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Coherent and incoherent diffractive hadron production in pA collisions and gluon saturation
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We study coherent and incoherent diffractive hadron production in high-energy quarkonium–heavy nucleus
collisions as a probe of the gluon saturation regime of quantum chromodynamics. Taking this process as a model
for pA collisions, we argue that the coherent diffractive gluon production, in which the target nucleus stays
intact, exhibits a remarkable sensitivity to the energy, rapidity, and atomic number dependence. The incoherent
diffractive gluon production is less sensitive to the details of the low-x dynamics but can serve as a probe of
fluctuations in the color glass condensate. As a quantitative measure of the nuclear effects on diffractive hadron
production we introduce a new observable—the diffractive nuclear modification factor. We discuss possible
signatures of gluon saturation in diffractive gluon production at the Relativistic Heavy Ion Collider, the Large
Hadron Collider, and Electron Ion Collider.
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I. INTRODUCTION

Coherent diffractive hadron production in pA collisions
is a process p + A → X + h + [LRG] + A, where [LRG]
stands for large rapidity gap. We have recently argued in
Refs. [1–3] that the coherent diffractive hadron production
can serve as a sensitive probe of the low-x dynamics of the
nuclear matter. The coherent diffractive production exhibits a
much stronger dependence on energy and atomic number than
the corresponding inclusive process. Indeed, the diffractive
amplitude is proportional to the square of the inelastic one. At
asymptotically high energies the coherent diffractive events
are expected to constitute a half of the total cross section,
with other half being all inelastic processes. Therefore,
coherent diffraction is a powerful tool for studying the low-x
dynamics of quantum chromodynamics (QCD). In particular,
we advocated using the coherent diffraction as a tool for
studying the gluon saturation [4,5].

The low-x region of QCD is characterized by strong gluon
fields [6,7] and can be described in the framework of the
color glass condensate [8–13]. Equations describing the color
glass condensate take the simplest form in the the mean-field
approximation. It is valid for a color field of a heavy nucleus
in the multicolor limit; the relevant resumation parameter is
α2

s A
1/3 ∼ 1. To the leading order in this parameter, the nuclear

color field is a coherent non-Abelian superposition of the color
fields of single nucleons. Higher-order corrections arise due
to the nucleon–nucleon or parton-parton correlations within a
nucleon. The later contribute toward the gluon saturation in
proton.

In all phenomenological applications of the CGC formal-
ism, one usually relies on the mean-field approximations in
which only the lowest-order Green’s functions are relevant.
If rapidity interval Y = ln(1/x) is such that αsY < 1, then
the low-x quantum evolution effects are suppressed and the
color field can be treated quasiclassically. When αsY ∼ 1,
the quantum corrections become important and are taken into
account by Balitsky-Kovchegov equation [8,14], which is the
first (truncated) equation in the infinite hierarchy of the coupled

integrodifferential equations governing evolution of Green’s
functions of all orders (JIMWLK equations [8–13]).

Although corrections to the mean-field approximation, i.e.,
quantum fluctuations about the classical solution, are assumed
to be small in pA collisions at the Relativistic Heavy Ion
Collider (RHIC) their detailed phenomenological study is
absent. In this article we fill this gap by calculating the
differential cross section for the incoherent diffractive gluon
production that happens to be proportional to the dispersion of
the quasiclassical scattering amplitude in the impact parameter
space, as is expected in the Glauber theory [15]. The incoherent
diffractive gluon production in pA collisions is a process

p + A → X + h + [LRG] + A∗, (1)

where A∗ denotes the excited nucleus that subsequently decays
into a system of colorless protons, neutrons, and nuclei debris.

Note, that the incoherent diffraction (1) measures fluctua-
tions of the nuclear color field. At higher energies the color
field of protons also saturates. The mean-field approximation is
not at all applicable in this case. A quantum fluctuations (e.g.,
the so-called pomeron loops [16–19]) may be the driving force
of the gluon saturation in protons. This problem is of great
theoretical and phenomenological interest. However, in spite
of considerable theoretical efforts solution to this problem
is still illusive (see Ref. [20] for a brief review of recent
advances).

Motivated by theoretical and phenomenological interest
to the incoherent diffraction as a measure of fluctuations of
the saturated nuclear color field, we derive a formula for the
incoherent diffractive hadron production (1) in the framework
of the color glass condensate using the dipole model of
Mueller [21] and use it for numerical study in the RHIC and
Large Hadron Collider (LHC) kinematic regions. The limiting
cases of large and small invariant masses of the diffractively
produced system were previously considered by many authors
[22–29]. Inclusion of the diffractive gluon production was
recently shown to be essential for the phenomenology of
diffractive DIS off heavy nuclei [30]. We generalize there
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results for all invariant masses [satisfying Eq. (31)] and include
the gluon evolution effects at all rapidity intervals. Unlike
models based on the leading twist nuclear shadowing [31,32],
we explicitly take into account the gluon saturation effects in
the nucleus.

The article is structured as following. In Sec. II we review
the Glauber approach [15] to the coherent and incoherent
diffraction in pA collisions. In Sec. III we discuss gen-
eralization of this approached to the case of quarkonium–
nucleus scattering in high-energy QCD. We then turn in
Sec. IV to the main subject of the article—the diffractive
hadron production—and calculate contributions from coherent
and incoherent channels in the quasiclassical approximation
neglecting the low-x evolution effects. The low-x evolution
effects are taken into account in Sec. V.

Numerical results of the diffractive cross section are
presented in Sec. VI. Our phenomenological analyses indi-
cates that the kinematic regions of RHIC and LHC are not
asymptotic as far as the energy dependence of the diffractive
hadron production is concerned. We observed that the ratio
of the coherent and incoherent diffractive hadron production
at midrapidity in pA collisions increases from RHIC to
LHC. This is because gluon saturation effects in protons are
assumed to be small. Absence of this feature in experimental
measurements can serve as an evidence for the onset of gluon
saturation in protons.

It is important to emphasize that all our results are
obtained without imposing any experimental constraints on the
forward-scattering angle measurements. Coherent diffraction
measurements require much better forward-scattering angle
resolution than the incoherent ones. Therefore, incoherent
diffraction may well turn out to be the only one accessible
in experiment. We summarize in Sec. VII.

II. DIFFRACTION IN THE GLAUBER MODEL

A. Total cross section for coherent diffraction in pA

A general approach to multiple scattering in high-energy
nuclear physics was suggested by Glauber [15]. First, consider
the pp scattering and introduce the elastic pp scattering
amplitude i�pp(s, b), where s is the center-of-mass energy
squared and b is an impact parameter. At high energies b is a
two-dimensional vector in the transverse plane. According to
the optical theorem,

σ
pp
tot = 2

∫
d2b Re �pp(s, b). (2)

The scattering amplitude �pp(s, b) can be written as

�pp(s, b) = 1 − e−iχpp(s,b), (3)

where χpp(s, b) is a change of phase due to interaction at
point b. In the following we will always assume the isotopic
invariance of the scattering amplitudes, e.g., �pp(s, b) =
�pN (s, b), where N stands for a nucleon.

In pA collisions momenta of nucleons can be neglected as
compared to the incoming proton momentum. Therefore, their
positions ba, a = 1, . . . , A are fixed during the interaction. If

scattering of proton on a different nucleons is independent,
then the corresponding phase shifts χ

pN
a (s, B − ba) add up:

χpA(s, B, {ba}) =
A∑

a=1

χpN
a (s, B − ba), (4)

where B is proton’s impact parameter. Indeed, this result holds
in QCD as was demonstrated by A. Mueller [33], see Sec. III.
The scattering amplitude of proton p on a nucleus A reads

�pA(s, B, {ba}) = 1 − e−iχpA(s,B,{ba}) = 1 −
A∏

a=1

e−iχ
pN
a (s,B−ba )

= 1 −
A∏

a=1

[1 − �pN (s, B − ba)]. (5)

Introduce the nucleus-averaged amplitude

�
pA

if (s, B) = 〈Ai |�pA(s, B, {ba})|Af 〉, (6)

with |Ai〉 being the initial and |Af 〉 the final nucleus state.
Then, by the optical theorem, the total pA cross section is
given by

σ
pA
tot = 2

∫
d2b Re�pA

ii (s, b). (7)

Because we neglect motion of nucleons during the interac-
tion, the distribution of nucleons in the nucleus is completely
specified by the thickness function T (b):

T (b) =
∫ ∞

−∞
dzρA(b, z), (8)

where ρA(b, z) is nuclear density and z is the longitudinal
coordinate. The thickness function is often written in terms of
the mean density of nucleons ρ = A/( 4

3πR3
A) and the nuclear

profile function TA(b) as

T (b) = ρ TA(b). (9)

It is normalized as∫
d2b T (b) =

∫
d2b ρTA(b) = A. (10)

Using these definitions we write the diagonal element of
Eq. (6) as

�
pA

ii (s, B) = 1

A

∫ A∏
a=1

d2baρTA(ba)�pA(s, B − ba)

= 1 −
[

1 − 1

A

∫
d2ba�

pN (s, ba)ρTA(B − ba)

]A

≈ 1 − e− ∫
d2ba�

pN (s,ba )ρTA(B−ba ), (11)

where we assumed that A � 1.
Impact parameter dependence of the pp collisions is usually

parameterized as

�pp(s, b) = 1
2σ

pp
tot (s) Sp(b), (12)
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where we neglected a small imaginary part of �pp(s, b) and
introduced the proton profile function Sp(b) as

Sp(b) = 1

πR2
p

e
− b2

R2
p . (13)

Phenomenologically, Rp = √
2B ≈ 1 fm, where B =

12.6 GeV−1. Because the proton radius Rp is much smaller
than the radius of a heavy nucleus RA, we can approximate
the proton profile function by the delta function in which case
the overlap integral appearing in Eq. (11) becomes simply the
nuclear thickness function∫

d2bSp(b) ρTA(B − b) ≈ ρTA(B). (14)

This approximation holds when Rp 
 RA, i.e., A1/3 � 1.
Actually, this condition follows from a requirement that the
quasiclassical approximation holds. Indeed, in the quasiclas-
sical approximation αs 
 1 and α2

s A
1/3 ∼ 1 implying that

A1/3 � 1.
Using Eqs. (12) and (14) in Eq. (11) we derive

�
pA

ii (s, b) = 1 − e− 1
2 σ

pN
tot (s)ρTA(b). (15)

The cross section of coherent diffraction is given by the elastic
cross section

σ
pA

CD (s) =
∫

d2b
∣∣�pA

ii (s, b)
∣∣2

=
∫

d2b
[
1 − e− 1

2 σ
pN
tot (s)ρTA(b)

]2
. (16)

B. Total cross section for incoherent diffraction in pA

Consider incoherent diffraction of proton p on a nucleus A.
In this processes the nucleus gets excited from the initial state
|Ai〉 to any colorless final state |Af 〉. It may then decay, but it
is essential that its constituent nucleons remain intact as color
objects. The corresponding cross section reads

σ
pA

ID (s) =
∫

d2B
∑
i �=f

〈Af |�pA(s, B, {ba})|Ai〉†

×〈Af |�pA(s, B, {ba})|Ai〉
=

∫
d2B

∑
f

〈Af |�pA(s, B, {ba})|Ai〉†

×〈Af |�pA(s, B, {ba})|Ai〉
−

∫
d2B|〈Ai |�pA(s, B, {ba})|Ai〉|2

=
∫

d2B[〈Ai ||�pA(s, B, {ba})|2|Ai〉

− |〈Ai |�pA(s, B, {ba})|Ai〉|2], (17)

where in the last line we used the completeness of the set of
nuclear states. We arrived at the well-known result that the
cross section for the incoherent diffraction at a given impact
parameter B is given by the square of the standard deviation
of the scattering amplitude �pA(s, B, {ba}) from its mean-
field value 〈Ai |�pA(s, B, {ba})|Ai〉 in a space span by impact

parameters {ba}. Clearly, in the black-disk limit, corresponding
to the asymptotically high energies s → ∞, this deviation
vanishes because �pN (s, B, {ba}) → 1 for |B − ba| < RA and
is zero otherwise; see Eq. (5). The standard deviation is a
measure of quantum fluctuations near the mean-field value.

Because �pN (s, {ba}) is approximately real, we have
using (5)

(�pA(s, B, {ba})2 =
(

1 −
A∏

a=1

[1 − �pN (s, B − ba)]

)2

= 1 − 2
A∏

a=1

[1 − �pN (s, B − ba)]

+
A∏

a=1

[1 − �pN (s, B − ba)]2 (18)

Averaging over the nucleus and taking the large A limit we
obtain

〈Ai ||�pA(s, B, {ba})|2|Ai〉
= 1 − 2 e− ∫

d2b�pN (s,B−b)ρTA(b)

+ e− ∫
d2b[2�pN (s,B−b)−(�pN (s,B−b))2]ρTA(b)

= 1 − 2e− 1
2 σ

pN
tot (s) ρTA(b) + e−σ

pN
in (s) ρTA(b), (19)

where we used Eq. (12) and denoted the inelastic pN cross
section as σ

pN
in (s). Substituting Eq. (19) into Eq. (17) and using

Eq. (16) we derive

σ
pA

ID (s) =
∫

d2be−σ
pN
in (s) ρTA(b) [1 − e−σ

pN

el (s) ρTA(b)]. (20)

Elastic cross section σ
pN

el , which appears in Eq. (20), can be
found by taking square of (12) and integrating over the impact
parameter:

σ
pN

el =
∫

d2b|�pN (s, b)|2

= 1

4

(
σ

pN
tot

)2
∫

d2bS2
p(b) =

(
σ

pN
tot

)2

8πR2
p

, (21)

where we used (13).
It is seen from Eqs. (16) and (20) that because the pN cross

sections increase with energy, at asymptotically high energies
the incoherent diffraction cross section vanishes, whereas the
coherent one reaches a half of the total cross section. This
well-known conclusion is a consequence of unitarity of the
scattering amplitude and thus is independent of interaction
details.

III. DIFFRACTION IN THE DIPOLE MODEL

It is phenomenologically reasonable to approximate the
proton light-cone wave-function (away from fragmentation
regions) by a system of color dipoles [3,34,35]. If separation
of quark and antiquark is small, one can apply the perturbation
theory to calculate the scattering amplitude of quarkonium
on the nucleus. It was demonstrated by Mueller in Ref. [21] that
at high energies the qq̄A forward elastic-scattering amplitude
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takes exactly the same form as Eq. (15) with the pA cross
section replaced by the qq̄A one. By virtue of the optical
theorem, the total quarkonium–nucleus cross section reads

σ
qq̄A
tot (s; r) = 2

∫
d2bNA(r, b, Y )

= 2
∫

d2b
[
1 − e− 1

2 σ
qq̄N
tot (s;r)ρTA(b)], (22)

where

NA(r, b, Y ) = Re�qq̄A

ii (s, b; r) (23)

is the imaginary part of the forward elastic qq̄A-scattering
amplitude and Y = ln(1/x) = ln(s/s0) is rapidity with s0 a
reference energy scale. Equation (22) is called the Glauber–
Mueller formula. Let us note that it is far from obvious that
the high-energy amplitude in Eq. (22) must have the same
form as the low-energy one (15). In this correspondence it
is crucial that the color dipoles are identified as the relevant
degrees if freedom at high energies. Equation (22) holds when
ln(mNRA) 
 Y 
 1/αs , where mN is a nucleon mass. This
condition guarantees that the coherence length lc is much larger
than the nuclear radius [see Eq. (30)] and that the low-x gluon
evolution is suppressed. In this case qq̄N cross section can be
calculated in the Born approximation (two-gluon exchange) as

σ
qq̄N
tot (s; r) = αs

Nc

π2r2xG(x, 1/r2), (24)

with the gluon distribution function

xG(x, 1/r2) = αsCF

π
ln

1

r2µ2
, (25)

where µ is an infrared cutoff. We can rewrite (24) in terms of
the gluon saturation scale Q2

s0 defined as

Q2
s0 = 4π2αsNc

N2
c − 1

ρTA(b) xG(x, 1/r2). (26)

Subscript 0 indicates that the low-x evolution is suppressed.
Equation (25) implies that in the Born approximation the qq̄N

total cross section (24) and hence the saturation scale (26) are
energy independent. Using this definition we have

ρTA(b) σ
qq̄N
tot (s; r) = CF

2Nc

r2Q2
s0, (27)

where CF = (N2
c − 1)/(2Nc). Substituting Eq. (27) into

Eq. (22) we derive another representation of the total
quarkonium–nucleus cross section

σ
qq̄A
tot (s; r) = 2

∫
d2b

(
1 − e− 1

4
CF
Nc

r2Q2
s0
)
. (28)

The integrand of Eq. (28) represents the propagator of
quarkonium qq̄ of size b through the nucleus at impact
parameter b. Because σ

qq̄N
tot ∼ α2

s and ρTA(b) ∼ A1/3 Eq. (28)
sums up powers of α2

s A
1/3. It has been shown by Kovchegov

that this corresponds to the coherent scattering of qq̄ off the
quasiclassical field of the nucleus [7]. This is possible only
if the coherence length lc of the qq̄ pair is much larger than
the nuclear radius. This condition certainly holds at RHIC

energies. In the quasiclassical approximation the coherent
diffraction cross section is given by [cf. Eq. (16)]

σ
qq̄A

CD (s; r) =
∫

d2b
∣∣�qq̄A

ii (s, b; r)
∣∣2

=
∫

d2b
(
1 − e− 1

4
CF
Nc

Q2
s0r2)2

, (29)

Equation (29) represents the leading contribution to the
diffraction cross section in the quasiclassical field strength.
On the contrary, the incoherent diffraction cross section, see
Eq. (20), vanishes in this mean-field approximation because
σ

qq̄N

el ρTA(b) ∼ αs
4A1/3 ∼ α2

s 
 1. Vanishing of the incoher-
ent diffraction cross section can also be seen directly from
Eq. (17). It is a consequence of vanishing relative fluctuations
at large occupation numbers of classical fields. This effect
has recently been studied within the Glauber framework (see
Sec. II) in [35–37].

Let us emphasize, to avoid possible confusion, that the
semantic distinction between the coherent and incoherent
diffraction concerns the nucleus target staying intact or
breaking down in the collision. As far as the coherence length
is concerned, at high enough energies such that lc � RA

the scattering is coherent for both coherent and incoherent
diffraction. However, unlike the incoherent diffraction that can
happen in the incoherent scattering at low energies (provided
only that lc � RN ), the coherent diffraction is possible only if
the scattering is coherent over the entire nucleus.

IV. DIFFRACTIVE GLUON PRODUCTION

A. Coherent diffractive gluon production

Consider coherent diffractive production of a gluon of
momentum k in qq̄A collision. As mentioned, coherent
diffraction is possible only if the coherence length lc of the
emitted gluon with momentum k is larger than the nucleus
size RA (in the nucleus rest frame):

lc = k+
k2

� RA, (30)

where + indicates the light-cone direction of the incoming
proton. The invariant mass of the produced system is given
by M2 = k2/x, where x = k+/p+ and p is the proton
momentum. Substituting these equations in Eq. (30) yields
the following condition on the mass of the diffractive system:

M2 
 p+
RA

= s

RAmp

, (31)

where
√

s is the center-of-mass energy of the proton-nucleon
collision and mp is proton mass.

Coherent diffractive gluon production off the large nucleus
was calculated in Refs. [25,38,39]. The corresponding cross
section reads

dσCD(k, y)

d2kdy

= 1

(2π )2

∫
d2bd2z1d

2z2 �qq̄ (x, y, z1, z2)e−ik·(z1−z2)

× [
�

qq̄GA

ii (s, b; x, y, z1) − �
qq̄A

ii (s, b; x, y)
]

× [
�

qq̄GA

ii (s, b; x, y, z2) − �
qq̄A

ii (s, b; x, y)
]
, (32)
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where the qq̄ → qq̄G light-cone wave function �qq̄ is given
by

�qq̄ (x, y, z1, z2) = αsCF

π2

(
z1 − x

|z1 − x|2 − z1 − y
|z1 − y|2

)

×
(

z2 − x
|z2 − x|2 − z2 − y

|z2 − y|2
)

. (33)

The qq̄ scattering amplitude �
qq̄A

ii,σ (s, b) is given by Eq. (29),
while the qq̄G one was calculated in Refs. [39–41] and reads

�
qq̄GA

ii,σ (s, b; x, y, zσ )

= 〈Ai |�qq̄GA
σ (s, B, {ba}; x, y, zσ )|Ai〉

= 1 − e− 1
2 σ

qq̄GN
tot (s;x,y,zσ ) ρTA(b)

= 1 − e
− 1

8 (x−zσ )2Q2
s0− 1

8 (y−zσ )2Q2
s0− 1

8N2
c

(x−y)2Q2
s0 , (34)

where x, y, and zσ are the transverse coordinates of quark,
antiquark, and gluon, respectively; σ = 1 in the amplitude
and σ = 2 in the complex conjugated one. For future reference,
note that we can express the qq̄GN total cross section in terms
of the qq̄N one given by (27)

σ
qq̄GN
tot (s; x, y, zσ ) = Nc

2CF

[
σ

qq̄N
tot (s; x − zσ ) + σ

qq̄N
tot (s; y−zσ )

− 1

N2
c

σ
qq̄N
tot (s; x − y)

]
, (35)

where we explicitly indicated the dipole size and energy
dependence of the qq̄N total cross section.

Depending on the relation between the gluon emission
time τσ and the interaction time τ ′

σ in the amplitude and in
the complex conjugated (c.c.) amplitude there are four possible
products of the qq̄ and qq̄G amplitudes appearing in the
second line of Eq. (32). Explicitly,

〈Ai |�qq̄A(s, B, {ba}; x, y)|Ai〉†
×〈Ai |�qq̄A(s, B, {ba}; x, y)|Ai〉
+ 〈Ai |�qq̄GA(s, B, {ba}; x, y, z1)|Ai〉†
×〈Ai |�qq̄GA(s, B, {ba}; x, y, z2)|Ai〉
− 〈Ai |�qq̄A(s, B, {ba}; x, y)|Ai〉†
×〈Ai |�qq̄GA(s, B, {ba}; x, y, z2)|Ai〉
− 〈Ai |�qq̄GA(s, B, {ba}; x, y, z1)|Ai〉†
×〈Ai |�qq̄A(s, B, {ba}; x, y)|Ai〉. (36)

B. Incoherent diffractive gluon production

To calculate the propagators in the case of incoherent
diffraction we need to consider each one of the four cases
shown in Eq. (36) and follow the by now familiar steps of
Eqs. (17)–(20). Consider, for example, gluon emission before
the interaction in the amplitude and in the c.c. one, i.e.,
τσ < τ ′

σ for σ = 1, 2. The detailed calculation is presented
in the Appendix. The result is [cf. Eq. (20)]

∑
f �=i

〈Af |�qq̄GA(s, B, {ba}; x, y, z1)|Ai〉†〈Af |�qq̄GA

2 (s, B, {ba}; x, y, z2)|Ai〉

= e
− 1

2 [σqq̄GN
tot (s;x,y,z1)+σ

qq̄GN
tot (s;x,y,z2)− 1

4πR2
p

σ
qq̄GN
tot (s;x,y,z1) σ

qq̄GN
tot (s;x,y,z2)] ρTA(b)

×{
1 − e

− 1
2

1
4πR2

p
σ

qq̄GN
tot (s;x,y,z1) σ

qq̄GN
tot (s;x,y,z2) ρTA(b)}

. (37)

This result holds in the quasiclassical approximation α2
s A

1/3 ∼
1. Therefore, contribution of elastic processes to Eq. (37) are
of the order (

σ
qq̄GN
tot

)2
ρTA(b) ∼ αs

4A1/3 ∼ α2
s .

It is suppressed compared to the contribution of inelastic pro-
cesses that are of order α2

s A
1/3 ∼ 1. Note that the contribution

to the incoherent diffraction cross section given by Eq. (37)
vanishes with vanishing elastic qq̄N cross section. Thus, we
expand the expression in the curly brackets of Eq. (37), keeping
the leading elastic term. We derive∑

f �=i

〈Af |�qq̄GA(s, B, {ba}; x, y, z1)|Ai〉†

×〈Af |�qq̄GA(s, B, {ba}; x, y, z2)|Ai〉
≈ ρTA(b)

8πR2
p

σ
qq̄GN
tot (s; x, y, z1) σ

qq̄GN
tot (s; x, y, z2)

× e− 1
2 [σqq̄GN

tot (s;x,y,z1)+σ
qq̄GN
tot (s;x,y,z2)] ρTA(b). (38)

This approximation is valid at not too high energies
satisfying

1

8πR2
p

(
σ

qq̄GN
tot

)2
ρTA(b) 
 1. (39)

Let us for simplicity consider a cylindrical nucleus for which
ρTA(b) = 2A/(πR2

A). Because RA = A1/3Rp and taking
into account that 1

2σ
qq̄GN
tot ρTA(b) = 1

4 Q2
s r

2 for Nc � 1 [see
Eqs. (22) and (29)] we can rewrite (39) as

1
4Q2

s r
2 
 2A1/6. (40)

The saturation effects in the nucleus become important when
1
4Q2

s r
2 >∼ 1. At rapidities Y ∼ 1/αs the low x evolution effects

give rise to the energy dependence of the saturation scale. Let
Y1 be the rapidity at which 1

4Q2
s r

2 = 1 and Y2 be the rapidity
at which 1

4Q2
s r

2 = 2A1/6. Because Q2
s ∝ eλY [42] we obtain

Y2 − Y1 = λ−1 ln(2A1/6). Using the phenomenological value
λ = 0.25 for the Gold nucleus A = 197 we find that there are
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Y2 − Y1 ≈ 6 units of rapidity between Y1 where the saturation
effects become important and Y2 where the expansion (38)
breaks down. This provides quite wide kinematic window in
which approximation (39) holds.

Other three cases corresponding to different relations
between τσ and τ ′

σ can be worked out in a similar way. The
result for the cross section of incoherent diffractive gluon
production takes form

dσID(k, y)

d2kdy
= 1

(2π )2

1

8πR2
p

∫
d2bd2z1d

2z2�
qq̄ (x, y, z1, z2)

× e−ik·(z1−z2) ρTA(b)

× [
σ

qq̄GN
tot (s; x, y, z1)e− 1

2 σ
qq̄GN
tot (s;x,y,z1) ρTA(b)

− σ
qq̄N
tot (s; x, y)e− 1

2 σ
qq̄N
tot (s;x,y) ρTA(b)

]
× [

σ
qq̄GN
tot (s; x, y, z2)e− 1

2 σ
qq̄GN
tot (s;x,y,z2) ρTA(b)

− σ
qq̄N
tot (s; x, y)e− 1

2 σ
qq̄N
tot (s;x,y) ρTA(b)

]
. (41)

V. LOW-x EVOLUTION

A. Incoherent diffraction

The results derived in the previous section can be gen-
eralized beyond the quasiclassical level to include the low-
x evolution. This procedure follows the general strategy
developed in Ref. [43] and has been used in Refs. [1,2] to derive
the expression for the coherent diffractive gluon production
in onium-nucleus collisions. In this we section we derive
an analogous expressions for the incoherent diffractive gluon
production. For applying this general strategy it is important
that formula Eq. (38) can be factorized in a product of two
expressions, one depending on the gluon coordinate z1 and
another one on z2.

The low-x gluon evolution in the nucleus at large Nc

is taken into account by the following two substitutions in
Eq. (41): (i) the exponents are replaced by the forward elastic
qq̄A scattering amplitude NA(r, b, Y ) [43]

e− 1
2 σ

qq̄N
tot (s;r) ρTA(b) → 1 − NA(r, b, Y ). (42)

NA(r, b, Y ) evolves toward higher rapidities Y , i.e., lower x,
according to the nonlinear BK evolution equation [8,14] from
its initial condition, given by Eq. (22) at some rapidity Y = Y0;
(ii) the factors linear in σ

qq̄N
tot have emerged in expansion (38)

where the terms of higher order (i.e., multiple scattering) in the
elastic amplitude were neglected. Therefore, they are replaced
by the forward elastic qq̄N -scattering amplitude Np(r, b, Y )
that evolves according to the linear BFKL equation [44,45]. It
is defined similarly to Eq. (23) [see Eq. (12)]

Np(r, b, Y ) = Re�qq̄p(s, b; r) = 1
2σ

qq̄p
tot (s; r) Sp(b). (43)

Recall that in the heavy nucleus environment the impact
parameter dependence of qq̄p cross section can be neglected;

see Eq. (14). Thus, using Eq. (13) we have

σ
qq̄N
tot (s; r) → 2πR2

pNp(r, 0, Y ) (44)

in agreement with the optical theorem. The factors linear in
the qq̄GN cross section are replaced similarly using (35).
Substituting Eqs. (42) and (44) into Eq. (41) using Eq. (35) (in
the multicolor Nc � 1 limit) yields

dσID(k, y)

d2kdy
= 1

(2π )2

πR2
p

2

∫
d2bd2z1d

2z2�
qq̄ (x, y, z1, z2)

× ρTA(b)e−ik·(z1−z2)

×{[1 − NA(z1 − x, b, y)]

× [1 − NA(z1 − y, b, y)][Np(z1 − x, 0, y)

+Np(z1 − y, 0, y)]

− [1 − NA(x − y, b, y)]Np(x − y, 0, y)}
× {[1 − NA(z2 − x, b, y)]

× [1 − NA(z2 − y, b, y)][Np(z2 − x, 0, y)

+Np(z2 − y, 0, y)]

− [1 − NA(x − y, b, y)]Np(x − y, 0, y)}. (45)

We can write (45) in a more compact form introducing the
following two-dimensional vector

IID(x − y, b, y; k)

=
∫

d2z

(
z − x

|z − x|2 − z − y
|z − y|2

)
e−ik·z

×{[1 − NA(z − x, b, y)][1 − NA(z − y, b, y)]

× [Np(z − x, 0, y) + Np(z − y, 0, y)]

− [1 − NA(x − y, b, y)]Np(x − y, 0, y)}. (46)

Then,

dσID(k, y)

d2kdy
= αsCF

π2

1

(2π )2

πR2
p

2

×
∫

d2b ρTA(b)|IID(x − y, b, y; k)|2. (47)

So far we have discussed the gluon evolution in the rapidity
interval y between the emitted gluon and the target nucleus.
The low-x evolution also occurs in the rapidity interval Y − y

between the incident quarkonium qq̄ and the emitted gluon
(we now denote by Y the rapidity between the quarkonium and
the nucleus and by y the inclusive gluon rapidity). The low-x
evolution in the incident quarkonium is taken into account
by convoluting (47) with the dipole density n1(r, r′, B − b,

Y − y), where r = x − y:

dσID(k, y)

d2kdy
= αsCF

π2

πR2
p

2(2π )2

∫
d2b

∫
d2B

×
∫

d2r ′n1(r, r′, B − b, Y − y)ρTA(b)

× |IID(r, b, y; k)|2. (48)
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The dipole density n1(r, r, B − b, Y − y) has the meaning of
the number of dipoles of size r′ at rapidity Y − y and impact
parameter b generated by evolution from the original dipole
r having rapidity Y and impact parameter B [21]. It obeys
the BFKL equation [44,45]. As the interval Y − y increases
the quarkonium wave function involves increasing number
of dipoles. Although the dipole size distribution diffuses
according to the BFKL equation, the typical dipole size is
much smaller than the nuclear radius RA, i.e., |B − b| 
 b.
Integrating over B − b in this approximation we derive

dσID(k, y)

d2kdy
= αsCF

π2

πR2
p

2(2π )2

∫
d2b

∫
d2r ′np(r, r′, Y − y)

× ρTA(b)|IID(r, b, y; k)|2, (49)

where we defined [1,2]

np(r, r′, Y ) =
∫

n1(r, r′, b′, Y )d2b′. (50)

Equations (49) and (46) constitute the main result of this
article.

B. Coherent diffraction

The cross section for the coherent diffractive gluon produc-
tion including the low-x evolution was derived in Refs. [1,2].
It can be written similarly to Eq. (49) [1,2]:

dσCD(k, y)

d2kdy
= αsCF

π2

1

(2π )2

∫
d2b

∫
d2r ′np(r, r′, Y − y)

× |ICD(r, b, y; k)|2, (51)

where

ICD(x − y, b, y; k) =
∫

d2z

(
z − x

|z − x|2 − z − y
|z − y|2

)
e−ik·z

× [−NA(z − x, b, y)

−NA(z − y, b, y) + NA(x − y, b, y)

+NA(z − x, b, y) NA(z − y, b, y)].

(52)

In Refs. [1,2] we presented a detailed analytical and numerical
analysis of the the coherent diffractive gluon production.

C. Logarithmic approximation

To obtain a working model for numerical calculations,
it is useful to estimate IID(r, b, y; k) in the logarithmic
approximation. First, let us change the integration variable
w = z − y and define an auxiliary function [1,2]

QID(r′, y; k) =
∫

d2w

w2
eik·w {[1 − NA(r′, b, y)]Np(r′, 0, y)

− [1 − NA(w − r′, b, y)][1 − NA(w, b, y)]

× [Np(w − r′, 0, y) + Np(w, 0, y)]}. (53)

With this definition (46) becomes

IID(r, b, y; k) = −e−ik·r i∇kQID(r′, y; k)

+ eik·r i∇kQ
∗
ID(r′, y; k). (54)

In the logarithmic approximation QID(r′, y; k) is a real
function [1,2]. Therefore, we can write

|IID(r, b, y; k)|2 = 4 sin2 (
1
2 k · r′)[∇kQID(r′, y; k)]2. (55)

Notice that the integral over z in Eq. (46) is dominated
by the region w < 1/k because otherwise the integrand is
a rapidly oscillation function. Restricting integration to this
region yields results valid as long as the scales 1/r ′,Qs and k

are strongly ordered [1,2]. Operating with ∇k on QID(r′, y; k)
yields

∇kQID(r′, y; k) = − k
k3

∂

∂k−1
QID(r′, y; k)

= −2π
k
k2

{[1 − NA(r′, b, y)]Np(r′, 0, y)

− [1 − NA(k k−2 − r′, b, y)]

× [1 − NA(k k−2, b, y)]

× [Np(k k−2 − r′, 0, y)

+Np(k k−2, 0, y)]}. (56)

Analogously, in the coherent diffraction case we define

QCD(r′, y; k) =
∫

d2w

w2
eik·w {NA(w − r′, b, y)

+NA(w, b, y) − NA(r′, b, y)

−NA(w − r′, b, y) NA(w, b, y)}. (57)

Then, in the logarithmic approximation,

∇kQCD(r′, y; k) = −2π
k
k2

{−NA(r′, b, y)

+NA(k k−2 − r′, b, y) + NA(k k−2, b, y)

−NA(k k−2 − r′, b, y) NA(k k−2, b, y)}.
(58)

Similarly (55) becomes

|ICD(r, b, y; k)|2 = 4 sin2
(

1
2 k · r′)[∇kQCD(r′, y; k)]2. (59)

VI. NUMERICAL CALCULATIONS

In our previous article [3] we justified using the
quarkonium–nucleus qq̄A scattering as a model of pA

collisions. It also serves as the QCD ingredient for the deep
inelastic eA scattering. Therefore, we extend the use of this
model in this section for the incoherent diffraction.

We fix the quarkonium size at r = 0.2 fm. Dependence
of all cross sections on r has been discussed at length in
Refs. [1–3] where the interested reader is readily referred.
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Because our main goal in this section is to illustrate the key
features of the various diffraction channels, rather than giving
a detailed quantitative analyses, we approximate the nuclear
profile by the step function (cylindrical nucleus).

It is clear from the discussion in the previous section that to
calculate the diffractive cross sections we need only to specify
the dipole-nucleus scattering amplitude NA(r, b, y) and the
dipole density np(r, r′, y). The dipole-proton scattering am-
plitude Np(r, b, y) is obtained from NA(r, b, y) in the limit
A → 1.

For the forward elastic dipole-nucleus scattering amplitude
NA(r, b, y) we use the KKT model [46], which is based on
analytical analysis in Ref. [47]. It successfully describes the
inclusive hadron production in the RHIC kinematic region (at
the central and forward rapidities).

For the dipole density we use the leading BFKL solution in
the diffusion approximation:

np(r, r ′, Y − y) = 1

2π2

1

rr ′

√
π

14ζ (3)ᾱs d(Y − y)

× e(αP −1)(Y−y)e
− ln2 r

r′
14ζ (3)ᾱs d(Y−y) . (60)

Parameter d is equal to unity in the leading-order (LO) BFKL.
To obtain the hadron diffractive cross section we convoluted
the gluon cross sections (49) and (51) with the LO pion
fragmentation function given in Ref. [48].

A convenient way to study the nuclear dependence of
particle production is to consider the nuclear modification
factor defined as follows

R
pA

diff(kT , y) =
dσ

pA

diff (kT ,y)
d2kT dy

A
dσ

pp

diff (kT ,y)
d2kT dy

. (61)

We calculate the diffractive gluon production in pp collisions,
which is required as a baseline for the calculation of the nuclear
modification factor (61), by setting A = 1 in the formula for
the corresponding cross section in pA collisions. The nuclear
modification factor is defined in such a way that a completely
incoherent scattering would yield R

pA

diff(kT , y) = 1. The results
of the calculations are exhibited in Fig. 1

We see that the nuclear modification factor is rapidly
decreasing with rapidity for the coherent diffraction case and
is almost independent of rapidity for the incoherent case. This
trend continues even at the forward LHC energies [3]. In
contrast to inclusive hadron production that saturates already
in the forward rapidities at RHIC [46,49], we expect that the
coherent diffraction cross section saturates at much higher
energies and rapidities, perhaps at the forward rapidities at
LHC (see Ref. [3] for an extensive discussion). As Fig. 1
implies, the incoherent diffractive gluon production is satu-
rated already in the central rapidity region at RHIC.

We observe in Fig. 1 a parametric enhancement by a factor
∼A1/3 of the coherent diffractive cross section with respect
to the incoherent one. This is a benchmark of the classical
gluon field of the nucleus in which quantum fluctuations are
suppressed by A1/3. This feature is also seen in Fig. 2 where we
show the ratio of the cross sections for coherent and incoherent
diffractive gluon production for pA collisions at different
energies. To illustrate the atomic number dependence of this
ratio we show three cases: A = 200, A = 100, and A = 20.

In Fig. 2 we can see that the fraction of the incoherent
diffractive events increases from RHIC to LHC. This happens
because the gluon saturation effects in proton are still not
strong enough to unitarize the cross section. Remember, this
allowed us to expand the scattering amplitude as shown in
Eq. (38). Our estimate [Eq. (40)] shows that this approximation
is valid for about six units of rapidity starting from the rapidity
y1 � 1 at RHIC. Therefore, our conclusion that the fraction of
incoherent diffractive events increases holds up to the rapidity
y2 � 3 at the LHC. As soon as the gluon distribution of
the incident proton saturates, the incoherent diffraction cross
section vanishes, as can be seen in Eq. (20). This effect,
however, is not included in our present model.

Finally, it may be challenging to experimentally distinguish
the coherent and incoherent diffractive cross sections. In part
it is related to the difficulty of performing measurements at
very forward angles. One usually measures an event with
large rapidity gap between the produced hadronic system
and the target remnants in the forward direction (that may
or may not be an intact nucleus). In such a likely case
we consider the nuclear modification factor for a sum of
coherent and incoherent diffractive channels. The result is
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FIG. 1. (Color online) Nuclear modification factor for (a) coherent diffraction and (b) incoherent diffraction for RHIC at different rapidities.
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FIG. 2. (Color online) Ratio of the cross sections for coherent and incoherent diffractive gluon production in pA collisions at midrapidity:
(a) RHIC and (b) LHC. (Solid blue line) A = 200. (Dashed red line) A = 100. (Dotted green line) A = 20.

displayed in Fig. 3. We can see that the predictions for
the total diffractive cross section are similar to those of
the inclusive hadron production [49]. Therefore, it is very
important to experimentally separate contributions of coherent
and incoherent diffraction. The former is especially useful for
studying the low x QCD due to its strong and nontrivial energy,
rapidity, and atomic number dependence.

Let us also mention that electromagnetic interactions also
contribute to diffraction processes in pA collisions. If they
become large, as argued in Ref. [50], it may present an
additional experimental challenge. We intend to analyze
contribution of the electromagnetic interactions in a separate
publication.

To conclude this section, we emphasize that Figs. 1, 2,
and 3 are an illustration of general features expected in various
diffractive channels. As we have mentioned more than once in
this article, application of realistic experimental cuts, which
are unique for every experiment, will significantly change the
absolute values of the cross sections and relative importance
of the coherent and the incoherent channels. A dedicated study
is required in each case, although the key features displayed
in Figs. 1, 2, and 3 will perhaps remain unchanged.

VII. SUMMARY

To summarize, we calculated the cross section for the
incoherent diffractive gluon production in qq̄A collisions,
which is a prototype of pA collisions at RHIC and LHC and
γ ∗A ones at EIC. We took into account the gluon saturation,
i.e., color glass condensate, effects. We then compared predic-
tion of diffractive hadron production in coherent (calculated
previously in Ref. [1–3]) and incoherent diffraction.

Coherent diffractive gluon production has a very charac-
teristic energy, rapidity, and atomic number dependence that
makes it a powerful tool for studying the leading mean-field
contribution to the color glass condensate. Incoherent diffrac-
tion arises from contributions to the gluon field correlations
beyond the mean-field approximation. Its experimental study
can reveal the dynamics of quantum fluctuations in the CGC.
Unlike the nuclear modification factor for coherent diffractive
gluon production the nuclear modification factor for incoherent
diffraction is not expected to exhibit a significant rapidity
and energy dependence. Ratio of the coherent and incoherent
inclusive diffractive cross sections is predicted to increase
from RHIC to LHC if the gluon saturation effects in proton
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FIG. 3. (Color online) Nuclear modification factor for the sum of coherent and incoherent diffractive cross sections for (a) RHIC and
(b) LHC at different rapidities.

055206-9



KIRILL TUCHIN PHYSICAL REVIEW C 79, 055206 (2009)

are small. Otherwise, the ratio will decrease approaching the
unitarity limit (i.e., zero).

Finally, one may consider measuring a diffractive event
with large rapidity gap but without distinguishing contributions
of coherent and incoherent components. Although in this
case many interesting features of coherent and incoherent
channels get averaged out, the corresponding cross section
as well as the nuclear modification factor are expected to
display a nontrivial behavior as a function of energy, atomic
number, and transverse momentum. This behavior is sensitive
to the underlying parton dynamics and thus can serve as a
discriminator of different models. We are certain that studying
diffraction at RHIC, LHC, and EIC can become an important
tool in accessing the detailed structure of QCD at low x.
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APPENDIX

In this Appendix we derive Eq. (37). For notation simplicity
we replace the coordinates x, y, zσ in the scattering amplitudes
by subscript σ , with σ = 1, 2. We have∑
f �=i

〈Af |�qq̄GA

1 (s, B, {ba})|Ai〉†〈Af |�qq̄GA

2 (s, B, {ba})|Ai〉

= 〈Ai |�qq̄GA

1 (s, B, {ba}) �
qq̄GA

2 (s, B, {ba})|Ai〉
− 〈Ai |�qq̄GA

1 (s, B, {ba})|Ai〉〈Ai |�qq̄GA

2 (s, B, {ba})|Ai〉,
(A1)

Similarly to Eq. (18) we write

�
qq̄GA

1 (s, B, {ba}) �
qq̄GA

2 (s, B, {ba})
= 1 −

A∏
a=1

[
1 − �

qq̄GN

1 (s, B − ba)
]

−
A∏

a=1

[
1 − �

qq̄GN

2 (s, B − ba)
]

+
A∏

a=1

[
1 − �

qq̄GN

1 (s, B − ba)
][

1 − �
qq̄GN

2 (s, B − ba)
]

(A2)

Averaging over the nucleus

〈Ai |�qq̄GA

1 (s, B, {ba}) �
qq̄GA

2 (s, B, {ba})|Ai〉

= 1 − e− ∫
d2b�

qq̄GN

1 (s,B−b)ρTA(b) − e− ∫
d2b�

qq̄GN

2 (s,B−b)ρTA(b)

+e− ∫
d2b[�qq̄GN

1 (s,B−b)+�
qq̄GN

2 (s,B−b)−�
qq̄GN

1 (s,B−b)�qq̄GN

2 (s,B−b)]ρTA(b)

(A3)

and subtracting the coherent part[
1 − �

qq̄GA

1 (s, B, {ba})
][

1 − �
qq̄GA

2 (s, B, {ba})
]

(A4)

we obtain∑
f �=i

〈Af |�qq̄GA

1 (s, B, {ba})|Ai〉†〈Af |�qq̄GA

2 (s, B, {ba})|Ai〉

=e−∫
d2b[�qq̄GN

1 (s,B−b)+�
qq̄GN

2 (s,B−b)−�
qq̄GN

1 (s,B−b)�qq̄GN

2 (s,B−b)]ρTA(b)

− e− ∫
d2b[�qq̄GN

1 (s,B−b)+�
qq̄GN

2 (s,B−b)]ρTA(b) (A5)

= e−∫
d2b[�qq̄GN

1 (s,B−b)+�
qq̄GN

2 (s,B−b)−�
qq̄GN

1 (s,B−b)�qq̄GN

2 (s,B−b)]ρTA(b)

× {
1 − e− ∫

d2b�
qq̄GN

1 (s,B−b)�qq̄GN

2 (s,B−b)ρTA(b)
}

(A6)

= e
− 1

2 [σqq̄GN
tot (s,1)+σ

qq̄GN
tot (s,2)− 1

4πR2
p

σ
qq̄GN
tot (s,1) σ

qq̄GN
tot (s,2)] ρTA(b)

× {
1 − e

− 1
2

1
4πR2

p
σ

qq̄GN
tot (s,1) σ

qq̄GN
tot (s,2) ρTA(b)}

, (A7)

as advertised. In the last line we employed the approximation
Rp 
 RA that allows us to write using an analog of Eq. (12):∫

d2b�
qq̄GN

1 (s, B − b)�qq̄GN

2 (s, B − b) ρTA(b)

= 1

4
σ

qq̄GA
tot (s, 1) σ

qq̄GA
tot (s, 2)

∫
d2b

1(
πR2

p

)2 e
−2 (b−B)2

R2
p ρTA(b)

≈ 1

4
σ

qq̄GA
tot (s, 1) σ

qq̄GA
tot (s, 2)

1(
πR2

p

)2 ρTA(B)
∫

d2b′e
−2 b′2

R2
p

= 1

4
σ

qq̄GA
tot (s, 1) σ

qq̄GA
tot (s, 2)

1

2πR2
p

ρTA(B). (A8)

where b′ = b − B and b′2 
 b2, B2.
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