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1Institute für Theoretische Physik der Universität Tübingen, D-72076 Tübingen, Germany
2Bogoliubov Laboratory of Theoretical Physics, JINR, RU-141 980 Dubna, Moscow region, Russia

3Department of Nuclear Physics, Comenius University, Mlynská dolina F1, SK-842 15 Bratislava, Slovakia
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A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0νββ) of 76Ge,
82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, and 136Xe is presented in the framework of the renormalized quasiparticle
random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the
two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon
potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a
comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for
the 0νββ decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon
correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties
in the calculated 0νββ-decay matrix elements.
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I. INTRODUCTION

The present data on neutrino oscillations show that the
pattern of neutrino masses and mixing (the Pontecorvo-Maki-
Nakagava-Sakata mixing matrix) is different from that of the
Cabibbo-Kobayashi-Maskawa quark mixing matrix [1,2]. The
generation of neutrino masses can be explored if the absolute
scale of neutrino masses is fixed and the issue of the leptonic
CP violation is understood [3]. This might happen if the lepton
number violating neutrinoless double-beta decay (0νββ decay)
is observed in running [4,5] or planned [5–8] 0νββ-decay
experiments.

The 0νββ decay is a very sensitive probe for the Majorana
neutrino mass [7,9–12]. The 0νββ decay can occur through
different processes, but all of them require that the neutrino has
nonzero mass and is a Majorana particle [13]. Usually, the light
Majorana neutrino exchange mechanism of the 0νββ decay is
considered. A measurement of the decay rate, when combined
with neutrino oscillation data and a reliable calculation of
nuclear matrix elements (NMEs), would yield insight into
all three neutrino mass eigenstates, the type of neutrino
mass spectrum (normal hierarchy or inverted hierarchy), and
possibly Majorana CP-violating phases.

An important subject in neutrino physics is a reliable
calculation of the 0νββ-decay NME M0ν [14]. Unfortunately,
there are no observables that could be directly related to the
magnitudes of NMEs. The most popular nuclear structure
methods that have been applied for this task are the proton-
neutron quasiparticle random phase approximation (QRPA)
with its variants [15] and the large-scale shell model (LSSM)
[16–18]. Recently, significant progress has been made toward
the reduction of uncertainty in the calculated NMEs [15,19].
A detailed anatomy of the 0νββ-decay NMEs pointed out a
qualitative agreement between results of the QRPA-like and
LSSM approaches [20,21]. In particular, it was shown that
only internucleon distances rij <∼ 2–3 fm contribute to M0ν ,
which explains a small spread of results for different nuclei.

Further, it has been shown that correlated NME uncertainties
play an important role in the comparison of 0νββ-decay rates
for different nuclei [22].

Improvement of calculations of the nuclear matrix ele-
ments is a very important and challenging problem. The
problem of the two-nucleon short-range correlations (SRCs)
has recently inspired new 0νββ-decay studies [20,21,23].
In the majority of previous calculations, SRCs have been
treated in a conventional way via the Jastrow-type correla-
tion function in the parametrization of Miller and Spencer
[24]. Recently, it has been found that the consideration
of the unitary correlation operator method (UCOM) leads
to an increase of the 0νββ-decay NME by about 20–30%
[20,21,23]. It was concluded that we do not know the
best way to treat the SRC, a fact that contributes to the
uncertainties.

In the present article, we improve on the Miller-Spencer
Jastrow and the UCOM SRC and perform a self-consistent
calculation of the 0νββ-decay NMEs by considering pairing,
ground state, and short-range correlations deduced from the
same realistic nucleon-nucleon (NN ) interaction. In particular,
the two-nucleon short-range correlations will be determined
within the coupled-cluster or exponential-S approach by
using CD-Bonn and Argonne V18 NN forces [26,27] and
compared with Jastrow and UCOM SRC. Then, they will
be used in the QRPA and renormalized QRPA (RQRPA)
calculations of the 0νββ-decay NMEs of experimental
interest.

The paper is organized as follows. In Sec. II, the formalism
of the 0νββ decay associated with the exchange of light
Majorana neutrinos is briefly reviewed. Section II is devoted
to the analysis of different treatments of the two-nucleon
short-range correlations in the context of the correlated 0νββ-
decay operator. In Sec. IV, we present numerical results for
nuclei of experimental interest. Section V summarizes our
findings.
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II. FORMALISM

In this section, we present basic expressions associated with
the calculation of the 0νββ-decay NME, which allow us to
discuss the effects of finite nucleon size (FNS) and the two-
nucleon SRC.

By assuming the dominance of the light neutrino mixing
mechanism, the inverse value of the 0νββ-decay half-life for
a given isotope (A,Z) is given by

1

T1/2
= G0ν(E0, Z)|M ′0ν |2|〈mββ〉|2. (1)

Here, G0ν(E0, Z) and M ′0ν are, respectively, the known
phase-space factor (E0 is the energy release) and the nuclear
matrix element, which depends on the nuclear structure of the
particular isotopes (A,Z), (A,Z + 1), and (A,Z + 2) under
study. Under the assumption of the mixing of three light
massive Majorana neutrinos, the effective Majorana neutrino
mass 〈mββ〉 takes the form

〈mββ〉 =
N∑
i

|Uei |2eiαi mi (all mi � 0), (2)

where Uei is the first row of the neutrino mixing matrix. mi and
αi are the neutrino masses and the unknown Majorana phases,
respectively. It is apparent that any uncertainty in M ′0ν makes
the value of 〈mββ〉 equally uncertain.

Our phase-space factors G0ν(E0, Z), which include the
fourth power of the axial-coupling constant gA = 1.25,
are tabulated in Ref. [28]. They agree quite closely with those
given earlier in Ref. [29]. The G0ν(E0, Z) contain the inverse
square of the nuclear radius (R)−2, compensated by the factor
R in M ′0ν . Different authors use different choices for R(R =
r0A

1/3 with r0 = 1.2 fm or r0 = 1.1 fm), a fact that is important
to keep in mind when comparing the matrix elements.

The nuclear matrix element M ′0ν is defined as

M ′0ν =
( gA

1.25

)2
M0ν, (3)

where M0ν consists of Fermi, Gamow-Teller, and tensor parts
as

M0ν = −MF

g2
A

+ MGT + MT . (4)

This definition of M ′0ν [15] allows us to display the effects of
uncertainties in gA and to use the same phase factor G0ν(E0, Z)
when calculating the 0νββ-decay rate.

In the QRPA (and RQRPA) M0ν is written as sums over
all the intermediate states, labeled by their angular momentum
and parity Jπ and indices ki and kf , that is,

MK =
∑
Jπ

MK (Jπ )

=
∑

Jπ ,ki ,kf ,J

∑
pnp′n′

(−1)jn+jp′+J+J ×√
2J + 1

{
jp jn J

jn′ jp′ J

}
×〈p(1), p′(2);J ‖OK‖n(1), n′(2);J 〉
× 〈0+

f ‖[ ˜c+
p′ c̃n′ ]J ‖Jπkf 〉〈Jπkf |Jπki〉

× 〈Jπkf i‖[c+
p c̃n]J ‖0+

i 〉. (5)

The reduced matrix elements of the one-body operators
c+
p c̃n(c̃n denotes the time-reversed state) in Eq. (5) depend on

the BCS coefficients ui, vj and on the QRPA vectors X, Y [28].
The difference between QRPA and RQRPA resides in the way
these reduced matrix elements are calculated.

The two-body operators OK,K = Fermi (F ), Gamow-Teller
(GT), and tensor (T ), in Eq. (5) contain neutrino potentials and
spin and isospin operators, and RPA energies E

ki,kf

J π :

OF

(
r12, E

k
Jπ

) = τ+(1)τ+(2) HF

(
r12, E

k
Jπ

)
,

OGT
(
r12, E

k
Jπ

) = τ+(1)τ+(2) HGT
(
r12, E

k
Jπ

)
σ12, (6)

OT

(
r12, E

k
Jπ

) = τ+(1)τ+(2) HT

(
r12, E

k
Jπ

)
S12,

with

r12 = r1 − r2, r12 = |r12|, r̂12 = r12

r12
,

(7)
σ12 = �σ1 · �σ2, S12 = 3(�σ1 · r̂12)(�σ2 · r̂12) − σ12.

Here, r1 and r2 are the coordinates of the nucleons undergoing
β decay.

The neutrino potentials are integrals over the exchanged
momentum q,

HK (r12, E
k
Jπ )= 2

π
R

∫ ∞

0
fK (qr12)

hK (q2)q dq

q + Ek
Jπ − (Ei + Ef )/2

,

(8)

The functions fF,GT(qr12) = j0(qr12) and fT (qr12) =
−j2(qr12) are spherical Bessel functions.

The potentials (8) depend explicitly, though rather weakly,
on the energies of the intermediate states, Ek

Jπ . The functions
hK (q2) that enter the HK through the integrals over q in
Eq. (8) are

hF (q2) = g2
V (q2),

hGT(q2) = g2
A(q2)

g2
A

[
1 − 2

3

q2

q2 + m2
π

+ 1

3

(
q2

q2 + m2
π

)2
]

+2

3

g2
M (q2)

g2
A

q2

4m2
p

, (9)

hT (q2) = g2
A(q2)

g2
A

[
2

3

q2

q2 + m2
π

− 1

3

(
q2

q2 + m2
π

)2
]

+1

3

g2
M (q2)

g2
A

q2

4m2
p

.

Here, the partially conserved axial current (PCAC) hypothesis
is used.

The FNS is taken into account via momentum dependence
of the nucleon form factors. For the vector, weak-magnetism,
and axial-vector form factors, we adopt the usual dipole
approximation as follows:

gV (q2) = gV(
1 + q2

/
M2

V

)2 ,

gM (q2) = (µp − µn)gV (q2), (10)

gA(q2) = gA(
1 + q2

/
M2

A

)2 ,
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where gV = 1, gA = 1.00 (quenched) and 1.25 (unquenched),
and (µp − µn) = 3.70. The parameters MV = 850 MeV and
MA = 1086 MeV come from electron scattering and neutrino
charged-current scattering experiments.

The 0νββ-decay matrix elements were usually calculated
in some approximations, which are only partially justified (see
also discussion in Ref. [15]):

(i) The effect of higher order terms of nucleon currents
was not taken into account. In this case, we have

hF (q2) = g2
V (q2), hGT(q2) = g2

A(q2)

g2
A

,

(11)
hT (q2) = 0.

We note that if in addition nucleons are considered to
be point-like, hF and hGT are equal to unity.

(ii) The closure approximation for intermediate nuclear
states was considered by replacing energies of interme-
diate states [Ek

Jπ − (Ei + Ef )/2] by an average value
E ≈ 10 MeV.

Within these approximations, the neutrino potential in
Eq. (8) can be written as [30]

Hbare(r12, E) = 2

π
[sin (Er12) Ci(Er12) − cos(Er12)Si(Er12)]

× R

r12
. (12)

Here, Ci(x) and Si(x) are the cosine and sine integrals,
respectively. The value of E has practically no impact on the
behavior of neutrino exchange potential at short internucleon
distances. In the limit E = 0 and zero neutrino mass, the
neutrino potential is Coulombic: Hbare(r12, E = 0) = R/r12.

It is worth mentioning some general properties of the Fermi
MF and the Gamow-Teller MGT matrix elements; in particular,
some multipole contributions of states of the intermediate odd-
odd nucleus are equal to zero. We have

MF (J+) = 0 for odd J,

MF (J−) = 0 for even J, (13)

MGT(0+) = 0.

III. SHORT-RANGE CORRELATIONS FOR
THE 0νββ DECAY

An important component of the MK in Eq. (5) is an
unantisymmetrized two-body matrix element,

〈p(1), p′(2);J ‖OK‖n(1), n′(2);J 〉, (14)

constructed from two one-body matrix elements by coupling
pairs of protons and neutrons to angular momentum J . We
note in the closure approximation, i.e., if energies of inter-
mediate states (Ek

Jπ − Ei) are replaced by an average value
E, and the sum over intermediate states is taken by closure,∑

k |Jπ
k 〉〈Jπ

k | = 1, we end up with antisymmetrized two-body
matrix elements. As the virtual neutrino has an average
momentum of ∼100 MeV [20], considerably larger than the
differences in nuclear excitation, the closure approximation
limit is found to be meaningful, thus showing the importance
of the correlations of the two β-decaying nucleons.

A. The Jastrow and UCOM short-range correlations

The QRPA (RQRPA) as well as the LSSM approaches do
not allow the introduction of short-range correlations into the
two-nucleon relative wave function. The traditional way is to
introduce an explicit Jastrow-type correlation function f (r12)
into the involved two-body transition matrix elements

〈�J ‖f (r12)OK (r12)f (r12)‖�J 〉 ≡ 〈�J ‖OK (r12)‖�J 〉. (15)

Here,

|�J 〉 = f (r12) |�J 〉, |�J 〉 ≡ |n(1), n′(2);J 〉 (16)

are the relative wave function with and without the short-range
correlations, respectively. In the parametrization of Miller and
Spencer [24], we have

f (r12) = 1 − e−ar2
(1 − br2), a = 1.1 fm−2,

(17)
b = 0.68 fm−2.

These two parameters (a and b) are correlated and chosen in
the way that the norm of the relative wave function |�J 〉 is
conserved.

Usually, the nuclear matrix element M0ν is calculated
in relative and center-of-mass coordinates, as the Jastrow
correlation function depends only on r12. This is achieved with
help of the well-known Talmi-Moshinski transformation [31]
for the harmonic oscillator basis. Within this procedure, the
chosen construction of the relative wave function, namely,
a product of f (r12) with harmonic oscillator wave function
in Eq. (16), is well justified. Any more complex structure
of correlation function, e.g., a consideration of different
correlation functions for different channels, would result in
violation of requirements in Eq. (13) as the Talmi-Moshinski
transformation is considered.

Recently, it was proposed [23] that the UCOM approach
be adopted instead of the Jastrow method for describing
the two-body correlated wave function [25]. This approach
describes not only short-range but also central and tensor
correlations explicitly by means of a unitary transformation.
The state-independent short-range correlations are treated
explicitly, while long-range correlations should be described
in a model space. Applied to a realistic NN interaction, the
method produces a correlated interaction, which can be used as
a universal effective interaction, for calculations within simple
Hilbert spaces. The UCOM method produces good results for
the binding energies of nuclei already at the Hartree-Fock
level [32]. There are also some first applications for the
description of collective multipole excitations [33].

Within the UCOM, the short-range and long-range corre-
lations are imprinted into uncorrelated many-body states by
a unitary transformation. For the 0νββ-decay calculation, the
correlated two-nucleon wave function was taken as

|�J 〉 = Cr |�J 〉. (18)

Here, Cr is the unitary correlation operator describing the
short-range correlations. The explicit form of Cr is given in
Ref. [25] with a separate parametrization for different LS
channels. In application to the 0νββ decay, this fact leads
to a slight violation of conditions (13) when Talmi-Moshinski
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transformations are considered. The UCOM-corrected NMEs
of the 0νββ decay are significantly less suppressed when
compared with those calculated with the Jastrow SRC [20,23].

B. Self-consistent two-body short-range correlations

The two-nucleon wave function with short-range correla-
tions can be calculated from the same realistic NN interaction,
which is used in the derivation of the Brueckner G-matrix
elements of the nuclear Hamiltonian. This can be done within
different many-body approaches, e.g., the Brueckner-Bethe
hole-line expansion, the coupled-cluster method (CCM) or
exponential S approach, and the approach of self-consistent
evaluation of Green’s functions [26].

There are various modern NN potentials that yield a very
accurate fit to the nucleon-nucleon scattering phase shifts. Two
of them are the so-called charge-dependent Bonn potential
(CD-Bonn) [34] and the Argonne V18 potential (Argonne)
[35]. They differ in description of both long- and short-range
parts of theNN interaction. The CD-Bonn is derived in the
framework of the relativistic meson field theory. The Argonne
potential is a purely local potential in the sense that it uses
the local form of the one-pion exchange potential for the long-
range part and parametrizes the contributions of medium- and
short-range distances in terms of local functions multiplied by
a set of spin-isospin operators.

We have chosen the CCM [27,36] to evaluate the effect
of short-range correlation on the 0νββ-decay NMEs, because
it provides directly correlated two-body wave functions. The
basic features of the CCM are described in the review article by
Kümmel [37]. The developments of this many-body approach
with applications can be found in Refs. [38–40].

The CCM starts by assuming an appropriate Slater deter-
minant |�〉 as a first approximation for the exact eigenstate of
the A-particle system. The many-body wave function of the
coupled-cluster or exp(S) method can be written as

|�〉corr = exp

(
A∑

n=1

Ŝn

)
|�〉. (19)

The n-particle n-hole excitation operator Ŝn is given by

Ŝn = 1

(n!)2

∑
νi ,ρi

〈ρ1 . . . ρn|Sn|ν1 . . . νn〉a†
ρ1

. . . a†
ρn

aνn
· · · aν1 .

(20)

The sum in Eq. (20) is restricted to states ρi that are unoccupied
in the model state |�〉, while states νi refer to states that are
occupied in |�〉.

A Slater determinant of harmonic oscillator wave functions
is considered for |�〉. For a given nuclear system of interest, an
appropriate value of the oscillator length b is chosen. In the so-
called S2 approximation of the CCM, the amplitudes defining
Ŝn with n > 3 in Eq. (19) are ignored. This means that effects
beyond Hartree-Fock and two-body correlations (i.e., genuine
three- and more-particle correlations) are ignored. This leads to
a coupled set of equations for the evaluation of the correlation
operators Ŝ1 and Ŝ2 [27]. Therefore this S2 approximation
corresponds essentially to the Brueckner-Hartree-Fock (BHF)

approximation of the hole-line expansion or Brueckner theory.
In fact, the hole-hole scattering terms, which are included in
the S2 but ignored in BHF, turn out to yield small effects only.
Therefore it is consistent to combine the correlation effects
from CCM with the matrix elements of the G matrix, the
effective interaction determined in the BHF approximation.

The use of the oscillator ansatz in the Slater determinant
|� > in Eq. (19) leads to an evaluation of the correlated two-
nucleon wave functions in terms of product wave functions
for the relative and center-of-mass coordinates. The two-body
states take the form

| [n(lS)j ] NLJ τ 〉. (21)

Here, N and L denote the harmonic-oscillator quantum
numbers for the center-of-mass wave function, and l refers to
the orbital angular momentum for the relative motion, which
is coupled with a total spin of the pair S to angular momentum
J . The basis states for the radial part of this relative motion
are labeled by a quantum number n.

As an example, we present in Fig. 1 relative wave functions
for correlated and uncorrelated two-body wave functions in
the case of 1S0 partial waves and different values of the
radial quantum numbers n (n = 0, 1, 2, 3, and 4). In Fig. 1(a),
uncorrelated harmonic oscillator wave functions are plotted.
Figures 1(b) and 1(c) show the relative wave functions obtained
with help of CCM employing the CD-Bonn and the Argonne
potentials. For a comparison, relative wave functions with
the Miller-Spencer Jastrow SRC are displayed in Fig. 1(d).
While the Jastrow ansatz completely suppresses the rela-
tive wave function in the limit r12 → 0, we find that this
suppression effect is much weaker in the CCM calculation.
This is true even if the Argonne potential is used, which is
known to produce stronger short-range components than the
softer CD-Bonn potential. Also note that the correlated wave
functions derived from realistic interactions exhibit a short-
range behavior that depends on the radial quantum number n,
whereas the Jastrow approach yields almost identical relative
wave functions for small values of r12.

Components of the NN interaction at short distances are
weaker for the CD-Bonn potential than with the Argonne
interaction. But in the case of the Jastrow SRC, the reduction
of the relative wave function for small values of r12 is even
much stronger.

The advantage of the CCM [27] is a factorization of
the correlated two-body wave function on a product of a
correlation function and a harmonic oscillator wave function.
This allows us to discuss the effect of the SRC in terms of
the correlated operator, which is a product of the transition
operator OK (r12) and two correlation functions f (r12) [see
Eq. (15)]. For our purposes, we consider CCM CD-Bonn fB

and CCM Argonne fA correlation functions deduced from the
1S0(n = 0) correlated two-body wave function. The use of this
single correlation function for all partial waves and quantum
numbers n is numerically well justified and is dictated by the
use of the Talmi-Moshinski transformation in the evaluation
of the 0νββ-decay matrix element.

In Fig. 2, the differences between the CCM and the Miller-
Spencer SRC are manifested by plotting the ratio of correlated
HSRC+FNS(r12) and uncorrelated Hbare(r12) neutrino potentials.
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FIG. 1. Two-nucleon wave functions as a
function of the relative distance for the 1S0 partial
wave and radial quantum numbers n = 0, 1, 2, 3,
and 4. The results are for the (a) uncorrelated
two-nucleon wave functions, (b) coupled-cluster
method with CD-Bonn potential, (c) coupled-
cluster method with Argonne potential, and
(d) Miller-Spencer Jastrow short-range correla-
tions. The harmonic oscillator parameter b is
2.18 fm.

The averaged energy of intermediate nuclear states E is
8 MeV. For sake of simplicity, the effect of higher order terms
of nucleon currents on the neutrino potential is neglected.
From Fig. 2, we see a significant difference between the CCM
and the Miller-Spencer treatment of the SRC. The maxima of
the CCM and the Spencer-Miller curves occur at 1 and 1.5 fm,
respectively. One finds also that the reduction at short distances
is much weaker for CD-Bonn than for Argonne interactions.

For purpose of numerical calculation of the 0νββ-decay
NMEs, we present the CCM short-range correlation functions
in an analytic form of Jastrow-like function as

fA,B(r12) = 1 − c e−ar2
(1 − br2). (22)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

 r
12

 [fm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
sr

c+
fn

s(r
12

)/
H

ba
re

(r
12

)

Spencer-Miler Jastrow SRC
CCM CD-Bonn SRC
CCM CD-Bonn SRC + FNS
CCM Argonne SRC
CCM Argonne SRC + FNS

FIG. 2. Ratio of neutrino potentials with and without two-nucleon
short-range correlations (SRCs). Results are shown for the CCM
CD-Bonn and Argonne and Miller-Spencer SRC with and without
consideration of the effect of finite size of a nucleon. It is assumed
E = 8 MeV.

The set of parameters for Argonne and CD-Bonn NN

interactions is given by

fA(r12): a = 1.59 fm−2, b = 1.45 fm−2, c = 0.92,
(23)

fB(r12): a = 1.52 fm−2, b = 1.88 fm−2, c = 0.46.

The calculated NMEs with these short-range correlation
functions agree within a few percent with those obtained
without this approximation. We note that the dependence of
the SRC on the value of oscillator length b is rather weak.

The correlation functions introduced in Eqs. (22) and (23)
with three parameters (a, b, and c) differ significantly from
the Miller-Spencer correlation function in Eq. (17). First, in
the Miller-Spencer parametrization of the Jastrow function,
c is equal to unity. This reflects a complete suppression of
the relative wave function at short distances. In the CD-Bonn
potential (case B), which is based on the relativistic meson
exchange model and nonlocal, this value of c was found to
be as low as 0.46. Also, the local and stiffer Argonne V18
interaction [case A in Eq. (23)] yields a value for c that is
below unity. Second, the maxima of the correlation functions
related with CD-Bonn and Argonne NN interactions appears
at 1 fm, unlike for the Miller-Spencer correlation function
with maximum at 1.5 fm (see Fig. 2). It is assumed that
these differences are associated with the progress made in
nuclear theory during a period of more than 30 years. The
considered modern NN interactions accounts for a breaking of
isospin symmetry, and they have been fitted with high precision
to NN scattering phase shifts. We note that short-range
correlations are stronger for the S = 1, T = 0 channel than
for the S = 0, T = 1 channel [26], which is relevant for the
0νββ-decay nuclear matrix elements. The previously used
Miller-Spencer correlation function was considered to be equal
in both channels.

In Fig. 3, the r12 dependence of M0ν is shown for CCM
Argonne, CCM CD-Bonn, and phenomenological Jastrow
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SRC for the 0νββ decay of 76Ge. The quantity C(r12) is defined
by

M0ν =
∫ ∞

0
C(r12) dr12. (24)

We note that the range of r12 is practically restricted from
above by r12 � 2R. From Fig. 3, we see that a modification
of the neutrino potential due to the different types of SRCs is
transmitted to the behavior of C(r12) for r12 � 2 fm. Both the
CCM short-range correlation functions (see Fig. 2) and C(r12)
with SRC switched off (but with the FNS effect) have maxima
for r12 � 1 fm, unlike the phenomenological Jastrow function
with the maximum shifted to r12 = 1.5 fm. This explains a
significant increase of C(r12) with CCM SRC and suppression
of C(r12) with Jastrow SRC in this region. This phenomenon
clarifies also why the values of M0ν obtained with CCM SRC
are comparable to those calculated when only the FNS effect
is considered (see Table I). The increase of C(r12) for r12 �
1 fm compensates for its reduction in the range r12 � 0.7 fm.

C. Finite nucleon size and two-body short-range correlations

The FNS effects are introduced in the calculation of the
0νββ-decay NMEs by the dipole form factors in momentum
space. The form factor simulates the fact that the nucleon is not

a point particle, and therefore as q2 increases, the probability
that the nucleon will stay intact (and not produce pions, etc.)
decreases. The physics of FNS and SRC is different, but both
reduce the magnitude of the operator when q2 increases or
equivalently r12 decreases. It was found [20] that the Miller-
Spencer and the UCOM short-range correlations essentially
eliminate the effect of the FNS on the matrix elements. The
same is expected to be valid also for the CCM CD-Bonn and
Argonne short-range correlations. From Fig. 2 we see that
the ratio of correlated and uncorrelated neutrino potentials is
changed only weakly if in addition to two-nucleon SRC the
effect of the FNS is taken into account.

It is worth mentioning that the behavior of the UCOM
correlated neutrino potential differs strongly from those cal-
culated with the CCM and Jastrow SRC. This is manifested in
Fig. 4. The studied ratio of UCOM correlated and uncorrelated
neutrino potentials never exceeds unity, unlike in the case of
CCM correlations (see Fig. 2). Actually, the UCOM SRCs
imitate the FNS effect with a form-factor cutoff of about
850 MeV. The two-nucleon wave function can be treated as two
point-like objects for nucleon separations greater than about
1.5 fm.

The effect of the SRC on the 0νββ-decay NMEs has
been reported mostly in the case when the FNS is taken into

TABLE I. Nuclear matrix elements for the 0νββ decays of 76Ge, 100Mo, and 136Te within the QRPA. The
results are presented for (i) Bare, no correlations and no nucleon form factors; (ii) FNS, no correlations but
with nucleon form factors; (iii) SRC, CCM Argonne and Miller-Spencer short-range correlations but without
nucleon form factors; and (iv) FNS+SRC, correlations and nucleon form factors.

Nucleus Bare FNS SRC FNS + SRC

CCM Miller-Spencer CCM Miller-Spencer

76Ge →76Se 7.39 6.14 5.86 4.46 5.91 4.54
100Mo →100Ru 6.15 4.75 4.40 2.87 4.46 2.96
130Te →130Xe 5.62 4.49 4.22 2.97 4.27 3.04
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account. It was found that the Miller-Spencer SRC reduces the
0νββ-decay NMEs by 20–30% and UCOM SRC by ∼5% [20].
To better understand this effect, we calculate the 0νββ decay
of 76Ge, 100Mo, and 130Te with and without consideration
of the FNS. The 12-level (76Ge) and 13-level (100Mo and
130Te) single-particle model spaces are used in calculation. The
results are displayed in Table I. The bare NME was obtained in
the limit of cutoff masses MV,A going to infinity and with the
two-nucleon SRC switched off. The FNS values of M0ν are
determined by nucleon form factors with phenomenological
values of MV and MA. We see that the FNS reduces M0ν by
20%. The 0νββ-decay NME is suppressed by about 20–30%
and 40–50% in the cases of the two-nucleon CCM (Argonne
potential) and the phenomenological Miller-Spencer SRC,
respectively. It is also shown that once SRC effects are
included, the consideration of the nucleon form factors almost
does not influence the value of M0ν . It is because the FNS
and the SRC effects act coherently on the 0νββ-decay NMEs,
and both diminish them. However, the effect of the SRC is at
least partially weaker (CCM SRC) or stronger (Miller-Spencer
SRC) than the effect of the FNS.

IV. NUMERICAL RESULTS

The nuclear matrix elements for the 0νββ decay of the
experimentally interesting nuclei A = 76, 82, 96, 100, 116,
128, 130, and 136 are systematically evaluated using the QRPA
and RQRPA. In the present calculations, we improve on the
Miller-Spencer Jastrow and UCOM methods by implementing
the SRC calculated within the exponential-S approach with the
CD-Bonn and Argonne V18 NN interactions. This allows for
the first time a consistent study of the 0νββ-decay NMEs as the
same realistic nucleon-nucleon force is used for the description
of the pairing interactions, RPA ground state correlations, and
the two-nucleon SRC.

The nuclear structure calculations are performed as de-
scribed in our previous publications [15,19,20]. Three different
single-particle model spaces are used: small (2–3 oscillator
shells), intermediate (3–4 oscillator shells), and large (5
oscillator shells) model spaces (see Ref. [19]). The single-
particle energies are obtained by using a Coulomb-corrected
Woods-Saxon potential [41]. The interactions employed are
the Brueckner G matrices which are a solution of the Bethe-
Goldstone equation with the CD-Bonn and Argonne V18 one-
boson exchange potentials. The pairing two-body interaction
is fitted in the standard way, and the pairing parameters of
the BCS are adjusted to reproduce the phenomenological
pairing gaps, extracted from the atomic mass tables. We
renormalize the particle-particle and particle-hole channels
of the G-matrix interaction of the nuclear Hamiltonian by
introducing the parameters gpp and gph, respectively. We use
gph = 1 throughout, which allows us to reproduce well the
available data on the position of the giant Gamow-Teller
resonance. The particle-particle strength parameter gpp of the
(R)QRPA is fixed to reproduce the experimental data on the
two-neutrino double-beta decay half-lives.

The NME calculated within the above procedure, which
includes three different model spaces, is denoted as the
averaged 0νββ-decay NME 〈M ′0ν〉. The results are presented
separately for the CD-Bonn and Argonne interactions and
for two different values of the axial coupling constant gA in
Table II. We confirm again that with the considered pro-
cedure, the 0νββ-decay matrix elements become essentially
independent of the size of the single-particle basis and rather
stable with respect to the possible quenching of the gA. The
NMEs obtained with the CD-Bonn NN interaction are slightly
larger than those calculated with the Argonne interaction. This
is explained by the fact that the CCM Argonne correlation
function cuts out more of the small r12 part from the relative
wave function of the two nucleons than does the CCM
CD-Bonn correlation function. The differences in NMEs due
to a different treatment of the SRC do not exceed differences
between the QRPA and the RQRPA results.

In Table III, we show the calculated ranges of the nuclear
matrix element M

′0ν evaluated within the QRPA and RQRPA,
with standard (gA = 1.254) and quenched (gA = 1.0) axial-
vector couplings and with the CCM CD-Bonn and Argonne
SRC functions. These ranges quantify the uncertainty in the
calculated 0νββ-decay NMEs. With respect to the central
value, their accuracy is of the order of 25%. A significant
amount of the uncertainty is due to a quenching of the
axial-vector coupling constant gA in nuclear medium [42].
For comparison, we present also the NMEs calculated with
the phenomenological Jastrow SRC function in Table III.
The notable differences between the results calculated with
Jastrow and CCM SRC are about of 20–30%. Of course,
the results obtained with the CCM SRC are preferable.
Unfortunately, they cannot be directly compared with those
of the complementary large-scale shell model (LSSM) as they
have been evaluated only with the Jastrow and UCOM SRC
and for gA = 1.25 [18,21]. It is reasonable to assume that
the LSSM values (see Table III) would be increased also
by 20–30%, if the CCM SRC were considered. Recall that
within both approaches, qualitatively the same r12 dependence
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TABLE II. Averaged 0νββ nuclear matrix elements 〈M ′0ν〉 and their variance σ (in parentheses) calculated within the RQRPA
and the QRPA. The pairing and residual interactions of the nuclear Hamiltonian and the two-nucleon SRCs are derived from the
same realistic nucleon-nucleon interaction (CD-Bonn and Argonne potentials) by exploiting the Brueckner-Hartree-Fock and CCM
methods. Three sets of single-particle level schemes are used, ranging in size from 9 to 23 orbits. The strength of the particle-particle
interaction is adjusted so the experimental value of the 2νββ-decay nuclear matrix element M

exp
GT is correctly reproduced. Both free

nucleon (gA = 1.254) and quenched (gA = 1.0) values of axial-vector coupling constant are considered.

Nuclear transition gA M
exp
GT (MeV−1) 〈M ′0ν〉 〈M ′0ν〉

CCM CD-Bonn SRC CCM Argonne SRC

RQRPA QRPA RQRPA QRPA

76Ge →76Se 1.25 0.15 5.44(0.23) 6.32(0.32) 4.97(0.19) 5.81(0.27)
1.00 0.23 4.62(0.22) 5.16(0.25) 4.21(0.14) 4.77(0.20)

82Se →82Kr 1.25 0.10 4.86(0.20) 5.65(0.27) 4.44(0.19) 5.19(0.24)
1.00 0.16 3.93(0.15) 4.48(0.20) 3.67(0.14) 4.19(0.18)

96Zr →96Mo 1.25 0.11 2.01(0.20) 2.09(0.03) 1.84(0.16) 1.90(0.09)
1.00 0.17 1.72(0.15) 1.93(0.11) 1.55(0.12) 1.74(0.11)

100Mo →100Ru 1.25 0.22 4.28(0.28) 5.25(0.31) 3.85(0.31) 4.75(0.33)
1.00 0.34 3.44(0.19) 4.07(0.22) 3.14(0.23) 3.69(0.25)

116Cd →116Sn 1.25 0.12 3.41(0.24) 3.99(0.15) 3.06(0.22) 3.54(0.27)
1.00 0.19 2.68(0.19) 3.03(0.19) 2.47(0.17) 2.74(0.21)

128Te →128Xe 1.25 0.034 4.82(0.15) 5.49(0.16) 4.32(0.16) 4.93(0.16)
1.00 0.053 3.67(0.11) 4.16(0.12) 3.32(0.11) 3.77(0.12)

130Te →130Xe 1.25 0.036 4.40(0.13) 4.92(0.12) 3.91(0.14) 4.37(0.14)
1.00 0.056 3.38(0.08) 3.77(0.07) 3.02(0.10) 3.38(0.10)

136Xe →136Ba 1.25 0.030 2.89(0.17) 3.11(0.13) 2.59(0.16) 2.78(0.13)
1.00 0.045 2.26(0.11) 2.42(0.08) 2.03(0.10) 2.17(0.09)
1.25 0 2.53(0.17) 2.73(0.13) 2.25(0.16) 2.43(0.13)
1.00 0 1.87(0.11) 2.01(0.08) 1.67(0.10) 1.80(0.09)

of M0ν was found [20,21]. Figure 5 shows our calculated
ranges for M ′0ν , which are compared with ranges calculated
with Miller-Spencer Jastrow function and the latest LSSM
results. Given the interest in the subject, we show the range of
predicted half-lives corresponding to our full range of M0ν in
Table III.

Recently, the occupation numbers of neutron and proton
valence orbits in the 76Ge and 76Se nuclei were measured by
neutron and proton adding and removing transfer reactions
[43,44]. In the following theoretical study [45], these results
were used as a guideline for modification of the effective
mean field energies, which resulted in better descriptions of

TABLE III. Calculated ranges of the nuclear matrix element M ′0ν evaluated within the QRPA and RQRPA, with standard (gA =
1.254) and quenched (gA = 1.0) axial-vector couplings and with CCM CD-Bonn and Argonne SRC functions. Column 4 contains the
ranges of M ′0ν with the phenomenological Miller-Spencer Jastrow treatment of SRCs, while column 6 shows the CCM SRC-based
results. For comparison, the recent results of a LSSM evaluation of M ′0ν [18] that used the Miller-Spencer Jastrow SRC and gA = 1.25
are given in column 2. However, they have to be scaled by a factor of 1.1 fm/1.2 fm as a different value of r0(R = r0A

1/3) was considered.
Columns 3, 5, and 7 give the 0νββ-decay half-lives or half-life ranges corresponding to values of the matrix elements in columns 2, 4,
and 6 for 〈mββ〉 = 50 meV.

Nucleus LSSM (Jastrow SRC) (R)QRPA (Jastrow SRC) (R)QRPA (CCM SRC)

M0ν T 0ν
1/2 M ′0ν T 0ν

1/2 M ′0ν T 0ν
1/2

76Ge 2.22 3.18 × 1027 (3.33, 4.68) (6.01, 11.9) × 1026 (4.07, 6.64) (2.99, 7.95) × 1026

82Se 2.11 7.93 × 1026 (2.82, 4.17) (1.71, 3.73) × 1026 (3.53, 5.92) (0.85, 2.38) × 1026

96Zr (1.01, 1.34) (7.90, 13.9) × 1026 (1.43, 2.12) (3.16, 6.94) × 1026

100Mo (2.22, 3.53) (1.46, 3.70) × 1026 (2.91, 5.56) (0.59, 2.15) × 1026

116Cd (1.83, 2.93) (1.95, 5.01) × 1026 (2.30, 4.14) (0.98, 3.17) × 1026

128Te 2.26 1.10 × 1028 (2.46, 3.77) (3.33, 7.81) × 1027 (3.21, 5.65) (1.48, 4.59) × 1027

130Te 2.04 5.39 × 1026 (2.27, 3.38) (1.65, 3.66) × 1026 (2.92, 5.04) (7.42, 2.21) × 1026

136Xe 1.70 6.79 × 1026 (1.17, 2.22) (3.59, 12.9) × 1026 (1.57, 3.24) (1.68, 7.17) × 1026
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FIG. 5. Full ranges of M
′0ν with the CCM and Miller-Spencer

Jastrow treatments of the short-range correlations. For comparison,
the results of a recent large-scale shell model evaluation of M

′0ν that
used the Jastrow-type treatment of short-range correlations are also
shown.

these quantities. The calculation of the 0νββ-decay NME
for 76Ge performed with an adjusted mean field [45] and
in combination with the self-consistent RQRPA (SRQRPA)
method [46], which conserves the mean particle number in
correlated ground state, led to a reduction of M0ν by 25% when
compared to the previous QRPA value. The phenomenological
Jastrow and UCOM SRCs were considered. We found a
reduction of 20% also in the case of the CCM CD-Bonn SRC.
We have

〈M0ν〉 = 4.24(0.44), 3.49(0.23), Jastrow,

= 5.19(0.54), 4.60(0.23), UCOM,

= 6.32(0.32), 5.15(0.44), CCM. (25)

Here, the first and second values in each line correspond to the
QRPA with Woods-Saxon mean field and the SRQRPA with
adjusted Woods-Saxon mean field [45] way of calculations,
respectively. To better understand the role of proton and
neutron occupation numbers in the 0νββ-decay calculation,
further experimental and theoretical studies are needed.

V. CONCLUSIONS

We have addressed the issue of a consistent treatment of
the short-range correlations in the context of the 0νββ decay.
These correlations, which have their origins in the short-range
repulsion of the realistic NN interaction, are missing in
the mean field, LSSM, and QRPA descriptions. Until now,
the Miller-Spencer Jastrow and the UCOM SRCs have been
introduced into the corresponding two-body transition matrix
elements, changing two neutrons into two protons, to achieve
healing of the correlated wave functions. The effect of these
SRCs was considered to be an uncertainty [20].

In this article, the short-range correlations have consistently
been calculated within the coupled-cluster method with realis-
tic CD-Bonn and Argonne V18 interactions. An analysis of the
squared correlation functions, represented in terms of a ratio
of correlated and uncorrelated neutrino potentials, has showed
a principal difference among the Miller-Spencer, UCOM, and
CCM SRCs. In addition, the importance of the effect of the
finite nucleon size was studied. It was found that both CCM
SRC and the FNS effect reduce the 0νββ-decay NMEs by
a comparable amount for a considered choice of form-factor
mass. The suppression due to the Miller-Spencer SRC is about
twice as large when compared to results without SRC and the
FNS effect.

Finally, we have improved the presently available calcula-
tions by performing a consistent calculation of the 0νββ-decay
NMEs in which pairing, ground-state correlations, and the
short-range correlations originate from the same realistic
NN interaction, namely, from the CD-Bonn and Argonne
potentials.
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[26] H. Müther and A Polls, Phys. Rev. C 61, 014304 (1999); Prog.
Part. Nucl. Phys. 45, 243 (2000).

[27] C. Giusti, H. Müther, F. D. Pacati, and M. Stauf, Phys. Rev. C
60, 054608 (1999).
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F. Šimkovic, J. Phys. G 35, 075104 (2008).
[43] J. P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008).
[44] B. P. Kay et al., Phys. Rev. C 79, 021301 (2009).
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