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Three dimensional calculations of N N bound and scattering states with a
chiral potential up to N3LO

S. Bayegan,* M. A. Shalchi,† and M. R. Hadizadeh‡

Department of Physics, University of Tehran, P. O. Box 14395-547, Tehran, Iran
(Received 25 January 2009; revised manuscript received 21 April 2009; published 26 May 2009)

The recently developed chiral nucleon-nucleon (NN ) potential by E. Epelbaum, W. Glöckle, and
Ulf-G. Meißner, Nucl. Phys. A747, 362 (2005) has been employed to study the two-nucleon bound and scattering
states. Chiral NN potential up to next-to-next-to-next-to leading order (N3LO) is used to calculate the np

differential cross section and deuteron binding energy in a realistic three dimensional approach. The obtained
results based on this helicity representation are compared to the standard partial wave (PW) results. This
comparison shows that the 3D approach provides the same accuracy in the description of NN observables and
the results are in close agreement with available experimental data.
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Introduction. It has been a long time since the standard PW
decomposition has been used to solve the few-body problems.
In this approach one should sum all PW’s to infinite order, but
in practice one truncates the sum to a finite angular momentum
number which is dependent to the considered energy. It means
that in higher energies one will need many PW components,
which leads to very complicated expressions, to achieve the
convergence results. It appears therefore natural to avoid the
very involved angular momentum algebra which is inherent
in the PW representation of permutations, transformations,
and especially the 3N forces and work directly with vector
variables [1]. To this aim in the past decade the main steps
have been taken by the Ohio-Bochum collaboration (Elster
et al.) and Bayegan et al. to implement the 3D approach in
few-body bound and scattering calculations (see for examples
Refs. [2–9]). The 3D approach replaces the discrete angular
momentum quantum numbers with continuous angle variables
and consequently it takes into account automatically all
PW’s. So in contrast to the truncated PW approach, the
number of equations in the nontruncated 3D representation
is energy independent. Therefore this non-PW method is
more efficient and applicable to the three- and four-nucleon
scattering problems which consider higher energies than the
corresponding bound state problems. It should be clear that the
building blocks to the few-body calculations without angular
momentum decomposition are two-body off-shell t-matrices,
which depend on the magnitudes of the initial and final Jacobi
momenta and the angle between them. Fachruddin et al.
have formulated the NN bound and scattering states in a 3D
representation and they have numerically illustrated the np

differential cross section and deuteron binding energy by using
two realistic model interactions, i.e., the Bonn-B and the AV18
[2,3]. They have incorporated the momentum vectors directly
into the bound and scattering equations, and the total spin of
the two nucleons is treated in a helicity representation with
respect to the relative momentum of the two nucleons. Despite
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many successes which conventional approaches achieved in
incorporating the NN potentials, such as the CD-Bonn, the
Nijmegen I and II, and the AV18, in nuclear structure and
reaction calculations, there are certain deficiencies that require
a reliable approach which is based on the theory of strong
interactions, the quantum chromodynamics (QCD). These
deficiencies can be categorized as having no connection to
QCD, model-dependent with a lack of 3N force to be added
on, the gauge and chiral symmetries are hard to be reached, and
finally fine tuning in not achievable order by order of increasing
momenta. Based on the spontaneously and explicitly broken
chiral symmetry it is possible to construct nuclear forces in
the framework of the chiral perturbation theory. This approach
has been founded by Weinberg [10,11] and further expanded
by Ordóñez et al. [12], Kaiser et al. [13], Entem et al. [14], and
recently by Epelbaum et al. [15,16]. In order to compare the
3D and the PW approaches in a more fundamental basis, we
intend to incorporate the new chiral potential [17] into the 3D
few-body calculations. In the first step we are preparing this
potential in an appropriate operator form, which is consistent
with 3D representation, to calculate the np differential cross
section and also the deuteron binding energy.

A brief review of the 3D formalism for NN bound and
scattering states. The NN differential cross section is given
as
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where msi
and mti indicate the projection of the spin and isospin

of the nucleons, p and p′ are initial and final relative momentum
of the two nucleons, and the operator T is the 2N transition
matrix determined by the Lippmann-Schwinger equation. In
order to calculate the NN differential cross section we need
to calculate the matrix elements of the physical representation
of NNT -matrix, i.e.,
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which are given in the antisymmetrized basis states, i.e., |p ms1

ms2mt1mt2〉a ≡ 1√
2
(1 − P12)|p ms1ms2mt1mt2〉. These matrix
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elements can be obtained by a summation over the on-shell
momentum helicity T -matrices multiplied with the rotational
matrices and Clebsch-Gordon coefficients [4]. As indicated
in Ref. [3] the projection of the Schrödinger equation on the
helicity basis states leads to the coupled integral equations
which, after simplification, are actually only two dimensional
integral equations. Since the deuteron has spin 1 there are
three possible values for the helicity projections, namely
� = −1, 0,+1. The symmetry properties allow to consider
only � = +1, 0. Thus one obtains a set of two coupled integral
equations in two variables, the magnitude of the relative
momentum vector, i.e., p, and the angle between p and the
arbitrarily chosen z-axis, i.e., θ .

Preparation of the chiral potential in 3D representation.
The general form of the NN potential by considering the
rotation, parity, and time reversal invariance can be written as
a linear combination of six �i operators, which are consistent
with the helicity basis representation [5]:

〈p′|V |p〉 ≡ V (p′, p) =
6∑

i=1

vi(p
′, p, γ )

∑
j

Aij�j , (3)

where vi(p′, p, γ ) are scalar functions which depend on
the magnitudes of p and p′ and also the angle between
them, γ = p̂.p̂′, and A is a 6 × 6 matrix. The �i oper-
ators are �1 = 1,�2 = S2,�3 = S · p̂′S · p̂′,�4 = S · p̂′S ·
p̂, �5 = (S · p̂′)2(S · p̂)2,�6 = S · p̂S · p̂. By this represen-
tation the spin-dependent parts of the matrix elements of
the potential can be easily evaluated in the helicity basis
states. We intend to use the chiral NN potential up to N3LO
of chiral expansion which consists of “one- and two-pion
exchanges (1PE, 2PE) and a string of contact interactions
with an increasing number of derivatives (zero, two, four)
that parametrize the shorter ranged components of the nuclear
force” [17]. In order to use the chiral potential in 3D formalism
we need first to rewrite this potential in an appropriate operator
form which is consistent with helicity representation. To this
aim we should overcome the following two possible issues:

(i) the calculation of original low energy coefficients
(LEC’s) for incorporating the contact terms;

(ii) the representation of the spin dependent parts in term of
�i operators.

As indicated in Ref. [17] the chiral potential at N3LO
consists of contact terms which contain 24 original LEC’s:
CS,CT , C1, . . . , C7 and D1, . . . , D15. In order to calculate
any observable with chiral potential in the PW approach it
is sufficient to project only the contact interactions in the
14 PW channels up to J = 3 and it is not necessary to
consider the higher channels, i.e., J = 4, 5, 6, etc. Once the
24 spectroscopic LEC’s have been determined by fitting to
the phase shifts of the Nijmegen potential, the original ones
can be obtained uniquely. This is a serious problem to apply
the contact terms of the chiral potential in 3D approach,
since in this approach we consider all of the PW channels
simultaneously. To overcome this problem we have used the
connection between the 3D and PW representations of matrix
elements of the NN potential [18] to sum over these 14

channels and to obtain the matrix elements of the potential
in momentum helicity basis.

In order to make the chiral potential compatible with
helicity representation, we highlight the spin dependent parts
of the potential as follows:

σ 1 · σ 2, σ 1 · qσ 2 · q, σ 1 · kσ 2 · k,

i(σ 1 + σ 2) · (q × k), σ 1 · (q × k)σ 2 · (q × k). (4)

These parts can be simply written in term of �i operators as
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= −p′2p2a2�1 + p′2p2a2�2

+ 2p′2p2γ�4 − 2p′2p2�5, (9)

where γ = p̂′ · p̂, a =
√

1 − γ 2, b = p′2 + p2 − 2p′pγ =
q2, c = p′2 + p2 + 2p′pγ = 4k2.

Numerical results. In this section we present the obtained
numerical results for np differential cross section and deuteron
binding energy with chiral potential up to N3LO in the 3D
approach. In order to demonstrate the effectiveness of 3D
formalism we have compared our numerical results with
the corresponding PW results as well as the experimental
data. The low energy coefficients in the chiral potential are
determined for given cut-off parameters �1 and �2 by fitting
to NN data, where the cutoff �1 regulates the high-momentum
components of the interacting nucleons and the cutoff �2

which appears in the spectral function regularization excludes
the high-momentum components of the two-pion exchange.
We use in our calculations different combinations of (�1,�2)
for N3LO as (450,500), (600,600), (550,600), (450,700),
(600,700) in units of MeV/c.

The numerical results for np differential cross section in
four different energies of the projectile in the laboratory system
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FIG. 1. (Color online) The np differential cross section for four
different energies. The left figures are 3D and the right ones are
PW results. In each figure the 3D or PW numerical results are
obtained for five cut-off sets, i.e., C1:(450,500), C2:(600,600),
C3:(550,600), C4:(450,700), C5:(600,700) MeV. The PW results
have been obtained up to J = 6 and they have been taken from
Ref. [17]. The experimental data have been taken from Ref. [20]
for Elab = 50 MeV (EXP1), from Refs. [21,22] for Elab = 96 MeV
(EXP1 and EXP2, respectively), from Ref. [23] for Elab = 142.8 MeV
(EXP1) and from Refs. [24,25] for Elab = 200 MeV (EXP1 and
EXP2, respectively).

and for different cut-off sets are shown in Fig. 1. In the first
row of this figure we have presented a comparison between
3D and PW results for Elab = 50 MeV. The PW results have
been taken from [17] where the calculation is up to Jmax = 6.
Both 3D and PW results are in good agreement in forward and
backward angles. Also the comparison of both approaches
with experimental data in backward angles shows a very close
agreement. In the next rows the same comparison has been
shown for Elab = 96, 143 and 200 MeV, and as we see both
approaches match together and also to the experimental data
perfectly. In Table I we have presented our numerical results

TABLE I. Deuteron binding energy calculated for
the chiral potential at N3LO in 3D approach for three
different cut-off sets in comparison with the PW and
experimental results.

(�1,�2) 3D [MeV] PW [19] [MeV]

(450,500) −2.216 −2.215
(450,700) −2.219 −2.218
(600,700) −2.222 −2.220
PW [17] (−2.216)–(−2.223)
EXP −2.224575(9)

for the deuteron binding energy in comparison with PW and
experimental data. Our numerical results for three cut-off sets
with the values −2.216, −2.219, and −2.222 MeV are in good
agreement with the very recent corresponding PW results [19],
and also with Epelbaum et al. PW achievements [17]. The
agreement between the 3D and PW results as well as the
experimental data is quiet satisfactory.

Although we have studied the 2N systems we conclude that
the 3D approach is promising to be simpler for more complex
few-body systems by providing a strictly finite number of
coupled three-dimensional integral equations to be solved.
The number of the integral equations in the 3D approach is
consistent and does not depend on the energy of the system.
This subject is more important when we consider 3N and 4N

scattering problems in which the number of the equations in
the higher energies makes the problems more complex. The
recently developed 3N bound state in the 3D approach [7]
can be used to calculate the 3H and 3He binding energies by
using the chiral potential. The 3N scattering, Nd capture, and
3N photodisintegration calculations with this new form of the
chiral potential are interesting goals that we are pursuing. Also
the incorporation of 3N chiral forces in novel 3D approach
calculations is one of other interesting problems that can be
done.

We highly appreciate E. Epelbaum for providing us the
chiral NN partial wave code. We also convey special thanks
to W. Glöckle, Ch. Elster, and I. Fachruddin for the application
of their helicity formalism. This work was supported by the
research council of the University of Tehran.
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