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We estimate the nuclear medium modifications of the quark contribution to the bound nucleon spin sum
rule, J q∗

, as well the separate helicity, ��∗, and the angular momentum, Lq∗
, contributions to J q∗

. For the
calculation of the bound nucleon generalized parton distributions (GPDs), we use as input the bound nucleon
elastic form factors predicted in the quark-meson coupling model. Our model for the bound nucleon GPDs is
relevant for incoherent deeply virtual Compton scattering (DVCS) with nuclear targets. We find that the medium
modifications increase J q∗

and Lq∗
and decrease ��∗ compared to the free nucleon case. The effect is large

and increases with increasing nuclear density ρ. For instance, at ρ = ρ0 = 0.15 fm−3, J q∗
increases by 7%,

Lq∗
increases by 20%, and ��∗ decreases by 17%. These in-medium modifications of the bound nucleon spin

properties are a general feature of relativistic mean-field quark models and may be understood qualitatively in
terms of the enhancement of the lower component of the quark Dirac spinor in the nuclear medium.

DOI: 10.1103/PhysRevC.79.055205 PACS number(s): 12.39.−x, 13.40.Gp, 24.85.+p

Properties of hadrons in a nuclear medium are expected
to be modified compared to those in a vacuum. This man-
ifests itself in the modifications of quark and gluon parton
distributions of the bound nucleon measured in deep inelastic
scattering (DIS) with unpolarized nuclear targets [1–5]. Even
stronger medium modifications have been predicted for DIS
with polarized nuclear targets [6–8]. Possible medium modifi-
cations of the bound-nucleon elastic form factors were probed
by the polarization transfer measurement in the 4He(�e, e′ �p)3H
reaction at the Hall A Jefferson Lab experiment [9,10]. The
results of the experiment have been described by either the
modified elastic form factors as predicted by the quark-meson
coupling (QMC) model [11] or the strong charge-exchange
final-state interaction (FSI) [12]. However, such a strong FSI
may not be consistent with the induced polarization data—see
Ref. [10] for details. In addition to the modification of structure
functions (parton distributions) and elastic form factors of the
bound nucleon, various static properties of hadrons (masses,
magnetic moments, coupling constants) have been predicted
to be modified in a nuclear medium (see, e.g., Ref. [13]).

Generalized parton distributions (GPDs) interpolate be-
tween parton distributions and elastic form factors [14–17].
Therefore, it is natural to expect that GPDs of the bound
nucleon should also be modified in the nuclear medium.
An early investigation [18,19] of such modifications in 4He
assumed that in-medium nucleon GPDs are modified through
the kinematic off-shell effects associated with the modification
of the relation between the struck quark’s transverse momen-
tum and its virtuality. Recently, we considered incoherent
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deeply virtual Compton scattering (DVCS) on 4He, γ ∗4He →
γpX, and suggested a model of the bound nucleon GPDs
in 4He, where the GPDs are modified in proportion to the
corresponding bound nucleon elastic form factors [20]. In the
present work, we extend our approach to an arbitrary nucleus
(any nuclear density) and study the medium modifications of
the quark contribution to Ji’s [21] spin sum rule, J q∗

. As in
our recent work [20], the present model of the bound nucleon
GPDs is relevant for incoherent DVCS (and other incoherent
exclusive processes) with nuclear targets, γ ∗A → γNX,
where A denotes the nucleus, N is the final detected nucleon,
and X is the undetected product of the nuclear breakup.
We find that medium modifications increase J q∗

and the
effect is quite noticeable. The effect increases with increasing
nuclear density ρ. For instance, at ρ = ρ0 = 0.15 fm−3 (ρ0

is the density of the nuclear matter or, to a good accuracy,
the density in the center of a nucleus), the increase is 7%.
Separating J q∗

into the quark helicity contribution, ��∗,
and the quark orbital momentum contribution, Lq∗

, we find
that the medium modifications decrease ��∗ and increase
Lq∗

. At ρ = ρ0 = 0.15 fm−3,��∗ decreases by 17% and Lq∗

increases by 20%.
Before presenting details of our calculations, we explain

that modifications of the bound nucleon spin properties
in the nuclear medium may be understood in terms of
the enhancement of the lower component of the quark
wave function in the nuclear medium, which is a general
feature of relativistic mean-field quark models and which has
the following consequences.

(i) The axial coupling constant of the nucleon is suppressed
in the nuclear medium, g∗

A < gA, where the quantities
with an asterisk refer to the in-medium nucleon and the
quantities without one refer to the free nucleon. The
suppression of gA was deduced from the measurements
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of the nuclear Gamow-Teller beta decay [22–25] and
confirmed by theoretical calculations using the Nambu–
Jona-Lasinio model [8], the quark-meson coupling
model [26,27], and chiral perturbation theory [28]. The
suppression of gA and of the axial vector form factor
can be explained by the Lorentz structure of the axial
current and by the enhancement of the lower component
of the quark spinor in the nuclear medium. In the
framework of relativistic mean-field quark models—we
use the results of the quark-meson coupling model
[26,27]—the mechanism of the suppression is indepen-
dent of the isospin structure of the corresponding matrix
element. Therefore, similarly to the suppression of the
isovector axial coupling constant gA, it is also predicted
that the isoscalar quark helicity contribution to the
bound nucleon spin, ��∗, is suppressed compared to
that in the vacuum, �� [for the definition of ��∗, see
Eq. (17)]. Therefore,

g∗
A < gA −→ ��∗ < ��. (1)

(ii) The Pauli form factor in medium, F ∗
2 (t), is enhanced

relative to that in the vacuum, F2(t), while the Dirac
form factor remains almost the same (F ∗

1 (t) � F1(t)
for |t | < 2 GeV2) because of the charge conserva-
tion (F ∗

1 (0) = F1(0)) [27,29]. Recalling the model-
independent connection between the elastic form
factors and the corresponding generalized parton dis-
tributions [15,16],

∫ 1

−1
dxHq/N (x, ξ, t) = F

q/N

1 (t),

∫ 1

−1
dxHq∗/N (x, ξ, t) = F

q∗/N
1 (t),

(2)∫ 1

−1
dxEq/N (x, ξ, t) = F

q/N

2 (t),

∫ 1

−1
dxEq∗/N (x, ξ, t) = F

q∗/N
2 (t),

the above observations imply

F ∗
1 (t) � F1(t), F ∗

2 (t) > F2(t) −→ Hq/N∗ � Hq/N,

Eq/N∗
> Eq/N, (3)

where superscript q denotes the quark flavor, Hq/N∗
and

Eq/N∗
are the quark GPDs of the bound nucleon, and

F
q/N∗
1 (t) and F

q/N∗
2 (t) are the contributions of quark

flavor q to the elastic Dirac and Pauli form factors
of the bound nucleon, respectively. The corresponding
quantities without an asterisk refer to the free nucleon.

Inserting the relations of Eqs. (1) and (3) in the proton spin
decomposition relation [14] for the in-medium and vacuum
cases and summing over the quark flavors, we obtain

J q∗ = 1

2
− J g∗ = ��∗ + Lq∗

= lim
t,ξ→0

1

2

∑
q

∫ 1

−1
dx x(Hq/N∗

(x, ξ, t) + Eq/N∗
(x, ξ, t))

> lim
t,ξ→0

1

2

∑
q

∫ 1

−1
dx x(Hq/N (x, ξ, t) + Eq/N (x, ξ, t))

= �� + Lq = 1/2 − J g = J q, (4)

where (J q∗
, Lq∗

, J g∗
) [(J q, Lq, J g)] are the (net quark helicity,

net quark orbital angular momentum, gluon total angular
momentum) contribution to the proton spin in medium (in
vacuum). Equation (4) demonstrates that J q∗

> Jq and J g∗
<

Jg . In addition, using the fact that ��∗ < ��, Eq. (4) leads to
Lq∗

> Lq . Below, by an explicit calculation, we demonstrate
that these relations are indeed true and quantify the effect of
the medium modifications.

We assume that the quark GPDs of the bound nucleon are
modified in proportion to the corresponding quark contribution
to the bound nucleon elastic form factors,

Hq/N∗
(x, ξ, t) = F

q/N∗
1 (t)

F
q/N

1 (t)
Hq/N (x, ξ, t),

(5)

Eq/N∗
(x, ξ, t) = F

q/N∗
2 (t)

F
q/N

2 (t)
Eq/N (x, ξ, t).

By construction, the resulting bound nucleon GPDs obey the
fundamental property of polynomiality (provided that the free
nucleon GPDs obey polynomiality), which is a consequence
of Lorentz invariance and which states that the x integrals of
xnHq/N∗

and xnEq/N∗
are polynomials in ξ 2 of order n for even

n and of order n + 1 for odd n. As a particular example of poly-
nomiality, our bound nucleon GPDs are constrained to repro-
duce the elastic form factors of the bound nucleon [see Eq. (2)]:

∑
q

eq

∫ 1

−1
dxHq/N∗

(x, ξ, t)

=
∑

q

eq

F
q/N∗
1 (t)

F
q/N

1 (t)

∫ 1

−1
dxHq/N (x, ξ, t)

=
∑

q

eqF
q/N∗
1 ≡ FN∗

1 (t),

(6)∑
q

eq

∫ 1

−1
dxEq/N∗

(x, ξ, t)

=
∑

q

eq

F
q/N∗
2 (t)

F
q/N

2 (t)

∫ 1

−1
dxEq/N (x, ξ, t)

=
∑

q

eqF
q/N∗
2 ≡ FN∗

2 (t),

where eq is the electric charge of quark flavor q. One should
emphasize that it is Eqs. (2) and (6) that motivated our model
for the bound nucleon GPDs in Eq. (5).

The t dependence of the bound nucleon GPDs comes from
the t dependence of the free nucleon GPDs and from the t de-
pendence of the ratio of the quark contribution to the bound and
free nucleon form factors. It is important to point out that our
assumption for the form of the bound nucleon GPDs neglects
the EMC, Fermi motion, nuclear shadowing, and antishadow-
ing effects. We estimated the reliability of this approximation
and found that the effect of this approximation on J q∗

is small:
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the EMC and nuclear shadowing effects are counterbalanced
by the antishadowing and Fermi motion effects in the integral
for J q∗

. For details, see the discussion below.
Provided that the strange quark contribution is small, as

shown by recent parity violation experiments [30,31], the u

and d quark contributions to the elastic form factors of the
proton and neutron, F

p

1,2(t) and Fn
1,2(t), are

F
p

1,2(t) = 2
3Fu

1,2(t) − 1
3Fd

1,2(t),
(7)

Fn
1,2(t) = 2

3Fd
1,2(t) − 1

3Fu
1,2(t),

where each flavor is accompanied by its electric charge. In
the second line, we used charge symmetry, which relates
the quark contributions to the elastic form factors of the
neutron to those of the proton, F

u/n

1,2 (t) = F
d/p

1,2 (t) ≡ Fd
1,2(t)

and F
d/n

1,2 (t) = F
u/p

1,2 (t) ≡ Fu
1,2(t). Similar relations hold for

the bound proton and neutron.
Using Eq. (7) for the bound and free nucleon, our assump-

tion for the form of the quark GPDs of the bound proton reads

Hu/p∗
(x, ξ, t) = 2 F

p∗
1 (t) + Fn∗

1 (t)

2 F
p

1 (t) + Fn
1 (t)

Hu(x, ξ, t)

= r
p

1 (t)
1 + 1

2
rn

1 (t)
r
p

1 (t)
Fn

1 (t)
F

p

1 (t)

1 + 1
2

Fn
1 (t)

F
p

1 (t)

Hu(x, ξ, t),

Hd/p∗
(x, ξ, t) = F

p∗
1 (t) + 2 Fn∗

1 (t)

F
p

1 (t) + 2 Fn
1 (t)

Hd (x, ξ, t)

= r
p

1 (t)
1 + 2 rn

1 (t)
r
p

1 (t)
Fn

1 (t)
F

p

1 (t)

1 + 2 Fn
1 (t)

F
p

1 (t)

Hd (x, ξ, t),

(8)

Eu/p∗
(x, ξ, t) = 2 F

p∗
2 (t) + Fn∗

2 (t)

2 F
p

2 (t) + Fn
2 (t)

Eu(x, ξ, t)

= r
p

2 (t)
1 + 1

2
rn

2 (t)
r
p

2 (t)
Fn

2 (t)
F

p

2 (t)

1 + 1
2

Fn
2 (t)

F
p

2 (t)

Eu(x, ξ, t),

Ed/p∗
(x, ξ, t) = F

p∗
2 (t) + 2 Fn∗

2 (t)

F
p

2 (t) + 2 Fn
2 (t)

Ed (x, ξ, t)

= r
p

2 (t)
1 + 2 rn

2 (t)
r
p

2 (t)
Fn

2 (t)
F

p

2 (t)

1 + 2 Fn
2 (t)

F
p

2 (t)

Ed (x, ξ, t),

where we introduced the shorthand notation for the ratio of the
bound to free proton and neutron elastic form factors,

r
p

1,2 ≡ F
p∗
1,2(t)

F
p

1,2(t)
, rn

1,2 ≡ Fn∗
1,2(t)

Fn
1,2(t)

. (9)

Note that charge symmetry for the quark contributions to the
nucleon elastic form factors and for the free nucleon GPDs
leads to charge symmetry for the bound nucleon GPDs [see
Eq. (5)]. Therefore,

Hu/n∗
(x, ξ, t) = Hd/p∗

(x, ξ, t),

Hd/n∗
(x, ξ, t) = Hu/p∗

(x, ξ, t),
(10)

Eu/n∗
(x, ξ, t) = Ed/p∗

(x, ξ, t),

Ed/n∗
(x, ξ, t) = Eu/p∗

(x, ξ, t),

where the right-hand side of Eq. (10) is given by Eq. (8).
In addition, we assume that the strange quark GPDs are
not modified by the nuclear medium, e.g., Hs/p∗

(x, ξ, t) =
Hs/n∗

(x, ξ, t) = Hs(x, ξ, t). Note also that the model used in
our recent analysis of the bound nucleon GPDs in 4He [20] is
slightly different from our present model given by Eq. (8) and
leads to small violations of charge symmetry for the bound
nucleon.

In the forward limit, which is relevant for the Ji spin sum
rule [21], the bound proton GPDs given by Eq. (8) become

Hu/p∗
(x, 0, 0) = u(x),

Hd/p∗
(x, 0, 0) = d(x),

Eu/p∗
(x, 0, 0) = r

p

2 (0)
1 + 1

2
rn

2 (0)
r
p

2 (0)
kn

kp

1 + 1
2

kn

kp

eu(x)

(11)

= 2 kpr
p

2 (0) + knrn
2 (0)

2 kp + kn
eu(x) ≡ ru eu(x),

Ed/p∗
(x, 0, 0) = r

p

2 (0)
1 + 2 rn

2 (0)
r
p

2 (0)
kn

kp

1 + 2 kn

kp

ed (x)

= kpr
p

2 (0) + 2 knrn
2 (0)

kp + 2 kn
ed (x) ≡ rd ed (x),

where u(x) and d(x) are the u-quark and d-quark usual
parton distributions, respectively; eu(x) and ed (x) are the
forward limits of the GPDs Eq for the u and d quark flavors,
respectively; kp = 1.793 and kn = −1.913 are the proton
and neutron anomalous magnetic moments. For brevity, we
introduced the factors ru and rd , which determine the medium
modification of the forward limit of the GPDs Eq ,

ru = 2 kpr
p

2 (0) + knrn
2 (0)

2 kp + kn
,

(12)

rd = kpr
p

2 (0) + 2 knrn
2 (0)

kp + 2 kn
.

The factors ru and rd are linear combinations of the factors
r

p

2 (0) and rn
2 (0), which characterize the modifications of the

Pauli form factor of the nucleon at the zero momentum
transfer (the modifications of the nucleon anomalous magnetic
moment). For the latter, we used the results of the QMC
model [11,26,27]. In the QMC model, medium modifications
depend on the nuclear density and the effect increases as the
nuclear density is increased.

Figure 1 presents the factors ru and rd as a function of
ρ/ρ0, where ρ is the nuclear density and ρ0 = 0.15 fm−3 is
the density of the nuclear matter. Note that the nuclear density
at the center of sufficiently heavy nuclei is close to ρ0.

In addition, for the forward limit of the nucleon GPDs (11),
we used the following input. The quark parton distributions
(PDFs) were taken from the next-to-next-to-leading order
(NNLO) parametrization by MRST2002 at Q2 = 1 GeV2,
which corresponds to three quark flavors [32]. For the forward
limit of the GPDs Eq denoted by eu(x) and ed (x), we used the
model of Ref. [33], which provides a good description of the
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 1.1

 1.2

 1.3

 1.4

 0  0.5  1  1.5  2

ru,
d (ρ

)

ρ/ρ0
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rd

FIG. 1. The factors ru and rd , which define the medium modifica-
tion of the forward limit of the GPDs Eq in our model, see Eqs. (11),
(12), and (9), as a function of ρ/ρ0, where ρ is the nuclear density
and ρ0 = 0.15 fm−3. The medium modifications are calculated using
the results of the QMC model [11,26,27].

free proton and neutron elastic form factors,

eu(x) = ku

Nu

(1 − x)ηuuv(x),
(13)

ed (x) = kd

Nd

(1 − x)ηd dv(x),

where ku = 2 kp + kn = 1.673 and kd = kp + 2 kn = −2.033
are the quark contributions to the nucleon anomalous magnetic
moment and uv(x) and dv(x) are the u and d valence quark
distributions, respectively. The free parameters ηu = 1.713
and ηd = 0.566 are determined from fits to the nucleon elastic
form factors. Nu and Nd are the normalization factors, Nu =∫ 1

0 dx(1 − x)ηuuv(x), and Nd = ∫ 1
0 dx(1 − x)ηd dv(x). Finally,

we assume that the strange quark es(x) = 0.
Note that the use of the NNLO MRST2002 parametrization

for the quark distributions and the resolution scale Q2 =
1 GeV2 as well as the model for eu(x) and ed (x) should be
considered as parts of a bigger model [33], whose parameters
were adjusted to give the best description of the nucleon
(proton and neutron) elastic form factors.

Having fully specified our model for the forward limit of
the bound nucleon GPDs, we can examine the influence of
the medium modifications on the spin sum rule for the bound
nucleon. The quark contribution to the bound proton spin sum
rule reads

2J q∗ =
∑

q=u,d,s

∫ 1

−1
dx x(Hq/p∗

(x, 0, 0) + Eq/p∗
(x, 0, 0))

=
∑

q=u,d,s

∫ 1

0
dx x(q(x) + q̄(x) + rueu(x) + rded (x))

= 0.654 + 0.219 ru − 0.263 rd . (14)

Note that quark contribution to the bound neutron spin sum
rule is given by the same expression.

Figure 2 presents the quark contribution to the spin of the
bound nucleon, 2J q∗

, as a function of the nuclear density

 0.6
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 0.64
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 0.69

 0.7

 0  0.5  1  1.5  2

2J
q*

ρ/ρ0

FIG. 2. The quark contribution to the spin sum rule of the bound
nucleon, 2J q∗

, as a function of ρ/ρ0 at Q2 = 1 GeV2, where ρ is the
nuclear density and ρ0 = 0.15 fm−3. The medium modifications are
calculated using the results of the QMC model.

at Q2 = 1 GeV2. The case of the free proton corresponds
to ρ/ρ0 = 0, for which 2J q = 0.610. As one can see from
Fig. 2 and also from Eq. (14), the medium modifications of the
bound nucleon GPDs Eq/N∗

increase the quark contribution to
the bound nucleon spin sum rule.

The effect is quite noticeable and increases with increasing
nuclear density ρ. This is illustrated in Fig. 3, where the ratio
of the quark contribution to the bound nucleon spin sum rule to
that of the free nucleon, 2J q∗

/2J q , is plotted as a function of
ρ/ρ0. As one can see from the figure, for instance, at ρ = ρ0 =
0.15 fm−3, 2J q∗

/2J q = 1.070, i.e., it is a 7% effect. Because
the sum of the net quark and gluon contributions to the bound
nucleon spin should be one half, the gluon contribution to the
bound nucleon spin sum rule, J g∗ ≡ 1/2 − J q∗

, is decreased
in the nuclear medium.

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0  0.5  1  1.5  2

2J
q*

/2
Jq

ρ/ρ0

FIG. 3. The ratio of the quark contribution to the bound nucleon
spin sum rule to that of the free nucleon, 2J q∗

/2J q , as a function
of ρ/ρ0 at Q2 = 1 GeV2, where ρ is the nuclear density and ρ0 =
0.15 fm−3. The medium modifications are calculated using the results
of the quark-meson coupling (QMC) model.
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It is important to point out that in our approach to the bound
nucleon GPDs, Hq has the usual unmodified quark distribution
q(x) as a forward limit. This is an approximation that neglects
the Fermi motion effect and possible medium modifications
of the shape of q(x) (see the relevant discussion in Ref. [20]).
An estimate of the reliability of this approximation, based on a
parametrization of the EMC effect [34], suggests that the effect
of this approximation on 2J q∗

is small: even for a nucleus as
heavy as 208Pb, the contributions of eu and ed do not change
and the contribution of q(x) + q̄(x) changes (decreases) by
less than 2% (the EMC and nuclear shadowing effects almost
exactly counterbalance the Fermi motion and antishadowing
effects).

The quark contribution to the spin sum rule, J q , can be
separated in a gauge-invariant way into the contribution of
the quark helicity distributions, ��, and the contribution of
the quark angular momentum, Lq [21]. Thus, for the bound
nucleon,

J q∗ = ��∗ + Lq∗
, (15)

where the quark helicity contribution to the bound nucleon
spin is given by the sum of the first moments of the quark
helicity distributions in the bound nucleon, �q∗(x),

��∗ = 1

2

∑
q=u,d,s

∫ 1

0
dx(�q∗(x) + �q̄∗(x)). (16)

To estimate ��∗, we assume that the contribution of the u and
d quarks to ��∗ is modified (suppressed) in proportion to the
medium modifications of the axial coupling constant gA and
that the contribution of the strange quark is unmodified,

��∗ = g∗
A

gA

1

2

∑
q=u,d

∫ 1

0
dx(�q(x) + �q̄(x))

+ 1

2

∫ 1

0
dx(�s(x) + �s̄(x)), (17)

where �q(x) are the helicity distributions of the free nucleon.
A more detailed treatment of the helicity distributions of the
bound nucleon in the framework of the QMC model, which
leads to the same result, �q∗(x) < �q(x), can be found in
Ref. [35]. The assumption of Eq. (17) is consistent with the
simultaneous suppression of the axial coupling constant g∗

A and
��∗ because of the enhancement of the lower component of
the quark Dirac spinor in the nuclear medium [see Eq. (1) and
its qualitative discussion]. Equation (17) is also consistent with
the medium modifications of the Bjorken sum rule [36] and, in
another language, with the model of the medium modifications
of the GPDs H̃ suggested in Ref. [20].

For the medium modifications of the axial coupling constant
of the bound nucleon, we use the results of the QMC
model [11,26,27]. For the free nucleon helicity distributions
�q(x), we used the next-to-leading order (NLO) GRSV2000
parametrization at Q2 = 1 GeV2 [37].

Figure 4 presents the nuclear medium modifications of
the quark helicity contribution, ��∗, and the quark angular
momentum contribution, Lq∗ ≡ J q∗ − ��∗, to the bound
nucleon spin as a function of ρ/ρ0. The upper panel represents
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FIG. 4. The nuclear medium modifications of the quark helicity
contribution, ��∗, and the quark angular momentum contribution,
Lq∗ ≡ J q∗ − ��∗, to the bound nucleon spin as a function of ρ/ρ0

at Q2 = 1 GeV2, where ρ is the nuclear density and ρ0 = 0.15 fm−3.
The upper panel represents the absolute values; the lower panel gives
the ratios with respect to corresponding free nucleon �� and Lq . The
medium modifications are calculated using the results of the QMC
model.

the absolute values; the lower panel gives the ratios with
respect to the corresponding free nucleon �� and Lq .

As one can see from Fig. 4, because of the quenching of the
axial coupling constant in the nuclear medium, ��∗ < ��.
As a consequence of the relation Lq∗ ≡ J q∗ − ��∗ and the
fact that J q∗

> Jq , the quark angular momentum contribution
to the nucleon spin is larger for the bound nucleon compared to
that for the free nucleon, Lq∗

> Lq . Both effects are large: at
ρ = ρ0 = 0.15 fm−3,��∗/�� = 0.83 and Lq∗

/Lq = 1.20,
i.e., these are 17% and 20% effects, respectively.

In summary, assuming that the bound nucleon GPDs are
modified in proportion to the corresponding quark contribu-
tions to the bound nucleon elastic form factors, we estimated
the nuclear medium modifications of the quark contribution
to the bound nucleon spin sum rule, J q∗

, as well the separate
helicity, ��∗, and the angular momentum, Lq∗

, contributions
to J q∗

. For the bound nucleon elastic form factors, we used
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the results of the quark-meson coupling model. The resulting
model of the bound nucleon GPDs is relevant for incoherent
DVCS (with nuclear breakup) with nuclear targets. We found
that the medium modifications increase J q∗

and Lq∗
and

decrease ��∗ compared to the free nucleon case. The effect
is large and increases with increasing nuclear density ρ. For
instance, at ρ = ρ0 = 0.15 fm−3, J q∗

increases by 7%, Lq∗

increases by 20%, and ��∗ decreases by 17%. These effects

are a general feature of relativistic mean-field quark models
and may be qualitatively explained by the enhancement of the
lower component of the quark wave function of the bound
nucleon.
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