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Duality in semi-inclusive pion electroproduction
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We explore quark-hadron duality in semi-inclusive pion electroproduction on proton and neutron targets. Using
the spin-flavor symmetric quark model, we compute ratios of π+ and π− cross sections for both unpolarized
and polarized scattering and discuss realizations of duality in several symmetry-breaking scenarios. The model
calculations allow one to understand some of the key features of recent data on semi-inclusive pion production
at low energies.
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I. INTRODUCTION

Quark-hadron duality in structure functions (also known
as Bloom-Gilman duality [1]) is a well-established empirical
phenomenon, relating measurements in the deep inelastic
region to averages over nucleon resonances (for a review see
Ref. [2]). Although a quantitative understanding of its origin
in quantum chromodynamics (QCD) remains elusive, some
insight into the possible realization of duality has recently been
achieved through phenomenological model calculations [3–5].

For inclusive structure functions, Close and Isgur [3]
showed how incorporation of spin-flavor SU(6) symmetry
gives quantitative comparisons between the inelastic structure
functions at high energies for proton or neutron targets and
lower-energy data covering the resonance region. In particular,
it was shown that an essential element in the appearance
of duality was a pattern of constructive and destructive
interference that suppressed multiquark correlations, leaving
only incoherent contributions from single quark scattering
[3]. In the SU(6) model this was realized by summing over
neighboring positive- and negative-parity excited states in the
56 and 70 multiplets, respectively.

When comparing with phenomenology, predictions based
on SU(6) symmetry may be expected to be valid at quark
momentum fractions x ∼ 1/3 but are known to break down
at larger x. Explicit symmetry-breaking scenarios, reflecting
different patterns in the flavor-spin dependence of interquark
forces, were considered in Ref. [6], and several of these
were found to be consistent with duality. The SU(6)-breaking
analysis extended the range of x up to x ∼ 1 and identified
implications for the high Q2 behavior of the N → N∗
transition form factors.

Recently, experimental investigations of duality have been
carried out in charged pion electroproduction from proton and
deuteron targets [7,8], measuring the ratios of semi-inclusive
π+ to π− production as a function of z ≡ Eπ/ν, where ν is
the energy transfer to the target. The data showed a smooth
behavior in z, consistent with that observed by the HERMES
[9] and European Muon Collaborations (EMC) [10] at higher
energies, raising the question of whether a similar duality may
be at play as that observed in inclusive structure functions [2].

In fact, a preliminary investigation of duality in semi-
inclusive pion production was made in Ref. [3], where a
factorization between structure and fragmentation functions
was found to hold by summing over N∗ resonances in the
quark model. Ratios of π+/π− yields were calculated for
unpolarized cross sections from protons and neutrons in the
SU(6) limit, applicable at x ∼ 1/3, and the sum over these was
shown to reproduce the inclusive structure function results.
Duality in semi-exclusive hard pion photoproduction was also
considered in Ref. [11] for fixed center of mass scattering
angles. The applicability of duality for pion photoproduction
in specific kinematic regions was discussed in Ref. [12]. With
the advent of the new semi-inclusive data in the resonance
region and beyond [7,8], it is timely therefore to revisit
this problem by extending the earlier work to the more
realistic case of SU(6)-breaking and spin-dependent as well
as spin-independent cross sections.

In this article we present a detailed account of the semi-
inclusive pion production within a resonance excitation picture
and evaluate the extent to which quark-hadron duality is
realized in the data. In Sec. II we review the quark-parton
model expectations for semi-inclusive cross-section ratios in
the valence quark region. The main results of this study,
namely the cross sections in terms of transitions to excited
state resonances, are presented in Sec. III. We consider both
the spin-flavor symmetric case, as well as several symmetry-
breaking scenarios, and test the validity of duality for each
scenario. The full set of matrix elements for the transitions
γN → N∗

1 → πN∗
2 , as well as an explicit example of a typical

matrix element computation, are listed in the Appendices.
Comparisons with recent semi-inclusive pion production data
from Jefferson Lab and elsewhere are discussed in Sec. IV,
where we generalize our to include nonleading fragmentation.
Finally, some conclusions and ideas for future work outlined
in Sec. V.

II. PARTON MODEL FRAGMENTATION

If the hadronization process is independent of the target,
the semi-inclusive cross section can be factorized into a
product of a parton distribution function describing the hard
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scattering from a parton in the target, and the probability of
the struck parton fragmenting into a specific hadron, parame-
terized by the fragmentation function. At the quark level, the
semi-inclusive cross section for the production of pions from
a nucleon target in the valence quark region (x >∼ 0.3) is
proportional (at leading order in αs) to

N π
N (x, z) = e2

u uN (x)Dπ
u (z) + e2

d dN (x) Dπ
d (z), (1)

where eu(ed ) = 2/3 (−1/3) is the u(d) quark charge, qN is
the distribution of quarks q in the nucleon N with light-cone
momentum fraction x, and Dπ

q is the fragmentation function
for quark q to produce a pion with energy fraction z = Eπ/ν,
with Eπ the pion energy and ν the energy transfer to the target.
In both the distribution functions and fragmentation functions
we have suppressed the explicit dependence on the scale Q2.

The fragmentation functions are traditionally separated into
favored and disfavored classes, Dπ+

u = Dπ−
d ≡ D and Dπ+

d =
Dπ−

u ≡ D, respectively, where we have further assumed
isospin symmetry in relating the fragmentation functions for
π+ and π−. In the leading fragmentation approximation, valid
in the limit z → 1, the hadronization process is dominated by
the favored fragmentation, and D → 0. In this approximation
the cross sections for proton and neutron targets can be written
as:

N π+
p (x, z) = e2

u u(x) D(z), (2a)

N π−
p (x, z) = e2

d d(x) D(z), (2b)

N π+
n (x, z) = e2

u d(x) D(z), (2c)

N π−
n (x, z) = e2

d u(x) D(z), (2d)

where the quark distributions are defined to be those in the
proton.

Similarly for a polarized target, the spin-dependent cross
section can be written (at leading order) in terms of spin-
dependent distribution functions �q and corresponding frag-
mentation functions �D,

�N π
N (x, z) = e2

u �uN (x) �Dπ
u (z) + e2

d �dN (x) �Dπ
d (z).

(3)

Because the quark spins in a pion must average to zero, for
pion production one expects the fragmentation functions to be
independent of the polarization of the fragmenting quark, so
that �Dπ

q = Dπ
q .

If the quark distributions and fragmentation functions
factorize as in Eq. (1), one can construct ratios of π− to π+
yields on the neutron and proton that are given by simple ratios
of quark charges,

N π+
n

N π−
p

= N π+
p

N π−
n

= e2
u

e2
d

= 4. (4)

Similarly for the spin-dependent cross sections, one finds the
model-independent relations:

�N π+
n

�N π−
p

= �N π+
p

�N π−
n

= 4. (5)

This will serve as useful consistency checks on the duality
between the partonic and hadronic descriptions of the semi-
inclusive cross sections in the following section.

III. RESONANCE TRANSITIONS

In this section we describe the semi-inclusive production
of pions using a hadronic basis within the SU(6) quark model,
generalizing the discussion of Refs. [3,6] on inclusive structure
functions. In the earlier work [3,6], the SU(6) model served as
a useful framework in allowing one to visualize the underlying
principles of quark-hadron duality and to provide a reasonably
close contact with structure function phenomenology. As
pointed out by Close and Isgur [3], duality between structure
functions represented by (incoherent) parton distributions and
by a (coherent) sum of squares of form factors can be achieved
by summing over neighboring odd- and even-parity states.
In the SU(6) model this is realized by summing over states
in the 56+(L = 0, even parity) and 70−(L = 1, odd parity)
multiplets, with each representation weighted equally.

For semi-inclusive scattering, pion production cross sec-
tions are constructed by summing coherently over excited
nucleon resonances (N∗

1 ) in the s-channel intermediate state
and in the final state (N∗

2 ) of γN → N∗
1 → πN∗

2 , where both
N∗

1 and N∗
2 belong to the 56+ and 70− multiplets. Duality

is then demonstrated by comparing the hadronic-level results
with those of the parton model in Sec. II.

To generalize the model to values of x away from x ∼ 1/3,
where SU(6) symmetry is expected to be valid, we incorporate
various SU(6)-breaking mechanisms, along the lines of those
discussed in Ref. [6]. We recall that at the quark level, explicit
SU(6)-breaking mechanisms produce different weightings of
components of the initial-state wave function, which in turn
induces different x dependences for the spin and flavor
distributions. However, at the hadronic level SU(6) breaking
in the matrix elements leads to suppression of transitions
to specific N∗

1 and N∗
2 resonances, while starting from a

symmetric SU(6) wave function for the initial state N .

A. SU(6) symmetric model

The amplitudes for the transitions γN → N∗
1 correspond to

the absorption of a transversely polarized photon (Jz = +1),
exciting the nucleon to a state N∗

1 with total angular momentum
Jz = 1/2 (3/2) described by the helicity amplitude A1/2 (3/2).
As in Refs. [3,6,13], we assume the interaction operator to
be magnetic spin-flip,

∑
i eiσ

+
i , where ei is the charge of the

i-th quark and σ+ = (σx + iσy)/2 is the Pauli spin raising
operator, as appropriate in the deep inelastic limit [14]. (This
corresponds to the “B” terms in Ref. [15].)

For the pion emission operator we use leading term from
Ref. [15] proportional to

∑
i τ

±
i σzi for π∓ emission, where τ±

i

is the isospin raising/lowering operator (for the most general
form of the operator see Ref. [15]). The leading operator is in
fact general for unpolarized scattering, but for spin-dependent
transitions it implicitly assumes that the emitted pion is
collinear (or with Lz = 0), which is strictly valid only in the
z → 1 limit. For simplicity we retain this form in the present
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TABLE I. Relative spin-averaged (spin-dependent) probabilitiesN π
N (�N π

N ) for the γN → N∗
1 →

πN∗
2 transitions in the SU(6) symmetric quark model, after summing over all intermediate states N∗

1 .

N∗
2 Sum

28, 56+ 410, 56+ 28, 70− 48, 70− 210, 70−

γp → π+N∗
2 100 (100) 32 (–16) 64 (64) 16 (–8) 4 (4) 216 (144)

γp → π−N∗
2 0 (0) 24 (–12) 0 (0) 0 (0) 3 (3) 27 (–9)

γ n → π+N∗
2 0 (0) 96 (–48) 0 (0) 0 (0) 12 (12) 108 (–36)

γ n → π−N∗
2 25 (25) 8 (–4) 16 (16) 4 (–2) 1 (1) 54 (36)

exploratory study, whose primary aim is to demonstrate the
workings of duality in semi-inclusive scattering. In addition,
the currently available data are for unpolarized cross sections,
and refinements of the model to investigate the polarization
dependence as a function of z can be made in future when new
spin-dependent data become available.

Within this framework, the probabilities of the γN → πN∗
2

transitions can be obtained from Tables III–VII in Appendix A
by summing over the intermediate states N∗

1 spanning the 56+
and 70− multiplets. In Table I we list the relative spin-averaged
N π

N and spin-dependent �N π
N semi-inclusive cross sections

(scaled by a factor 92 = 81) for the SU(6) symmetric case for
specific N∗

2 final states, together with the sum over the N∗
2

states. In the hadronic language we define the yield as

N π
N (x, z)=

∑
N∗

2

∣∣∣∣∣∣
∑
N∗

1

FγN→N∗
1
(Q2,M∗

1 ) DN∗
1 →N∗

2 π (M∗
1 ,M∗

2 )

∣∣∣∣∣∣

2

,

(6)

where FγN→N∗ is the γN → N∗ transition form factor, which
depends on the masses of the virtual photon and excited
nucleon (M∗

1 ), and DN∗
1 →N∗

2 π is a function representing the
decay N∗

1 → πN∗
2 , where M∗

2 is the invariant mass of the final
state N∗

2 .
Summing over the N∗

2 states in the 56+ and 70− multiplets
in Table I, we arrive at the following ratios of unpolarized π−
to π+ semi-inclusive cross sections:

N π−
p

N π+
p

= 1

8
,

N π−
n

N π+
n

= 1

2
, (7)

while for the corresponding spin-dependent π− to π+ ratios
we have:

�N π−
p

�N π+
p

= − 1

16
,

�N π−
n

�N π+
n

= −1. (8)

For specific π+ and π− production, the ratios of spin-
dependent to spin-averaged cross sections are:

�N π+
p

N π+
p

= 2

3
,

�N π−
p

N π−
p

= −1

3
, (9a)

�N π+
n

N π+
n

= −1

3
,

�N π−
n

N π−
n

= 2

3
. (9b)

Finally, for ratios of neutron to proton cross sections with
either π+ or π− we have:

N π+
n

N π+
p

= N π−
p

N π−
n

= 1

2
, (10a)

N π+
n

N π−
p

= N π+
p

N π−
n

= 4. (10b)

This is consistent with the parton model results for ra-
tios of parton distributions satisfying SU(6) symmetry
[3,6], d/u = 1/2,�u/u = 2/3,�d/d = −1/3,�d/�u =
−1/4, confirming the validity of duality for the case D = 0,
as in Eq.(2).

Furthermore, the inclusive results of Ref. [3] can be
recovered by summing over the π+ and π− channels. In this
case one finds the familiar results

N π++π−
n

N π++π−
p

= Fn
1

F
p

1

= 2

3
, (11a)

�N π++π−
p

N π++π−
p

= g
p

1

F
p

1

= 5

9
, (11b)

�N π++π−
n

N π++π−
n

= gn
1

Fn
1

= 0, (11c)

again consistent with the parton-level expectations.

B. Spin-1/2 dominance

Although the SU(6) symmetric results may be expected
to be approximately valid for structure functions at x ∼ 1/3,
at larger x values strong deviations from SU(6) symmetry are
observed. These can be correlated with SU(6)-breaking effects
in the transition form factors, as well as in hadron masses. It is
well known that spin-dependent forces between quarks, such
as from one gluon exchange [16], introduce a mass difference
between the nucleon and �. The same mechanism also leads
to an anomalous suppression of the N → � transition form
factor relative to the nucleon elastic at high Q2 [17,18].

If the characteristic Q2 suppression of the � excitation is
related with the spin dependence, then it may be a feature of
all S = 3/2 states, namely the [410, 56+] and [48, 70−]. In
fact, in the approximation of magnetic coupling dominance,
which is more accurate with increasing Q2, only S = 3/2

055202-3



F. E. CLOSE AND W. MELNITCHOUK PHYSICAL REVIEW C 79, 055202 (2009)

configurations allow nonzero σ3/2 cross sections. Suppression
of these then automatically gives unity for the polarized to
unpolarized ratios,

�N π
N

N π
N

= 1. (12)

For the unpolarized ratios, including only the 28 and 210
contributions, the π− to π+ ratios for the proton and neutron
become:

N π−
p

N π+
p

= 1

56
,

N π−
n

N π+
n

= 7

2
. (13)

At the parton level, these results imply the ratio �q/q = 1
for q = u and d and a flavor-dependent ratio of down to up
quark distributions d/u = 1/14. This is consistent with the
findings of the inclusive duality study in Ref. [6], confirming
the duality between the parton- and hadron-level descriptions
of the semi-inclusive scattering process also.

C. Scalar diquark dominance

If the mass difference between the nucleon and � is
attributed to spin-dependent forces, the energy associated
with the symmetric part of the nucleon wave function will
be larger than that of the antisymmetric component. At
the quark level, this pattern of suppression can be realized
with a spin-dependent hyperfine interaction between quarks,
�Si · �Sj , which modifies the spin-0 and spin-1 components of
the nucleon wave function. Physically this correlates with a
“diquark” in a q(qq) representation of the nucleon having
a larger mass (energy) when the spin of the qq pair is 1. A
suppression of the symmetric configuration at large x will then
give rise to a softening of the d quark distribution relative to the
u and leads to the proton and neutron polarization asymmetries
becoming unity as x → 1 [13,17].

In terms of the SU(6) representations, the 210 and 48
multiplets are in the 70− and the 410 unambiguously in the
56+ representation. However, the spin-1/2 28 can occur in both
the 56+ and 70− representations and can be written in terms
of symmetric ψλ and antisymmetric ψρ components, where
ψ = ϕ ⊗ χ is a product of the flavor (ϕ) and spin (χ ) wave
functions and λ and ρ denote the symmetric and antisymmetric
combinations, respectively [19]. In the SU(6) limit one has an
equal admixture of both ρ- and λ-type contributions, whereas
in the present scenario only the ρ components in the 56+ and
70− multiplets plays a role. In particular, because transitions
to the (symmetric) spin-3/2 states (48, 410, and 210) can
proceed only through the symmetric λ component of the
ground-state wave function, the ρ components will excite only
the nucleon to 28 states. If the λ wave function is suppressed,
only transitions to 28 states will be allowed.

To effect this scenario, the simplest strategy is to sum
coherently the 28 amplitudes in the intermediate N∗

1 states
and in the final N∗

2 states in Tables III and V, before squaring
the result to get the cross section. Doing so one finds that
π− production from the proton and π+ production from the
neutron are both suppressed:

N π−
p

N π+
p

= 0,
N π+

n

N π−
n

= 0, (14)

with the ratio of the unsuppressed yields being:

N π−
n

N π+
p

= 1

4
. (15)

These results are consistent with parton model results in which
d/u → 0 as x → 1. Finally, because the 28 amplitudes have
no helicity-3/2 components, the spin-dependent semi-inclusive
cross sections will be identical to the spin-averaged ones, with
all polarization asymmetries unity, again as in the parton-level
model.

D. Helicity-1/2 dominance

The central tenet of quark-hadron duality is the nontrivial
relationship between the behavior of structure functions at
large x and that of transition form factors at high Q2. At high
Q2 perturbative QCD arguments suggest that the interaction
of the photon should be predominantly with quarks having the
same helicity as the nucleon [20,21]. Because the scattering of
a photon from a massless quark conserves helicity, the helicity-
3/2 amplitude A3/2 would be expected to be suppressed relative
to the A1/2 [19].

In Ref. [6] duality was demonstrated to exist between parton
distributions at large x and resonance transitions classified
according to quark helicity rather than spin. Here we examine
whether this duality extends also to the semi-inclusive case
with helicity-1/2 dominance. Table II lists the relative weights
of the γN → N∗

1 → πN∗
2 transitions (scaled by a factor 92 =

81), summed over intermediate states N∗
1 , in this scenario. The

results are obtained by suppressing all helicity-3/2 amplitudes
A3/2 in Tables III–VII for both the N∗

1 and N∗
2 states. The

results for the spin-averaged and spin-dependent transitions
are therefore identical.

The ratios of π− to π+ cross sections for proton and neutron
targets in this scenario are given by:

N π−
p

N π+
p

= 1

20
,

N π−
n

N π+
n

= 5

4
. (16)

Furthermore, the neutron-to-proton ratios for π± production
are given by:

N π+
n

N π+
p

= N π−
p

N π−
n

= 1

5
, (17)

TABLE II. Relative strengths of the γN → N∗
1 → πN∗

2 transi-
tions for the F1 or g1 structure function in the helicity-1/2 dominance
model, after summing over all intermediate states N∗

1 .

N∗
2 Sum

28, 56+ 410, 56+ 28, 70− 48, 70− 210, 70−

γp → π+N∗
2 100 8 64 4 4 180

γp → π−N∗
2 0 6 0 0 3 9

γ n → π+N∗
2 0 24 0 0 12 36

γ n → π−N∗
2 25 2 16 1 1 45
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and for consistency one can also verify that

N π+
n

N π−
p

= N π+
p

N π−
n

= 4. (18)

These results are consistent with the parton model predictions
for helicity-1/2 dominance [20], which yield d/u = 1/5.

Suppression of the helicity-3/2 contributions means that the
spin-dependent semi-inclusive cross sections are identical to
the spin-averaged,

�N π
N

N π
N

= 1. (19)

This again is consistent with the parton model calculations that
predict that �q/q = 1 for all quark flavors q [20].

IV. COMPARISON WITH DATA

Recently the onset of duality in pion electroproduction was
studied in scattering from proton and deuteron targets [7],
with the missing mass M∗

2 of the residual system spanning the
resonance region. Ratios of π+ to π− cross sections were found
to exhibit features reminiscent of parton-level factorization of
the hard scattering and subsequent fragmentation processes,
even at relatively low energies. In addition, the ratio of
unfavored to favored fragmentation functions was found to
closely resemble that observed at much higher energies from
earlier experiments by HERMES [9] and EMC [10].

As noted in Ref. [7], some of the qualitative features of the
data could be understood in the simple quark model discussed
in Ref. [3] (and in Sec. III above). In particular, for a deuteron
target the resonance contributions to the π+/π− ratio appear
in a universal 4:1 ratio when summed over the 56+ and 70−
multiplets and cancel in the ratio of unfavored to favored
fragmentation functions R ≡ D/D, leaving only a smooth
background as expected at higher energies. The absence of
strong resonant enhancement on top of the smooth background
is indeed one of the notable features of the data [7].

Although the lack of prominent N∗ structure in the semi-
inclusive spectrum is in accord with duality, a quantitative
comparison goes beyond the simple model discussed thus
far. In our model an operator equivalent to u → π+d is
sandwiched between SU(6) states for N∗

1 and N∗
2 , after which

the initial and final states are summed over (see Appendix B).
This mechanism allows only for leading fragmentation to take
place, whereas the data [7] clearly show that for z < 1 the
ratio R �= 0. The model can therefore only be applied to the
resonance part of the semi-inclusive cross section and is not
applicable to the nonresonant background, which makes up a
sizable fraction of the data at z 	 1.

The simplest generalization of this formalism to the case
of R �= 0 is to retain the assumption that the pion production
operator factors from the initial and final N∗ but allow the
possibility that the u quark, for instance, can fragment to a
π−. An example of such a mechanism would be u → M+X,
where M+ is some heavy resonance, followed by the decay
M+ → π+π+π−, leaving the baryonic state X unaltered.
This can be accommodated phenomenologically by assuming,
as in Ref. [3], that the ratio R is independent of N∗. The

relative contributions from the various N∗
2 states to the semi-

inclusive cross section for the D contribution then follow
immediately by interchanging π+ ←→ π− in each column of
Tables III–VII.

In the particular case of a deuteron target the ratio of π+ to
π− cross sections generalizes to

N π+
d

N π−
d

= 4 + R

4R + 1
, (20)

and is in fact the same for each multiplet N∗
2 =

[28, 56+], [410, 56+], [28, 70−], [48, 70−], or [210, 70−], as
well as of course for the sum. Inverting Eq. (20), we find the
ratio

R = 4 − N π+
d /N π−

d

4 N π+
d /N π−

d − 1
, (21)

which clearly vanishes in the limit when N π+
d = 4N π−

d .
Interestingly, the 4:1 ratio is realized not only for the SU(6)
symmetric model but also for the various SU(6)-breaking
scenarios discussed in Sec. III. To discriminate between the
different symmetry-breaking mechanisms, it is therefore not
sufficient to simply extend the kinematics to the large-x region
with a deuteron target; one must consider explicitly proton
(or neutron) targets, where the different symmetry-breaking
models yield very different π+/π− predictions—see Eqs. (7),
(13), (14), and (16).

Experimentally, the presence of secondary, or unfavored,
fragmentation gives a sizable contribution to the semi-
inclusive cross section and dilutes the simple predictions for
the π+-to-π− ratios derived in Sec. III. However, even though a
quantitative comparison of the ratios may at present be beyond
reach, some general features of the data can nevertheless be
understood within the favored fragmentation scenario.

For a proton target, the empirical ratio N π+
p /N π−

p is found
to be ≈2 for 0.3 <∼ z <∼ 0.7, as seen in Fig. 1 for fixed x = 0.32
and Q2 ≈ 2.5 GeV2 [2,22]. This is to be compared with a
π+/π− ratio of eight predicted in the SU(6) model when
z → 1, Eq. (7). A careful examination of the data [22] at
larger x further reveals a clear trend in which the π+/π− ratio
increases with increasing x, consistent with the expectations
of the symmetry-breaking scenarios. For example, the helicity
1/2 dominance model predicts a π+/π− ratio of 20 [Eq. (16)],
the spin 1/2 dominance model gives 56 [Eq. (13)], while the
scalar diquark model yields a divergent ratio [Eq. (14)]. Of
course to discriminate among these predictions requires data
at larger x(x ∼ 1) than is currently available, which will be an
important challenge for future experiments.

For deuterium targets, the empirical N π+
d /N π−

d ratio is
found to be around 1.5 [7], compared with the model
prediction of 4, in both the SU(6) symmetric model and in
the various symmetry-breaking extensions. As for the proton,
the trend of the deuteron data is an increase of this ratio with
increasing x.

Because nuclear effects in the deuteron at x ∼ 0.3 are
small [23], the π+/π− ratios for a neutron target can be
extracted from the difference of the deuteron and proton data,
as shown in Fig. 1. Here the N π+

n /N π−
n ratio is close to unity

and considerably smaller than the proton ratio. In the SU(6)
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FIG. 1. (Color online) Ratio N π+
/N π−

for proton (circles) and
“neutron” (triangles) targets from Jefferson Lab Hall C [7,22], as a
function of z (and M2

X ≡ M∗
2 , in units of GeV2, upper scale), at fixed

x = 0.32 and Q2 ≈ 2.5 GeV2.

quark model the expectation for the ratio is 2, Eq. (7), so that
again the data suggest a dilution of the primary fragmentation
mechanism of π± production.

At larger z (or smaller M∗
2 ), the nucleon resonance

structures become more apparent in both the proton and
neutron data. Because secondary fragmentation is suppressed
as z → 1, we may expect the nonresonant background to play
a lesser role here and the predictions of the resonance model of
Sec. III to be more quantitative. In the � resonance region, for
example, at 0.8 <∼ z <∼ 0.85(M∗

2 ≈ 1.2 − 1.3 GeV), the proton
ratio dips to about 1.5, while the neutron ratio increases
severalfold and becomes larger than the proton. This behavior
is expected from the relative strengths of the transitions for the
[410, 56+] multiplet in Tables I and II, in which the neutron
→ �0 transitions are predicted to be an order of magnitude
larger than for the proton → �+.

For even larger z the proton and neutron ratios are inverted
again and display rather different behaviors in the limit z → 1,
which corresponds to a nucleon elastic final state, N∗

2 = N .
Because only π+ production is possible from the proton, and
π− from the neutron, the ratio of π+ to π− rises steeply for the
proton but drops rapidly to zero for the neutron [2]. Again this
trend is consistent with the quark model expectations from
Sec. III, whose predictions should be more robust in this
region.

V. CONCLUSION

In this study we have shown how the quark-hadron duality
that was successfully demonstrated for inclusive structure
functions in the quark model [3] can be extended to semi-
inclusive pion electroproduction, with corresponding patterns
of resonances that are dual to the parton model results. Having
derived the full set of matrix elements for γN → N∗

1 →
πN∗

2 , where both N∗
1 and N∗

2 belong to the 56+ and 70−
multiplets of SU(6), we demonstrated duality by compar-
ing the hadronic-level results, summed over the N∗

1,2, with
those of the parton model. In the case of spin-flavor symmetry,
these are most immediately applicable when x ∼ 1/3 and in

the leading fragmentation approximation, which is valid at
large z, where secondary fragmentation is suppressed.

We find that duality is indeed realized even in the broken
SU(6) case, in the sense that sums over resonances are
able to reproduce parton model semi-inclusive cross-section
ratios. In Ref. [6] it was shown how duality for inclusive
structure functions could be realized in various SU(6)-breaking
scenarios; here we have shown how duality is realized in these
scenarios for semi-inclusive pion electroproduction as x → 1.
The different patterns of resonances N∗

2 and ratios of π+/π−
may be used to isolate the dynamics of symmetry breaking in
the x → 1 regime.

Comparisons with data show that this analysis gives a
qualitative description of the features and general trends of
the data, especially at large z. Although the results of Ref. [3]
were obtained in the leading fragmentation approximation,
which is valid at large z, quantitative comparison with data at
intermediate z values requires including subleading fragmen-
tation, characterized by nonzero values of the fragmentation
function ratio D/D. We have shown how to incorporate the
effects of D/D �= 0 phenomenologically in a way consistent
with duality, although the z dependence is a model-dependent
effect that goes beyond the present work and does not follow
from duality alone.

Although future precision semi-inclusive studies at large
x will be challenging experimentally, they will be vital in
providing constraints on the flavor and spin dependence of
quark interactions in the nucleon, complementary to those
from inclusive measurements. In this regard a program of
polarized semi-inclusive deep-inelastic scattering to measure
spin-dependent cross section ratios would also be extremely
valuable, allowing direct tests of the predictions presented in
this work.

On the theoretical front, quantitative comparison with data
at low Q2 and large x and z will require implementation of
semi-inclusive target mass corrections [24], as well as nuclear
effects when considering nuclear data at large x [23]. For a
systematic analysis of the full z dependence of semi-inclusive
cross sections, the present model needs to be extended to
include a microscopic, quark-level description of unfavored
fragmentation, D/D �= 0. This would then enable predictions
to be made for the angular or pT dependence of semi-inclusive
pion production [8], which may reveal further insights into the
hadronization process.
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APPENDIX A: γ N → π N∗
2 AMPLITUDES

In this Appendix we present for completeness the full set of
amplitudes for the transitions γN → N∗

1 → πN∗
2 , for N = p

and n targets. In Tables III–VII we give the relative weights
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TABLE III. Relative strengths of the helicity 1/2 and 3/2 transition amplitudes for γN → N∗
1 →

πN∗
2 for the N∗

2 = [28, 56+] multiplet.

N∗
1 γp → π+N∗

2 γp → π−N∗
2 γ n → π+N∗

2 γ n → π−N∗
2

A1/2 A3/2 A1/2 A3/2 A1/2 A3/2 A1/2 A3/2

28, 56+ 5
9 0 0 0 0 0 − 10

27 0
410, 56+ 4

27 0 0 0 0 0 − 4
27 0

28, 70− 4
9 0 0 0 0 0 − 4

27 0
48, 70− 0 0 0 0 0 0 2

27 0
210, 70− − 1

27 0 0 0 0 0 1
27 0

TABLE IV. Relative strengths of the helicity 1/2 and 3/2 transition amplitudes for γN → N∗
1 → πN∗

2

for the N∗
2 = [410, 56+] multiplet.

N∗
1 γp → π+N∗

2 γp → π−N∗
2 γ n → π+N∗

2 γ n → π−N∗
2

A1/2 A3/2 A1/2 A3/2 A1/2 A3/2 A1/2 A3/2

28, 56+ 2
√

2
9 0 − 2

3

√
2
3 0 − 4

9

√
2
3 0 4

√
2

27 0

410, 56+ − 2
√

2
27 − 2

3

√
2
3 − 1

9

√
2
3 −

√
2

3 − 1
9

√
2
3 −

√
2

3 − 2
√

2
27 − 2

3

√
2
3

28, 70− − 2
√

2
9 0 2

3

√
2
3 0 2

9

√
2
3 0 − 2

√
2

27 0

48, 70− 0 0 0 0 − 1
9

√
2
3 −

√
2

3

√
2

27
1
3

√
2
3

210, 70− − 4
√

2
27 0 − 2

9

√
2
3 0 − 2

9

√
2
3 0 − 4

√
2

27 0

TABLE V. Relative strengths of the helicity 1/2 and 3/2 transition amplitudes for γN → N∗
1 → πN∗

2

for the N∗
2 = [28, 70−] multiplet.

N∗
1 γp → π+N∗

2 γp → π−N∗
2 γ n → π+N∗

2 γ n → π−N∗
2

A1/2 A3/2 A1/2 A3/2 A1/2 A3/2 A1/2 A3/2

28, 56+ 4
9 0 0 0 0 0 − 8

27 0
410, 56+ − 4

27 0 0 0 0 0 4
27 0

28, 70− 5
9 0 0 0 0 0 − 5

27 0
48, 70− 0 0 0 0 0 0 − 2

27 0
210, 70− 1

27 0 0 0 0 0 − 1
27 0

TABLE VI. Relative strengths of the helicity 1/2 and 3/2 transition amplitudes for γN → N∗
1 →

πN∗
2 for the N∗

2 = [48, 70−] multiplet.

N∗
1 γp → π+N∗

2 γp → π−N∗
2 γ n → π+N∗

2 γ n → π−N∗
2

A1/2 A3/2 A1/2 A3/2 A1/2 A3/2 A1/2 A3/2

28, 56+ 2
9 0 0 0 0 0 4

27 0
410, 56+ 2

27
2

3
√

3
0 0 0 0 − 2

27 − 2
3
√

3
28, 70− − 2

9 0 0 0 0 0 − 2
27 0

48, 70− 0 0 0 0 0 0 1
27

1
3
√

3
210, 70− 4

27 0 0 0 0 0 − 4
27 0
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TABLE VII. Relative strengths of the helicity 1/2 and 3/2 transition amplitudes for γN → N∗
1 →

πN∗
2 for the N∗

2 = [210, 70−] multiplet.

N∗
1 γp → π+N∗

2 γp → π−N∗
2 γ n → π+N∗

2 γ n → π−N∗
2

A1/2 A3/2 A1/2 A3/2 A1/2 A3/2 A1/2 A3/2

28, 56+ − 1
9 0 − 1

3
√

3
0 2

9
√

3
0 − 2

27 0
410, 56+ − 8

27 0 − 4
9
√

3
0 − 4

9
√

3
0 − 8

27 0
28, 70− 1

9 0 1
3
√

3
0 − 1

9
√

3
0 1

27 0
48, 70− 0 0 0 0 − 4

9
√

3
0 4

27 0
210, 70− 2

27 0 1
9
√

3
0 1

9
√

3
0 2

27 0

for the helicity amplitudes A1/2 and A3/2 for individual N∗
1

intermediate states and N∗
2 final states spanning the 56+ and

70− multiplets. We follow the notations of Refs. [11,19,25],
but with a different sign convention for the Clebsch-Gordan
coefficients to that of the Particle Data Group [26] (the
results for the cross sections do not depend on the convention
however).

APPENDIX B: SAMPLE MATRIX ELEMENT
COMPUTATION

We provide here an example of a calculation of a typical
matrix element in Tables III–VII in the SU(6) quark model.
To be specific we consider the octet statesm symmetric and
antisymmetric parts are labeled λ and ρ. The spin-1/2 octets
in the 56+ and 70− multiplets are written

[28, 56+] = 1√
2

(φρχρ + φλχλ), (B1)

[28, 70−] = 1√
2

(φρχρ − φλχλ), (B2)

where φ and χ denote the flavor and spin wave functions,
respectively, explicit forms for which can be found in Refs. [19,
25]. Note that in this convention the state with a scalar diquark
can be written as |φρχρ〉 = {|28, 56+〉 + |28, 70−〉}/√2.

Consider the process γN → N∗
1 , with the nucleon at rest

and the photon along the ẑ axis with Jz = +1. The helicity
amplitude A1/2 then corresponds to a nucleon having Jz =
−1/2, leaving the N∗

1 with Jz = +1/2. In the limit of magnetic
coupling (corresponding to spin-flip), the electromagnetic
current J em transforms as

∑
i eiσ

+
i , summed over the three

valence quarks. For a proton target, because the matrix
elements of this operator are unity for the φρχρ component
and zero for the φλχλ components, one has

〈28, 56+ ∣∣J em
∣∣ 28, 56+〉 = 〈28, 70− ∣∣J em

∣∣ 28, 56+〉 = 1.

(B3)

Now consider the decay of a positively charged state N∗
1

to a π+ and a neutral baryon N∗
2 , with both the N∗

1 and N∗
2

states in either the [28, 56+] or [28, 70−] multiplets. Assuming
that the π+ is emitted collinearly along the γN axis, which is
valid in the z → 1 limit, the π+ emission operator transforms
as Jπ = τ−σz. After summing over the three valence quarks,
one has the matrix elements

〈φλχλ|τ−σz|φλχλ〉 = 1
9 , (B4a)

〈φρχρ |τ−σz|φρχρ〉 = 1
9 , (B4b)

from which one derives the transition matrix elements

〈28, 56+ |Jπ | 28, 56+〉 = 〈28, 70− |Jπ | 28, 70−〉 = 5
9 ,

(B5a)

〈28, 56+ |Jπ | 28, 70−〉 = 〈28, 70− |Jπ | 28, 56+〉 = 4
9 .

(B5b)

The product of the matrix elements of J em and Jπ then give
the entries in Tables III and V. For example, for the transition
γN → N∗

1 [28, 70−] → πN∗
2 [28, 56+] one has

〈28, 56+|Jπ |28, 70−〉 · 〈28, 70−|J em|28, 56+〉 = 4
9 , (B6)

as given in Table III.
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