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Mesonic excitations of QGP: Study with an effective model
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We study the correlations between quark-antiquark pairs in different quantum number channels in a deconfined
plasma by using an effective model of QCD. Using the three flavor PNJL model, the finite temperature spectral
functions for different mesonic states are studied at zero and nonzero quark chemical potentials. It is found
that in the η channel, resonance structures survive above the chiral transition temperature Tχ , while the kaonic
states seem to get washed off just above Tχ . The sensitivity of the structures to the anomaly term are carefully
investigated.
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I. INTRODUCTION

At high temperatures and densities, strongly interacting
matter is expected to undergo a transition to new phases where
color degrees of freedom are deconfined. Such conditions of
high temperatures and densities can be created in the laboratory
by the collision of heavy ions at large energies. A large amount
of data has already been obtained from the BNL Relativistic
Heavy Ion Collider (RHIC). In the near future, results will
be available from the CERN Large Hadron Collider (LHC)
for the low density and high temperature phase. On the other
hand, the experiment at the GSI Facility for Antiproton and Ion
Research (FAIR) will provide us information about extremely
dense matter at low temperature. It is thus extremely relevant
to study the properties of strongly interacting matter at high
temperature and density.

A first-principle study of hot and dense strongly interacting
matter starting from QCD is not easy because the physics
is nonperturbative in the temperature and density range of
interest. At finite temperatures, numerical studies on the
lattice provide the most reliable results for the physics of
the deconfined phase. The physics of excitations in real
time, however, is not directly accessible from the lattice,
and one requires an analytical continuation from Euclidean
time. Studies at finite baryon number density are prohibitively
difficult on the lattice because of the well-known sign problem.
Some progress has been made in recent years in extracting
results for small densities [1,2]. As it stands now, the lattice
predicts that deconfinement and chiral symmetry restoration
happen roughly simultaneously [3] via a smooth crossover [4]
at zero quark chemical potential, and the two transitions
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roughly coincide at about Tχ ∼ 180–200 MeV [3]. There is
an indication of a critical point at a small chemical potential
µB ≈ 300–500 MeV, with a first-order transition for larger
µB [1]. There have also been suggestions that the first-order
line may not exist [2].

In view of the limitations in studying finite density and real
time problems, it may be useful to get an idea of the features of
the new phases of matter by studying QCD-inspired models.
Depending on the physics of interest, one can attempt to study
a model that has features relevant to the physics issue. In
particular, for issues of the transition of the hadronic matter to a
chiral-symmetry-restored deconfined phase, the Polyakov loop
extended Nambu–Jona-Lasinio (PNJL) model has been used.

In the Nambu–Jona-Lasinio (NJL) model [5,6], as it is
used currently, the interactions between quarks are taken
into account by suitable four-quark terms that respect the
chiral symmetry of the QCD Lagrangian. Since the gluons
are integrated out, with their only effect being the four-quark
interaction terms, there is no confinement per se in this model.
The chiral symmetry is, however, spontaneously broken by
q̄q condensation: UL(Nf ) × UR(Nf ) → UV (Nf ). As a result,
the quarks pick up a constituent mass. Furthermore, the
pseudoscalar mesons π,K, and η become the Goldstone
modes. It is also easy to incorporate the UA(1) anomaly by
introducing a suitable determinant term [6]. The NJL model
has been widely used to study the chiral phase transition in
QCD and the nature of the excitations at temperatures slightly
above the transition temperatures. Based on such studies, it was
suggested sometime back that nontrivial strong correlations
between qq̄ pairs persist in the deconfined phase at moderately
high temperatures [6].

Because of the lack of confinement, though, the NJL model
does miss out on some important aspects of the QCD thermal
transition. In particular, the chiral transition in QCD is also
of a deconfining nature, as the Polyakov loop, which is the
confinement-deconfinement order parameter, shows a rapid
change. The Polyakov loop extended NJL (PNJL) model [7]
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attempts to capture this feature of the QCD transition. In this
model, the gluon dynamics is described by a background
temporal gluon field which is coupled to the quarks by the
covariant derivative. The value of the background field is
determined by minimizing the corresponding potential U (�)
which depends on the traced Polyakov loop �.

The PNJL model has been extensively used to look at
the phase structure at high temperature and density. Ratti
et al. [8] have studied the two flavor version of this model
in a certain amount of detail. They have looked at the
crossover transition around 200 MeV and the quark number
densities at different baryonic chemical potentials. Their
results match nicely with the lattice, especially the fact that the
chiral restoration and the deconfinement transition take place
almost simultaneously. The speed of sound and the diagonal
susceptibilities, calculated with the PNJL model, were also
found to be in good agreement with lattice results [9]. On
the other hand, the off-diagonal susceptibilities in the two
flavor PNJL model differ from the lattice results [10]. Recently
Fukushima studied the phase diagram of the three flavor quark
matter within the framework of the PNJL model [11].

Since the PNJL model successfully reproduces a large
number of quantities calculable directly from QCD, one may
be interested to use this model to study quantities of exper-
imental interest that cannot be directly studied from lattice.
In particular, a knowledge of the nature of excitations of the
plasma is phenomenologically very important. The complete
in-medium behavior of the mesonic excitations require a study
of the spectral functions in these channels. As we discussed
earlier, it is not easy to calculate them on the lattice. A detailed
study of such spectral functions in the NJL model was carried
out sometime back [6]. It is clearly of interest to find out how
the introduction of the Polyakov loop changes the nature of the
qq̄ correlations. Hansen et al. [12] have studied the pion and
σ correlation functions in the two flavor PNJL model. Costa
et al. [13] have calculated the masses of the pseudoscalar
mesons at finite temperature and zero density. It is, of course,
interesting and phenomenologically important to study a larger
set of mesonic correlations for the realistic case of the 2 + 1
flavor PNJL model and also at finite density.

Here we aim to carry out such a study. We look at
the spectral functions and pole masses of the pseudoscalar
channels with different flavor contents. We also carefully
investigate the effect of the anomaly term in the spectral
functions. The spectral functions have also been studied in
the presence of a small chemical potential.

In the next section, we briefly describe the 2 + 1 flavor
PNJL model, as used by us. In Sec. III, the basic in-medium
calculations and the chiral transition are discussed. The main
results of the paper, about mesonic excitations, are given in
Sec. IV. A summary of our results and conclusions are
available in the last section.

II. THREE FLAVOR PNJL MODEL

In this section, we briefly describe the PNJL model, and
specify the parameters of the model that we have used. More
details can be found in the literature [7,8,14].

In the NJL model, the gluon dynamics is reduced to the
chiral point couplings between quarks. The PNJL model also
introduces the temporal gauge field, since the Polyakov loop

� = 1

V

∫
d3x

1

Nc

Tr P exp

[
i

∫
0

β

dτA4(x̄, τ )

]
(1)

is the order parameter for the confinement-deconfinement
transition. Here A4 = iA0 is the temporal component of the
Euclidean gauge field, β = 1/T , and P denotes path ordering.
Our effective SU(3)f Lagrangian is [14]

L =
∑

f =u,d,s

ψ̄f γµiDµψf −
∑
f

mf ψ̄f ψf +
∑
f

µγ0ψ̄f ψf

+ gS

2

∑
a=0,...,8

[(ψ̄λaψ)2 + (ψ̄iγ5λ
aψ)2]

− gD[det ψ̄f (1 + γ5)ψf ′ + det ψ̄f (1 − γ5)ψf ′]

−U(�[A], �̄[A], T )

= L0 + LM + Lµ + Ls + LKMT − U . (2)

In the above Lagrangian, L0 is the kinetic term with gauge
field interactions, Dµ = ∂µ − iA4δµ4. The gauge coupling is
absorbed in the definition of Aµ. LM is the mass term which
breaks the chiral symmetry explicitly. The mass of a particular
flavor is denoted by mf , and the corresponding field is ψf . The
light quark mass is considered to be ∼5 MeV, and the strange
quark mass is considered to be ∼140 MeV. The term Ls is
responsible for the four-fermion interaction among the quarks
with coupling gs . Here we take this coupling to be positive.
The next term LKMT , which is a six-fermion interaction, is
invariant under SU(3)L × SU(3)R but breaks U (1)A symmetry.
This term represents the axial anomaly of QCD [6]. Here “det”
stands for the determinant with respect to the flavor indices,
and the anomalous coupling is represented as gD . This anomaly
term is responsible for the flavor mixing of η0 and η8 mesons
in the pseudoscalar channel, giving rise to the η and η′ mesons.
The potential U (�) is expressed in terms of the Polyakov loop
� and its conjugate �̄ as [8]

U(�, �̄, T )

T 4
= −b2(T )

2
�̄� − b3

6
(�3 + �̄3) + b4

4
(�̄�)2

,

(3)

where

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

, (4)

b3 and b4 being constants, and T0, which is a parameter here,
is chosen to be 190 MeV.

Both � and �̄ are treated as classical field variables.
When the quark number density is zero, one has � = �̄.
This quantity can be considered as the order parameter for the
phase transition. Furthermore, U [�, �̄, T ] has a Z(3) center
symmetry which encompasses the phase transition in QCD. At
low temperature, U has a single minimum at � = 0. At high
temperature, U has three degenerate minima at � = 1, e±2iπ/3.

To study the chiral transition, we study the system of
Eq. (2) in the mean field approximation (MFA) to get the
field equations for �, �̄, and σ . Because of the breaking of
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(c) FIG. 1. (Color online) 〈ūu〉(T )/
〈ūu〉(T = 0) (red, solid) and 〈s̄s〉(T )/
〈s̄s〉(T = 0) (green, dashed), as a function
of T/Tχ at µq = 0 for (a) the NJL model
and (b) the PNJL model; also shown is
the Polyakov loop expectation value,
� (blue, dash-dotted). (c) Same as (b),
but for µq = 320 MeV. Here � (blue,
dash-dotted) and �̄ (pink, dotted) are
different.

SU(3)L × SU(3)R symmetry to SU(3)V , the quark condensate
acquires a nonzero vacuum expectation value given by

〈ψ̄f ψf 〉 = −iNcLty→x+ (Tr Sf (x − y)), (5)

where trace is over color and spin states. Also, eight Goldstone
bosons appear for the Nf = 3 model. The self-consistent gap
equation for the constituent masses are

Mu = mu − 4gSσu + 2gDσdσs,

Md = md − 4gSσd + 2gDσsσu, (6)

Ms = ms − 4gSσs + 2gDσuσd.

Here σf = 〈ψ̄f ψf 〉 denotes the chiral condensate of a quark
with flavor f , where f = u, d, s. The expression for σf at
T = 0 and µ = 0 can be written as [14]

σf = −3Mf

π2

∫
0


 p2√
p2 + Mf

2
dp, (7)


 being the three-momentum cutoff.
The parameters of the NJL part of the Lagrangian are fixed

at T = µ = 0. In the present work, we have used the parameter
set obtained in Ref. [6]:


 = 631.4 MeV, mu = md = 5.5 MeV,

ms = 135.7 MeV, gS

2 = 3.67, gD
5 = 9.29.

This parameter set reproduces the physical values of the pion
mass, mπ = 138 MeV; pion decay constant, fπ = 93 MeV;
and masses of the K and η′ mesons, mK = 495.7 MeV and
mη′ = 957.5 MeV. The parameters of U (�) are [8,14]

a0 = 6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44,

b3 = 0.75, b4 = 7.5, T0 = 190 MeV,

so as to reproduce the lattice measurements of the Polyakov
loop expectation value.

III. CHIRAL TRANSITION IN PNJL MODEL

In the mean field approximation, the thermodynamic
potential of the PNJL model can be written as [14]

�(�, �̄,M, T ,µ)

= U[�, �̄, T ] + 2gS

∑
f =u,d,s

σ 2
f − 4gDσuσdσs

− T
∑

n

∫
d3p

(2π )3
Tr ln

S−1(iωn, p̄)

T
, (8)

where S−1 is the inverse quark propagator

S−1(p0, �p) = γ0(p0 + µ − iA4) − �γ · �p − M, (9)

and ωn = πT (2n + 1) are the Matsubara frequencies of
fermions. Using the identity Tr ln(X) = ln det(X), and per-
forming the color trace, we get

� = U[�, �̄, T ] + 2gS

∑
f =u,d,s

σ 2
f − 4gDσuσdσs

− 6
∑
f

∫ 


0

d3p

(2π )3 Epf �(
 − | �p|) − 2
∑
f

T

∫ ∞

0

d3p

(2π )3

× {
ln

[
1 + 3

(
� + �̄e− Epf −µ

T

)
e− Epf −µ

T + e−3
Epf −µ

T

]
+ ln

[
1 + 3

(
�̄ + �e− Epf +µ

T

)
e− Epf +µ

T + e−3
Epf +µ

T

]}
, (10)

where Epf =
√

p2 + M2
f is the single-quasiparticle energy.

In the above integrals, the vacuum integral has a cutoff 
,
whereas the medium-dependent integrals have been extended
to infinity.

To look at thermal behavior of different observables, we
need to study the variation with temperature of the minimum
of the thermodynamic potential. In Fig. 1, we show the thermal
behavior of the chiral condensates for both the light and the
strange quarks, in both NJL and PNJL models. The NJL results
can be obtained from Eq. (10) by setting U [�, �̄, T ] = 0,� =
1, and �̄ = 1. Figure 1 shows a rapid drop in 〈ūu〉 in both the
models in the temperature range 150–200 MeV, without any
singularity, indicating a chiral-symmetry-restoring crossover.
This is consistent with what lattice studies find for QCD [4].
From the points of inflexion of 〈ūu〉(T ), one estimates Tχ ∼
170 MeV for NJL and 190 MeV for PNJL models. Figure 1
also shows the behavior of the Polyakov loop, �.1 We see
that the deconfinement temperature Td ∼ Tχ , as expected from
lattice studies of QCD [3].

1In Fig. 1, the value of the Polyakov loop becomes slightly higher
than unity for the temperature above 260–300 MeV. At finite density,
the value of �̄ can go even to 1.4. This is an important physical
problem in the simple-minded PNJL model as � being the normalized
trace of the Wilson line L, which is an SU(3) matrix, should lie in the
range 0 � � � 1. The natural way to cure this problem is to consider
a proper Jacobian of transformation from the matrix valued field L

to the complex valued field �, which will then constrain the value
of � < 1 [15]. However, the above prescription will not affect the
results in the temperature ranges relevant to the present study.
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At large quark densities, the chiral symmetry restoring
transition in PNJL model becomes first order. Figure 1 also
shows the behavior of the chiral condensate and the Polyakov
loop in the presence of a chemical potential µq = 320 MeV,
which is just above the critical point for this model. The
transition temperature at this µq is ∼85 MeV. Note the sharp
fall of 〈ūu〉, indicating a first-order transition. All the quantities
shown in the figure show a jump at the transition point,
consistent with a discontinuous transition, though the drop
in 〈s̄s〉 and the rise in � are only a few percent, and both these
quantities have rather complicated temperature dependence
above the transition point. In the presence of a chemical
potential, there is no charge conjugation symmetry, so � 
= �̄,
as seen in Fig. 1(c).

One problem of the mean field study of PNJL model is the
absence of color neutrality at finite density [16,17]. This arises
because the Polyakov loop, which couples to the dynamical
quarks, serves as an external colored field, leading effectively
to separate chemical potentials for quarks of different color. As
a remedy to this problem, it has been suggested to introduce a
color chemical potential that will enforce color neutrality [16].
While this affects the individual number densities of the quarks
of different colors, the total number densities of quarks and
antiquarks, nq and nq̄ , do not change significantly [17]. We
will discuss in Sec. IV B the implication of this for our study.

In Fig. 2, we show the variation of Mu and Ms with tem-
perature at different chemical potentials. Here Mu and Ms are
the constituent quark masses, Eq. (6). At µq = 0, the change
in the mass is smooth. But the change becomes sharper on
introducing a chemical potential. While the introduction of the
Polyakov loop changes the constituent quark masses consider-
ably around the phase boundary, at very high temperature both
models give similar results, since there � → 1. A similar vari-
ation of the strange quark mass is obtained in the two models.

The phase diagram we obtain is shown in Fig. 3. The
critical point in our calculation was found to be at (µc, Tc) =
(314 MeV, 92 MeV). While lattice estimates of the critical
chemical potential µc vary considerably between different
groups, they tend to be much lower than the PNJL value,
�150 MeV. This probably indicates that the naive PNJL (or
NJL) model may not be a good model for the QCD transition
at large µq of ∼300 MeV, since nuclear excitations become
important in this regime.

Another point to mention here is that the UA(1) anomaly
term is introduced explicitly in the NJL and PNJL models by
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FIG. 2. (Color online) Variation of (a) Mu and (b) Ms with
temperature, at µ = 0 and 320 MeV for both NJL and PNJL models.
Solid (red) and dashed (green) lines are for the NJL model with
µq = 0 and 320 MeV, respectively; dashed-dot (blue) lines and dotted
(pink) lines show the corresponding figures for the PNJL model.
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FIG. 3. (Color online) Phase diagram in the PNJL model. The
solid line at large µq ends in a critical point at (µc, Tc) = (314 MeV,
92 MeV). At smaller µq , one gets a crossover, denoted by the dotted
line. Inserting an explicit temperature dependence in the anomaly
term gD(T ) = gD(0) exp(−T/Tχ )2 (denoted PNJL1; see text) washes
off the first-order line completely.

a six-fermion interaction term. In QCD, of course, this term
is introduced because of the instantons, which are topological
objects in the gauge sector [18]. It is not known how well
the anomalous UA(1) symmetry is restored in the deconfined
phase. In Ref. [6] it was speculated that the UA(1) symmetry
is restored well below Tχ . While there is no evidence of
that from lattice studies, it is an open question whether the
UA(1) symmetry is restored (or at least, the effect of the
anomaly term substantially reduced) at above Tχ . If we include
an explicit temperature dependence of the coefficient of
the anomaly term, gD(T ) = gD(0) exp [−T/Tχ (µ)]2, where
Tχ (µ) is the transition temperature at quark chemical potential
µ, then the transition becomes considerably softer and the
first-order line completely disappears, while the transition
temperature moves to a somewhat lower value (see Fig. 3).
We use PNJL1 to denote the model with such a temperature
dependence of gD in Eq. (2). One might be tempted to conclude
that the existence of a critical point is strongly related to
the strength of the instanton-induced anomaly term at the
transition point.2

Of course, PNJL1 implies a substantial reduction of the
anomaly term already before Tχ . A more realistic temperature
dependence of gD could be a sharp drop around Tχ . To
investigate the effect of such a temperature dependence, we
also consider Eq. (2) with gD(T ) = gD(0) (1 − tanh 5x)/2,
where x = (T − Tχ (µ))/Tχ (µ). We call this model PNJL2.3

PNJL2 has a phase diagram similar to PNJL, i.e., the critical

2The effect of the anomaly term on the phase diagram has also
been explored by Fukushima [11]. He used different values of gD in
Eq. (2) and found that for small gD the first-order line disappears. In
our analysis, the vacuum gD is set from the η′ mass and is not changed;
but at finite temperature, we take gD(T ) = gD exp(−T/Tχ )2.

3This is essentially a smoothened version of a step jump at Tχ . The
factor 5 is chosen arbitrarily so that gD(T )/gD(0) is similar to PNJL1
at 1.05Tχ . Of course, a larger factor would have given a sharper drop.
Note also that the UA(1) cutoff, in both PNJL1 and PNJL2, is a cutoff
at both finite temperature and density, through the µ dependence
of Tχ .
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point has the same position at (µc, Tc) = (314 MeV, 92 MeV).
However, as we will see later, the nature of the mesonic
excitations around Tχ can be substantially different between
the two.

IV. MESONIC EXCITATIONS AND UA(1) ANOMALY

To understand the properties of the medium beyond the bulk
thermodynamic properties, we need to look at the low-lying
excitations. The simplest gauge invariant excitations in QCD
are the mesonic excitations. Masses and decay widths of the
mesonic resonances are calculated from the correlations of
q̄�q-type operators in QCD vacuum. In the medium, we are
interested in spectral changes due to interactions with the
medium; in particular, we would be interested in possible
resonance-like structures in the deconfined phase. We need
therefore to look at the spectral functions.

Here we study spectral functions of pseudoscalar and
scalar mesonic states. They are of interest because of their
close connection with the chiral-symmetry breaking and
its restoration. The temperature dependence of the spectral
function has been studied in the Nambu–Jona-Lasinio model
in Ref. [6]. There it was found that narrow structures
persist in the symmetry-restored phase, at moderately high
temperatures. Here we intend to see how the coupling with
the Polyakov loop affects these results. Also we study the
sensitivity of these structures on the coefficients of the anomaly
term. We also extend the studies to nonzero quark chemical
potentials.

A. Formalism

The spectral function σM (ω, k) for a given mesonic channel
M in a system at temperature T can be defined through the
Fourier transform of the real-time two-point functions D> and
D< [19],

σM (ω, k) = 1

2π
(D>

M (k0, �k) − D>
M (k0, �k)), (11)

D
>(<)
M (k0, �k) =

∫
d4x

(2π )4
eik.xD

>(<)
M (x0, �x),

D>
M (x0, �x) = 〈JM (x0, �x)JM (0, �0)〉c, (12)

D<
M (x0, �x) = 〈JM (0, �0)JM (x0, �x)〉c.

Here JM is the suitable hadronic operator, and the subscript c

denotes the connected part of the correlation function. Using
the Kubo-Martin-Schwinger (KMS) condition [19]

D>
M (x0, �x) = D<(x0 + i/T , �x), (13)

one can connect σM (ω, k) to the retarded correlation function,

σM (ω, k) = 2π ImDR
M (k0, �k),

(14)

DR
M (k0, �k) =

∫
d4x

(2π )4
eik.xθ (x0)〈[JM (x0, �x), JM (0, �0]〉c.

Inserting a complete set of states in Eq. (11) and using
Eq. (13), one gets the expansion

σM (ω, k) = (2π )2

Z

∑
m,n

(e−En/T ± e−Em/T )

× |〈n|JM (0)|m〉|2δ4
(
kµ − qn

µ + qm
µ

)
, (15)

where Z is the partition function, and qn refers to the four-
momenta of the state |n〉.

A stable mesonic state contributes a δ function-like peak to
the spectral function:

σM (ω, k) = |〈0|JM |M〉|2ε(k0)δ
(
k2 − m2

M

)
, (16)

where mM is the mass of the state. For an unstable particle,
one gets a peak with a finite width, e.g., the Breit-Wigner form
for states with narrow decay width. We want to study how
the spectral function changes as a result of collisions with the
thermal medium.

At the level of approximation we are working, the collective
excitations, that is, the fluctuation of the mean field around the
vacuum, can be handled within the random-phase approxima-
tion (RPA) [20]. In this approximation, which is equivalent
to summing over the ring diagrams, the retarded correlation
function is given by

DR
M = �M

1 − 2G�M

. (17)

Here G is the suitable coupling constant, and �M (k2) is the
one-loop polarization function for the mesonic channel under
consideration, i.e.,

�M (k2) =
∫

d4p

(2π )4
Tr

[
�MS

(
p + k

2

)
�M

(
p − k

2

)]
. (18)

S(p) is the quark propagator and �M is the effective vertex
factor. Equation (18) has been evaluated in the literature;
for the NJL model, the effective formulas were calculated in
Ref. [6]. The whole effect of the introduction of the background
Polyakov loop can be absorbed into a modification of the
Fermi-Dirac distribution functions [12]

f +
� (Ep) = (�̄ + 2�e−β(Ep+µ))e−β(Ep+µ) + e−3β(Ep+µ)

1 + 3(�̄ + �e−β(Ep+µ))e−β(Ep+µ) + e−3β(Ep+µ) ,

(19)
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 200  400  600
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 T=1.1 Tχ

(b) π
σ

π (PNJL2)
σ (PNJL2)

FIG. 4. (Color online) (a) Pion and σ mass vs temperature, at
µ = 0 MeV for the NJL (red, solid, and blue dash-dotted) and PNJL
(green, dashed and pink, dotted) models. (b) Spectral functions for
the pion and σ in the PNJL model, just above Tχ . Also shown is the
effect of suppression of the anomaly term at Tχ (PNJL2; see Sec. III)
on the spectral functions.
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f −
� (Ep) = (� + 2�̄ e−β(Ep−µ)) e−β(Ep−µ) + e−3β(Ep−µ)

1 + 3(� + �̄e−β(Ep−µ))e−β(Ep−µ) + e−3β(Ep−µ) .

(20)

For the NJL model, � = 1 and the distribution functions
become the usual Fermi-Dirac distribution function.

From the correlation function, one can calculate the spectral
function using Eq. (14). The position of the pole controls the
decay of the correlator and is called the pole mass. It can be

obtained by solving

1 − 2G�M = 0. (21)

The coupling constants G for the different flavor combina-
tions are given in Table I. The cases of η and η′ need a special
mention. These mesons arise from the mixing of the flavor
singlet and octet states, i.e., η0 and η8 mesons. The mixing
arises because of an interplay between the anomaly term and
the nondegeneracy between ms and mu,d . The masses of η and
η′ may be obtained from the roots of the equation

det[1 − 2�G] = det

(
1 − (2�00G00 + 2�80G80) −(2�00G08 + 2�08G88)

−(2�00G80 + 2�88G80) 1 − (2�80G08 + 2�88G88)

)
= 0, (22)

where

�00 = 2

3

[
2�P

uu(k) + �P
ss(k)

]
,

�08 =
(

2
√

2

3

) [
�P

uu(k) − �P
ss(k)

]
, (23)

�88 = 2

3

[
�P

uu(k) + 2�P
ss(k)

]
.

The polarization functions are obtained from Eq. (18). On the
other hand, pole masses of η0 and η8 can be obtained directly
from �00,�88, and Eq. (21).

B. Results at finite temperatures

The pion and σ channels provide the most interesting
observables with mesonic states, since they are directly associ-
ated with the chiral symmetry. In the chiral-symmetry-restored
phase, pion and σ should be degenerate. Below Tχ , on the other
hand, pion is the Goldstone mode of the spontaneously broken
chiral symmetry and is therefore much lighter than the σ .

In Fig. 4, we show the temperature dependence of the pole
masses of the pion and the σ in the NJL and PNJL models. We
see that close to Tχ there is substantial difference between
the two models. While the two states come close to each
other, they are not degenerate just above Tχ . As mentioned in
Sec. III, results of the two models converge at higher
temperatures. This, combined with the fact that Tχ is lower for
the NJL model, leads to a smoother change in the NJL model

TABLE I. Pseudoscalar coupling strengths in the SU(3) NJL
model, where α = 〈ūu〉, β = 〈d̄d〉, and γ = 〈s̄s〉 [5,6].

Gπ = gS + gDγ GK± = gS + gDβ

GK0 = gS + gDα GP
00 = gS − 2

3 (α + β + γ )gD

GP
33 = Gπ GP

88 = gS − 1
3 (γ − 2α − 2β)gD

GP
03 = − 1√

6
(α − β)gD GP

38 = 1√
3
(α − β)gD

GP
08 = −

√
2

6 (2γ − α − β)gD

above Tχ than in the PNJL. The nondegeneracy between the
pion and the σ can also be seen in the Fig. 4(b), which shows the
spectral functions in the pion and σ channels at a temperature
of 1.1Tχ .

There can be two sources for the nondegeneracy: the finite
(though small) current quark masses, and the remnant UA(1)
symmetry. To investigate the effect of the UA(1) symmetry, we
look at PNJL2, which introduces a cutoff in gD , as explained
in Sec. III. As can be seen in Fig. 4, this significantly alters the
spectral functions, and removes most of the nondegeneracy of
the π and σ above Tχ . Also, while there is a clear structure in
both of these channels above Tχ , the structure is considerably
broader in the absence of the anomaly term. When studying
remnant bound state structures from QCD-inspired models, it
therefore is important to keep in mind the effect of the anomaly
term, since unlike in QCD, the anomaly terms are put in here by
hand and therefore their contributions across phase transition
may be different from that in QCD.

In Fig. 5, we have plotted the masses of η, η′, η0, and η8

mesons. We see features similar to those in Fig. 4: significant
differences around the transition region due to the introduction
of the Polyakov loop. It is also seen that very close to the
transition region, the masses of the singlet and octet states
start approaching each other, indicating that the effect of the
anomaly term starts getting reduced. However, without an
explicit cutoff as in PNJL2, the nondegeneracy between these
two states is clearly visible at 1.1Tχ .
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FIG. 5. (Color online) Masses of the different η states in NJL
(green, dashed) and PNJL (red, solid) models.
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FIG. 6. (Color online) Spectral functions of η0,8. (a) At temperatures of 0.9Tχ and Tχ ; note the δ function peak for η8 below Tχ . (b) At
temperatures above Tχ . Also shown are the effects of cutting off the anomaly term above Tχ at Tχ (PNJL2; see Sec. III).

The spectral functions of the η0 and η8 states, calculated in
the PNJL model, are shown in Fig. 6. Here we also investigate
the effect of the anomaly term by comparing the calculations
in the PNJL2 model. We find here that the effect of the
anomaly term is considerable in η0 but not in η8. This can
be understood by looking at the two relevant couplings, G88

and G00, in Table I. Because of the different numerical factors
and the different combinations of the quark condensates, the
anomalous coupling of η0 is substantially larger than that of
η8. Interestingly, the broadening due to anomaly suppression
is much less even for η0 than was seen for the pion. In these
channels, a clear (though broad) resonance structure is seen
just above Tχ .

The behavior of the pole mass for the kaon state (Fig. 7) is
qualitatively similar to the pion. However, the spectral function
above Tχ , shown in the same figure, shows a very different
behavior. The sharp peak at Tχ is completely washed off
already by 1.1Tχ : there is no indication of a strong correlation
between quarks in this channel.

C. Results at finite densities

One of the advantages of model studies is that one can
study regions in parameter space that are not easy to study
directly from QCD in a controlled way. The agreement of PNJL
model results with QCD at finite temperatures encourages us to
investigate effects of nonzero baryon densities, by introducing
a quark chemical potential. As mentioned in Sec. III, however,
we do not expect the PNJL model to be a good model for QCD
transition at large µq . We therefore investigate the mesonic

excitations in this model at µq = 150 MeV. This is around
the region where lattice studies suggest the beginning of the
first-order line, while the PNJL model still finds a crossover
transition at these densities. From Fig. 3, we also get Tχ ∼
170 MeV at µq = 150 MeV, which is not too far from what
one gets from lattice.

In Fig. 8, we show the pion and σ spectral functions above
Tχ for µq = 150 MeV. We see that the spectral functions have
a sharp structure even substantially above Tχ , as in the case for
µq = 0. The nondegeneracy of the two channels and the effect
of the anomaly terms are also similar to the µq = 0 case. In
the Figs. 8(b) and 8(c) we show the variation of the pion pole
mass with µq , for two different temperatures. Interestingly,
the quantitative difference in the masses calculated in PNJL
and NJL models increases with density. Of course, as we have
discussed above, we do not expect these models to be a good
approximation to QCD at values of µq � 150 MeV.

The spectral functions of η0 and η8 are shown in Fig. 9,
for µq = 150 MeV. This figure has some interesting features.
First, the interplay of the temperature and chemical potential
gives rise to a nonmonotonous behavior in the peak of the η8

spectral function in the deconfined phase. The peak position
drops sharply at Tχ , and then rises again. Second, we note
that the η8 peak, which is below the η0 peak below or at Tχ ,
becomes very broad already at 1.05Tχ , with the peak position
slightly above that of the η0 peak. If this feature is true for full
QCD and is not an artefact of the model, it will have interesting
phenomenological implications.

Let us now discuss the sensitivity of our results on
enforcement of color neutrality (Sec. III). Our calculations
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FIG. 7. (Color online) (a) Pole mass of the kaon state, in PNJL and NJL models, at different temperatures. (b) Spectral function, from the
PNJL model. The sharp peak at Tχ seems to be completely washed off already by 1.1Tχ .
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FIG. 8. (Color online) (a) Spectral functions of pion near the
chiral transition point, for µq = 150 MeV. Also shown is the effect
of suppression of the anomaly term at Tχ (PNJL2; see Sec. III).
(b) Pion mass vs µ, at T = 100 MeV. Solid red line is for PNJL model
and dashed green line is for NJL model. (c) Same as (b), but at T =
150 MeV.

at finite density have been carried out at µ = 150 MeV and
T = 1.1Tc. At such T and µ, if we want to enforce color
neutrality by introducing a color chemical potential, we need
a color chemical potential µ3T3 + µ8T8 (in the notation of
Ref. [16]) with a small µ8 (∼30 MeV), while µ3 is negligible.
Here T3 and T8 are Gell-Mann matrices in color space. While
this changes the individual color densities, the total quark
number density (nq − nq̄) and the total scalar density (nq + nq̄)
do not have any appreciable change. Similar results about
the total quark density have been reported in Ref. [17]. In
fact, the change in the scalar density is less than 5% under
such conditions. Here we have studied spectral functions of
colorless, meson-like objects, which are sensitive to the scalar

density. Hence we do not expect our results at finite chemical
potential to be affected appreciably by the issue of color
neutrality.

V. CONCLUSION

To conclude, we have studied the meson-like excitations
in the deconfined plasma at both zero and nonzero quark
chemical potential, using the Polyakov loop extended Nambu–
Jona-Lasinio (PNJL) model.

The phase diagram of the PNJL model shows a first-order
line of transitions at large µq , ending in a critical point at
(µc, Tc) ∼ (314 MeV, 92 MeV). We note, however, that the
phase diagram can be quite sensitive to the temperature de-
pendence of the coefficient of the anomaly term. In particular,
a suppression of the anomaly term at large temperatures may
lead to a complete wash off of the first-order line.

The in-medium behavior of the mesonic correlations was
studied by looking at the spectral functions. In the pion and σ

channels, a reasonably sharp structure was found still at 1.1Tχ ;
also the two states are not degenerate at these temperatures.
While both these features can be phenomenologically interest-
ing, it was also found that these features are quite sensitive to
the anomaly term. In particular, suppressing the anomaly term
above Tχ leads to much broader and degenerate structures in
these two channels. Since the structure of the π resonance
above Tχ is of importance for RHIC phenomenology, this
sensitivity implores one to look for the restoration or otherwise
of the U (A)1 anomaly at Tχ by looking at suitable observables
directly on lattice.

The η8 and the η0, on the other hand, show much less
sensitivity to the anomaly term. Both these channels show a
clear resonance at 1.1Tχ . η8 shows very little sensitivity to a
suppression of the anomaly term. η0 is more sensitive, but the
resonance-like structure remains even when the anomaly term
is suppressed. In the PNJL model, the kaon channel does not
show any sharp structure above Tχ . All these behaviors will
be of interest for RHIC phenomenology.

We also looked at the mesonic spectral functions just above
Tχ for a nonzero µq . At µq = 150 MeV, which should be in
the regime covered by the RHIC energy scan, PNJL shows
a crossover transition. The features of the spectral functions
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FIG. 9. (Color online) Spectral functions of the (a) η0 and (b) η8 channels around the chiral transition temperatures, for µq = 150 MeV.
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in the pion and σ channels are found to be quite similar to
those at µq = 0. A more interesting behavior was found in
the η channels. The interplay of the finite µq and finite T lead
to a nonmonotonous behavior of the peak in the η8 channel.
Also it was found that the relative positions of the η0 and
η8 peaks become reversed above Tχ : the η0 peak comes at
a lower ω than the η8 peak at 1.05Tχ . It will be interest-
ing to explore the phenomenological implications of these
behaviors.
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