections in terms of
a few well-measured parameters. The tiny remaining size
correction includes statistically significant contributions to the
nuclear charge radius arising from meson-exchange currents
and relativistic corrections [4,21], which are unobtainable
from other types of experiments such as electron scattering.
Obtaining this sensitivity to fine details of nuclear dynamics
depends on accurate estimates of the deuteron electric polariza-
bility.

Measurements of S-wave transition frequencies in 3H,
3He, and 4He atoms are not yet as accurate as those
described above, nor are the necessary theoretical cal-
culations for He atoms. It may be possible to improve
[22] both to the point where nuclear physics information
can be extracted, particularly information about the r.m.s.
charge radii. As reviewed and updated in Ref. [23], on
the other hand, isotopic differences in transition frequencies
for helium and singly ionized lithium isotopes now have
the required experimental and theoretical sensitivity. The
latter sensitivity is greatly enhanced by the cancellation
of nuclear-mass-independent relativistic and QED correc-
tions in isotopic differences. In complete analogy to the
hydrogen-deuterium case, calculable reduced-mass effects
dominate the frequency differences, leaving nuclear con-
tributions as the residue after relativistic and QED contri-
butions are subtracted. There has been considerable recent
interest in the isotope shifts of 3He [24,25], 6He [26–28],
and 8He [28] transitions relative to those of 4He. In each
case the value of the r.m.s. charge radius of that isotope
has been extracted relative to the charge radius of 4He
[29,30]. The nuclear polarizability correction to the 3He-
4He isotope-shift frequency (the best measured of the He
isotope shifts) is about 2/3 of the 3 kHz experimental
uncertainty [23–25], while presently only a marginal influence
[23] on the others, but future improvements should require
reliable values of their electric polarizabilities (as was the
case for the deuteron), and that is the purpose of this
article.

II. CALCULATIONAL TECHNIQUES

The electric (dipole) polarizability of a nucleus (or atom),
αE , is defined by

αE = 2α
∑
N �=0

|〈N |Dz|0〉|2
EN − E0

, (1)

where α is the fine-structure constant, E0 is the energy of the
ground-state |0〉, EN is the energy of the N th excited state, |N〉
(all of which are in the continuum for few-nucleon systems),
and Dz is the component of the (nonrelativistic, in our case)
electric dipole operator in the ẑ direction, which generates
the transition between those states. The definition (1) can be
rearranged into the form of a sum rule,

αE = 1

2π2

∫ ∞

ωth

dω
σ ud

γ (ω)

ω2
≡ σ−2

2π2
, (2)

where σ ud
γ (ω) is the nuclear cross section for photoabsorption

of unretarded-dipole (long-wavelength) photons with energy
ω, and ωth is the threshold energy for photoabsorption. A terse
derivation and discussion of the relationship in Eq. (2) is given
near Eqs. (13) and (14) in Ref. [31]. The class of sum rules
σ−n are defined as the integral of the photoabsorption cross
section with a weighting factor of ω−n; our case (n = 2) is
the polarizability sum rule. The inverse-energy weightings in
Eqs. (1) and (2) lead to significant sensitivity of αE to the
threshold energy, ωth, which depends on nuclear binding
energies.

To obtain the nuclear energy spectra and the wave functions
involved in the calculation of the electric polarizability
[Eq. (1)], we use the no-core shell model (NCSM) in
relative coordinates [32] to solve the Schrödinger equation.
The NCSM is a flexible approach to solving the few- and
many-nucleon problems, and it has been extensively used in
studies of s- and p-shell nuclei [33–37]. In the NCSM the
nuclear wave functions are obtained by the diagonalization
of an effective Hamiltonian in a finite basis constructed from
harmonic oscillator (HO) wave functions. The truncation of the
model space is taken into account via an effective interaction
derived by means of a unitary transformation. Either local or
nonlocal nucleon-nucleon (NN ) and three-nucleon (NNN )
interactions can be used in the Schrödinger equation. The
effective interaction is constructed in a cluster approximation,
which must be truncated for practical reasons. The truncation
of the model space is determined and labeled by the number
of excitations, Nmax, above the noninteracting state. We test
convergence by plotting calculated quantities vs Nmax, and
those quantities should approach their correct asymptotic
values as Nmax becomes infinite. Thus by observing the
convergence of observables as a function of Nmax, we can
determine their values.

In this article we compute the 3H, 3He, and 4He electric
dipole polarizabilities starting from a nuclear Hamiltonian
derived within the framework of (QCD-based) Chiral Pertur-
bation Theory (including the Coulomb interaction between
the protons). We adopt the nucleon-nucleon interaction at
next-to-next-to-next-to-leading order (or N3LO) of Ref. [38]
and the three-nucleon interaction at next-to-next-to-leading
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order (or N2LO) [39,40] in the local form of Ref. [36]. The
accuracy of these nuclear interactions for s- and p-shell nuclei
was investigated extensively in the same NCSM framework in
Ref. [35]. In particular, the experimental binding energies of
3H and 3He are reproduced with high accuracy (viz., within
8 keV, or about one part per thousand) [35,36,41], whereas
the 4He ground-state energy is within a few hundred keV
of experiment (i.e., within approximately 1%). This residual
discrepancy with experiment reflects our current uncertainty
on the underlying nuclear dynamics. These modern nuclear
forces therefore provide an accurate description of the structure
of the nuclides considered here (3H, 3He, and 4He) as well as
the total photoabsorption cross section of 4He [37] (discussed
in the next section).

For each nucleus we first solve the few-nucleon Schrödinger
equation to obtain the ground-state wave function, which can
be accurately described in a large HO basis. We next rearrange
Eq. (1) according to Podolsky’s technique [42], which allows
the ground state to be used as the driving term for the Lanczos-
moment method [43,44], which is our numerical method of
choice for solving the Schrödinger equation. This trick allows
us to work only with bound-state quantities and to bypass the
much more difficult approach of computing a response in the
continuum. A detailed description of this method in a NCSM
framework is given in Ref. [45].

III. RESULTS OF CALCULATIONS

In Figs. 1–3, we show the running of the electric polarizabil-
ity with the truncation parameter for the model space, Nmax.
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FIG. 1. (Color online) The dependence of (the electric polariz-
ability) αE of 3H (in units of fm3) on the model-space truncation
parameter, Nmax. The results have been obtained using (a) NN

interactions only, and (b) NN + NNN interactions. Each curve is
obtained using a different frequency parameter for the basis states,
shown in the legend in MeV. For sufficiently large Nmax each result
should be independent of that frequency.

TABLE I. Values of the electric polarizability of light nuclei,
both theoretical and experimental, in units of fm3. The experimental
results have been determined by nuclear experiments, including the
use of experimental photoabsorption data in Eq. (2). No uncertainties
were given for the 3H, 3He, and 4He calculations in Refs. [48]
and [49], but they are likely to be smaller than about 10%. The 6He
result is a hybrid calculation relying on some theoretical input and
we add it here for completeness. Results from the present calculation
have no listed reference. Our three separate results [46] for 4He have
been combined in the table and are discussed in the text near the
end of this section. The result of Ref. [50] for the deuteron is an
Effective Field Theory calculation. The errors for the two deuteron
calculations are not independent and should not be combined.

Nucleus αcalc
E (fm3) Ref. α

exp
E (fm3) Ref.

2H 0.6328(17) [20] 0.61(4) [51]
0.6314(19) [50] 0.70(5) [52]

3H 0.139(2) –
0.139 [48]

3He 0.149(5) 0.250(40) [53]
0.145 [49] 0.130(13) [54]
0.153(15) [55]

4He 0.0683(8)(14) 0.072(4) [31]
0.0655(4) [56] 0.076(8) [55]
0.076 [49]

6He 1.99(40) [55]

Different HO frequency parameters, �, result in different
convergence patterns for the electric polarizability, and this
fact is especially visible for small Nmax values. As shown in
Figs. 1–3, results obtained using smaller HO frequencies
(equivalent to larger-length oscillator parameters, defined by
b = 1/

√
mN�) converge faster. Long-range operators (such

as the electric dipole operator) are thus better described using
smaller values of � in the smaller model spaces. Moreover,
better sampling of the low-lying excited states (the most im-
portant states for the calculation of the electric polarizability)
is obtained for small values of �. Although not shown, other
operators converge faster for larger HO frequencies. Binding
energies, for example, achieve the fastest convergence for a
HO length parameter b on the order of the size of the nucleus
considered. For each observable the results that are obtained
with different values of � nevertheless approach a single
asymptotic value for large Nmax. Uncertainties in determining
that asymptotic value lead to error estimates in Table I.

The upper panels of Figs. 1–3 present results obtained
by neglecting three-nucleon interactions, while results that
include three-nucleon interactions are shown in the lower
panels. We note, however, that because binding energies
are significantly smaller than experiment in the absence of
three-nucleon interactions, the values obtained with only NN

interactions are about 10–25% larger than the results obtained
when NNN interactions are included. This is partly the effect
of having too small a value for ωth, which emphasizes smaller
values of the energy denominators in Eqs. (1) and (2).
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FIG. 2. (Color online) Same as in Fig. 1, but for 3He.

The stronger binding of 4He (compared to that of the three-
nucleon systems) and our slightly less accurate reproduction
of the 4He experimental binding energy may affect our results
for αE . To probe this possibility we have performed three
calculations with slightly different parameter sets in the three-
nucleon force. The specific results are given in Ref. [46].

We expect from Eq. (2) that αE should scale dimensionally
like the square of the nuclear size divided by the binding
energy. Moreover the square of the size should scale roughly
like the inverse of the binding energy (this statement is
highly accurate for the weakly bound deuteron). The resulting
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FIG. 3. (Color online) Same as in Fig. 1, but for 4He.

dependence on the binding energy should be roughly like the
inverse square, and our slight overbinding could diminish αE

by as much as 2%. Our calculation that neglects the three-
nucleon force in 4He results in a value of αE = 0.0822(5) fm3

(22% higher than a result of 0.0673(5) fm3 that incorporates
this force), while reducing the binding energy from 28.50(3)
to 25.39(1) MeV (an 11% decrease). A similar effect is also
seen in the 3He and 3H calculations.

A more difficult problem is that stronger binding empha-
sizes nuclear corrections of relativistic order, including cor-
rections to the electric dipole operator from meson-exchange
currents, which are determined by details of how the nuclear
forces are constructed [47]. This effect could be as large as
±2% for the well-bound 4He, but has been little studied and
takes us far beyond the scope of this work. We incorporate
these uncertainties into our results in the next section.

IV. COMPARISON WITH OTHER WORK

Our calculations of the electric polarizabilities of three- and
four-nucleon isotopes of hydrogen and helium are summarized
in Table I, together with those of others using different
two-nucleon and three-nucleon forces. We have restricted our
own entries to those that incorporate three-nucleon forces
and hence have accurate binding energies, especially for
the three-nucleon systems and slightly less so for 4He. For
completeness in the table we have also included the deuterium
and 6He cases, which were not treated in this work.

Only one other calculation of αE for 3H exists [48], and our
result is in agreement with that calculation.

Calculations for the electric polarizability of 3He [49,55]
are in agreement within their uncertainties and are in rea-
sonable agreement with the determination of Ref. [54], but
not with that of Ref. [53]. We note that if charge symmetry
were exact in the three-nucleon systems, the Hamiltonians
and polarizabilities of 3H and 3He would be identical. Under
the charge-symmetry operation that relates the two nuclei
the dipole operators in Eq. (1) would each develop a minus
sign, whereas the radial wave functions and Green’s functions
would be identical. Most of the charge-symmetry violations in
these systems are caused by the repulsive Coulomb interaction
between the two protons in 3He. We note that our uncertainties
for these two nuclei are also different. The repulsive Coulomb
interaction in 3He leads to a larger radius for that nucleus,
and that may be the source of the larger uncertainty. Matrix
elements of infrared operators (i.e., those like the dipole
operator that are most sensitive to large distances from the
center of a nucleus) converge more slowly in the NCSM
than do short-range operators, which can be successfully
renormalized [57,58].

The uncertainty in the underlying nuclear dynamics (rather
than the uncertainties reflected in the convergence plots)
dominates the error estimate of our calculated electric po-
larizability of 4He (see Ref. [46]). After correcting our
three values (corresponding to three-nucleon force models)
for overbinding [46] we average them and use their spread
as our direct uncertainty, with an additional 2% systematic
uncertainty from the nuclear dynamics (discussed in Sec. III).
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This produces αE = 0.0683(8)(14) fm3, which is listed in
Table I. Our result there is significantly smaller than most
of the corresponding results, although just at the limit of
the estimated uncertainties. We are, however, in fairly good
agreement with a recent calculation by Gazit et al. [56], which
predicts a slightly smaller polarizability, but also corresponds
to a slightly overbound model. We note that Ref. [49] used a
very primitive nuclear force model and that those results are
superseded by those of Ref. [56]. References [55] and [31]
used fits to experimental photoabsorption data and Eq. (2) to
obtain their results. Values obtained from a direct solution
of the Schrödinger equation are therefore at some variance
with those calculated using experimental 4He photoabsorption
data.

Measurements of 4He photoabsorption in the near-threshold
region have been controversial over the years, particularly with
respect to the height of the cross section at the peak, for which
one can find differences of up to a factor of two between
different experiments (e.g., see Ref. [37] and references
therein). This makes it very challenging to extract an accurate
and unambiguous value of the 4He electric polarizability
from the measured 4He photoabsorption cross section using
Eq. (2). In contrast there has been substantial recent progress
in theoretical calculations of the 4He photoabsorption cross
section. Predictions obtained using high precision NN and
NNN interaction models (including the ones used in this
work) all lie in a rather constrained band [37], in remarkable
contrast to the large discrepancies present among different
experimental data. This gives us confidence that our predic-
tion for the 4He electric polarizability, obtained by direct
solution of the Schrödinger equation, will prove to be more
accurate than those obtained using existing photoabsorption
data.

V. CONCLUSION

We have used the latest generation NN and NNN inter-
actions in a NCSM framework to obtain accurate three- and
four-nucleon solutions of the Schrödinger equation. Using the
Lanczos-moment method to implement Podolsky’s technique
[42] for treating second-order perturbation theory, we have
calculated the electric polarizabilities of 3H, 3He, and 4He. Our
result for 3H is in excellent agreement with that of Ref. [48],
while that for 3He is in good agreement with previous work.
Our best estimate of 0.0683(8)(14) fm3 for 4He based on direct
solutions of the Schrödinger equation is at the lowest end of
the calculations that used experimental photoabsorption data
directly in Eq. (2). Future calculations for other light nuclei
such as 6He and 6Li should be tractable, but would require a
change of basis for the NCSM. For nuclei with mass numbers
greater than five, a Slater Determinant basis is much more
efficient than the relative coordinate approach used in this
work.
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[23] G. W. F. Drake, W. Nörtershäuser, and Z.-C. Yan, Can. J. Phys.

83, 311 (2005).
[24] D. Shiner, R. Dixson, and V. Vedantham, Phys. Rev. Lett. 74,

3553 (1995).
[25] D. C. Morton, Q. Wu, and G. W. F. Drake, Phys. Rev. A 73,

034502 (2006).
[26] L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene,

D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu
et al., Phys. Rev. Lett. 93, 142501 (2004).

[27] G. W. F. Drake and Z.-C. Yan, Nucl. Phys. A790, 151c
(2007).

[28] P. Mueller, I. A. Sulai, A. C. C. Villari, J. A. Alcántara-Núnez,
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