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We present a comprehensive study of two-boson exchange (TBE) corrections in parity-violating electron-proton
elastic scattering. Within a hadronic framework, we compute contributions from box (and crossed box) diagrams
in which the intermediate states are described by nucleons and � baryons. The � contribution is found to be
much smaller than the nucleon one at backward angles (small ε), but becomes dominant in the forward scattering
limit (ε → 1), where the nucleon contribution vanishes. The dependence of the corrections on the input hadronic
form factors is small for Q2 <∼ 1 GeV2, but becomes significant at larger Q2. We compute the nucleon and �

TBE corrections relevant for recent and planned parity-violating experiments, with the total corrections ranging
from −1% for forward angles to 1–2% at backward kinematics.
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I. INTRODUCTION

Parity-violating electron-proton elastic scattering has be-
come a standard tool with which to probe the strangeness
content of the proton. Recent high-precision experiments
at Jefferson Lab [1–4] and elsewhere [5–7] have pro-
vided important constraints on the strange electric and
magnetic form factors [8,9]. Further improvements in
the precision are expected to allow the measurement of
the proton’s weak charge, Qw = 1 − 4 sin2 θW , where θW

is the weak mixing angle, to unprecedented accuracy
[10,11].

With the increasing precision comes the need to understand
backgrounds to greater accuracy than was called for in
previous generations of experiments. In particular, higher order
radiative effects have received renewed attention recently, most
notably those associated with the exchange of two bosons
(photons or Z bosons) [12–19]. For point-like particles, the
relevant loop diagrams are straightforward to compute and
are included in the standard radiative corrections. However,
incorporating the finite size of the nucleon leads to additional
contributions and can introduce further uncertainty in the
calculations.

In electromagnetic elastic scattering, despite being O(α)
suppressed, two-photon exchange (TPE) was found to play an
important role in resolving a large part of the discrepancy
between the electric to magnetic proton form factor ratio
measurements using the Rosenbluth and polarization transfer
methods (see Ref. [20] and references therein). One needs
to carefully consider, therefore, to what extent the hadronic
structure effects in two-boson exchange (TBE) may affect
the analysis of parity-violating electron scattering. This is
especially critical given that the extracted strange form factors
appear to be rather small [8], as is the proton’s weak charge
Qw, which could further enhance the relative importance of
TBE effects.

In their seminal early work on electroweak radiative effects,
Marciano and Sirlin [12] computed the interference between
the one-photon exchange and γ -Z exchange amplitudes

[which we denote by “γ (Zγ )”] at zero four-momentum
transfer squared Q2, both at the quark level and at the
nucleon level using dipole form factors. The corresponding
contribution from the interference between the single Z-boson
and two-photon exchange amplitudes [denoted by “Z(γ γ )”]
vanishes at Q2 = 0, but was computed within a generalized
parton distribution formalism [15] at a scale Q2 ∼ several
GeV2.

More recently, the TBE corrections were computed at
nonzero Q2 in a hadronic basis, including nucleon [17,18]
and � [19] intermediate states, with the structure dependence
incorporated through hadronic form factors. For the nucleon
intermediate states the model dependence was studied in
Ref. [18], and the individual TBE corrections to the proton
and neutron terms in the parity-violating asymmetry were
computed.

In this article we perform a detailed analysis of TBE,
including both nucleon elastic and � intermediate states in the
loop diagrams, and carefully examine their model dependence.
We use the hadronic formalism developed in Ref. [21], which
allows a natural implementation of hadronic structure effects
in radiative corrections at low Q2, where parity-violating
electron scattering experiments are typically performed. For
the � contribution we extend the two-photon exchange
calculation of Kondratyuk et al. [22] to the weak sector and
constrain the axial-vector form factors by data from neutrino
scattering.

In Sec. II we review the basic formalism of parity-violating
electron scattering and summarize the Born level amplitudes
and cross sections. The two-boson exchange corrections are
described in Sec. III, where we outline the box diagram
calculations with nucleon and � intermediate states. Our main
results are presented in Sec. IV. We compute the corrections
from TBE to the parity-violating asymmetry and discuss the
consequences for the extraction of the proton’s strange form
factors and weak axial charge. Finally, we summarize our
findings in Sec. V and identify possible future developments
of this work.
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II. BORN APPROXIMATION

For elastic scattering of an electron e− from a nucleon N

we define the initial e− and N momenta as p1 and p2 and the
final e− and N momenta as p3 and p4, respectively, e−(p1) +
N (p2) → e−(p3) + N (p4). The four-momentum transferred
from the electron to the nucleon is given by q = p4 − p2 =
p1 − p3, with Q2 ≡ −q2 > 0. In the Born approximation, the
amplitudes for the electromagnetic and weak neutral currents
are given by

Mγ = − e2

q2
jµ
γ Jγµ, (1)

MZ = − g2

(4 cos θW )2

1

M2
Z − q2

j
µ

Z JZµ ≈ − GF

2
√

2
j

µ

Z JZµ,

(2)

where e is the electric charge, g = e/ sin θW is the weak
coupling constant, MZ is the Z boson mass, and GF =
πα/(

√
2M2

Z sin2 θW cos2 θW ) is the Fermi constant, with α =
e2/4π being the fine structure constant. At tree level the
weak mixing angle is related to the weak boson masses
by sin2 θW = 1 − M2

W/M2
Z , where MW is the W boson

mass (in our numerical results below we use the renor-
malized value sin2 θW = 0.2312 [23]). The matrix elements
of the electromagnetic and weak leptonic currents are
given by

jµ
γ = ūe(p3)γ µue(p1), (3)

j
µ

Z = ūe(p3)
(
ge

V γ µ + ge
Aγ µγ5

)
ue(p1), (4)

where the latter is given by a sum of vector and axial-vector
terms. We use the convention in which the vector and axial-
vector couplings of the electron to the Z boson are given by

ge
V = −(1 − 4 sin2 θW ), ge

A = +1. (5)

The matrix elements of the electromagnetic (weak) hadronic
currents can be written as

J
µ

γ (Z) = ūN (p4)�µ

γ (Z)uN (p2), (6)

where the current operators are parametrized by the electro-
magnetic and weak form factors

�µ
γ = γ µF

γN

1 (Q2) + iσµνqν

2M
F

γN

2 (Q2), (7)

�
µ

Z = γ µFZN
1 (Q2) + iσµνqν

2M
FZN

2 (Q2) + γ µγ5G
ZN
A (Q2),

(8)

with M being the nucleon mass. Here F1 and F2 are the Dirac
and Pauli form factors, and GA is the axial form factor of
the nucleon (N = p, n), for either the electromagnetic (γ ) or
weak (Z) current. Usually one takes linear combinations of
the Dirac and Pauli form factors to define the Sachs electric
and magnetic form factors as

GE(Q2) = F1(Q2) − τF2(Q2), (9)

GM (Q2) = F1(Q2) + F2(Q2), (10)

where τ = Q2/4M2.

The differential cross section is given by the square of the
sum of the γ and Z Born amplitudes,

dσ

d�
=

(
α

4MQ2

E3

E1

)2

|M|2 , (11)

where the squared amplitude can be written as

|M|2 = |Mγ + MZ|2 = |Mγ |2 + 2�(M∗
γMZ) + |MZ|2.

(12)

The purely weak contribution |MZ|2 is small compared with
the other terms and can be neglected. By polarizing the incident
electron and measuring the difference between right- and
left-handed electrons scattering from unpolarized protons, the
parity-violating (PV) asymmetry can be defined in terms of
the differential cross sections as

APV = σR − σL

σR + σL

, (13)

where σR(L) is the cross section for a right- (left-)hand
polarized electron. The purely electromagnetic contribution
cancels in the numerator, so that the asymmetry is sensitive
to the parity-violating part of 2�(M∗

γMZ), involving the
interference of Mγ with the product of vector and axial-vector
currents in MZ (the vector-vector and axial-axial parts of MZ

cancel in the asymmetry). The denominator is dominated by
the electromagnetic term |Mγ |2.

More explicitly, the PV asymmetry can be written in terms
of the electroweak form factors as

APV = −
(

GF Q2

4
√

2πα

)

× ge
A

(
εG

γN

E GZN
E + τG

γN

M GZN
M

) + ge
V ε′ GγN

M GZN
A

ε
(
G

γN

E

)2 + τ
(
G

γN

M

)2 ,

(14)

where ε and ε′ are kinematical parameters,

ε−1 = 1 + 2(1 + τ ) tan2 θ

2
, (15)

ε′ =
√

τ (1 + τ )(1 − ε2), (16)

with θ being the electron scattering angle in the target rest
frame.

For a proton target the weak electric (magnetic) vector
form factor G

Zp

E(M) can be related by isospin symmetry to the
electromagnetic form factors of the proton and neutron by

G
Zp

E(M) = (1 − 4 sin2 θW )Gγp

E(M) − G
γn

E(M) − Gs
E(M), (17)

where Gs
E(M) are the contributions from strange quarks. The

small factor (1 − 4 sin2 θW ) suppresses the overall contribu-
tion from the proton electromagnetic form factors, thereby
promoting the neutron form factors to play a greater role. The
weak axial-vector form factor of the proton is given by G

Zp

A =
−G

p

A + Gs
A, where Gs

A is the strange quark contribution.
Measurement of the PV asymmetry APV as a function of

the scattering angle θ allows one to extract combinations of
the strange form factors, given knowledge of the proton and
neutron electromagnetic form factors. Reliable extractions of
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the form factors require precise knowledge of the radiative
corrections to the PV scattering associated with higher order
electroweak processes. This is especially critical given that
the extracted strange form factors appear to be rather small
numerically. In the next section we discuss a subset of the
radiative corrections, namely, those arising from two-boson
exchange.

III. TWO-BOSON EXCHANGE CORRECTIONS

Beyond the Born approximation, the PV asymmetry re-
ceives corrections from higher order radiative effects, such
as vertex corrections, wave function renormalization, vacuum
polarization, and inelastic bremsstrahlung, which are well
known and included in standard data analyses. Less well deter-
mined are radiative corrections arising from the interference
of Born and TBE diagrams, both electromagnetic (γ γ ) and
electroweak (γZ). For purely electromagnetic scattering, the
TPE corrections have been shown [20,21] to display strong
angular dependence, which significantly affects extractions of
the G

γp

E /G
γp

M ratio by Rosenbluth separation [24].
There are several ways in which the PV asymmetry can

be represented in the presence of higher order radiative
corrections. The approach pioneered by Marciano and Sirlin
[13] parametrizes the electroweak radiative effects in terms of
parameters ρ and κ , such that the weak charge of the proton
in the presence of higher order corrections becomes

Qw = 1 − 4 sin2 θW → ρ(1 − 4κ sin2 θW ). (18)

In this case the asymmetry can be written as a sum of proton
vector, strange vector, and axial-vector contributions,

APV = −
(

GF Q2

4
√

2πα

)
(AV + As + AA) , (19)

where

AV = ge
Aρ

[
(1 − 4κ sin2 θW )− 1

σred

(
εG

γp

E G
γn

E +τG
γp

M G
γn

M

)]
,

(20a)

As = −ge
Aρ

1

σred

(
εG

γp

E Gs
E + τG

γp

M Gs
M

)
, (20b)

AA = ge
V ε′ 1

σred
G̃

Zp

A G
γp

M , (20c)

with σred = ε(Gγp

E )2 + τ (Gγp

M )2 being the reduced unpolarized
proton cross section.

An alternative parametrization is in terms of isoscalar and
isovector weak radiative corrections for the vector form factors
and a similar set of corrections for the axial-vector form
factors. In this case the vector part of the PV asymmetry is
written

AV = ge
A

[
(1 − 4 sin2 θW )

(
1 + R

p

V

)
− 1

σred

(
εG

γp

E G
γn

E + τG
γp

M G
γn

M

) (
1 + Rn

V

)]
, (21)

where the proton and neutron radiative corrections are given,
to first order in ρ − 1 and κ − 1, by

R
p

V = ρ − 1 − (κ − 1)
4 sin2 θW

1 − 4 sin2 θW

, (22a)

Rn
V = ρ − 1. (22b)

The strange part of the asymmetry,

As = −ge
A

1

σred

(
εG

γp

E Gs
E + τG

γp

M Gs
M

)
(1 + R

(0)
V ), (23)

receives an isoscalar radiative correction, given by

R
(0)
V = ρ − 1. (24)

For the axial asymmetry AA, the form factor G̃
Zp

A implicitly
contains higher order radiative corrections for the proton axial
current, as well as the hadronic anapole contributions [8,25]. At
tree level, and in the absence of the anapole term, G̃Zp

A → G
Zp

A .
In Refs. [17–19] the contributions to ρ and κ from

the interference of the Born and TBE (box and cross-box)
diagrams were computed, denoted by �ρ and �κ , respectively.
The correction to the PV cross section arising from the the γ γ

and γZ TBE contributions can be obtained from Eq. (12) by
the replacements

Mγ → Mγ + Mγ γ , (25a)

MZ → MZ + MγZ + MZγ , (25b)

where the two-photon and γZ exchange amplitudes
Mγ γ ,MZγ , andMγZ are given explicitly below. The relative
corrections from the Z(γ γ ), γ (γZ), and γ (γ γ ) interference
terms can be identified as

δZ(γ γ ) = 2� (
M∗

ZMγ γ

)
2� (

M∗
ZMγ

) , (26a)

δγ (γZ) = 2� (
M∗

γMγZ + M∗
γMZγ

)
2� (

M∗
γMZ

) , (26b)

δγ (γ γ ) = 2� (
M∗

γMγ γ

)
|Mγ |2 . (26c)

The correction to the Born level PV asymmetry A0
PV can then

be represented as

APV = (1 + δ)A0
PV ≡

(
1 + δZ(γ γ ) + δγ (Zγ )

1 + δγ (γ γ )

)
A0

PV, (27)

where APV is the full asymmetry, including TBE corrections,
and A0

PV is given in Eq. (19). Because the electromagnetic TPE
correction δγ (γ γ ) is typically only a few percent [20–22], the
full correction δ can be written approximately as

δ ≈ δZ(γ γ ) + δγ (Zγ ) − δγ (γ γ ). (28)

In the model discussed here, the amplitudes Mγ γ ,MγZ , and
MZγ contain contributions from both nucleon elastic and
�(1232) isobar intermediate states, which we discuss next.

A. Nucleon intermediate states

For completeness, here we review the basic elements of the
TBE exchange calculation with nucleon intermediate states.
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A more complete account can be found in Refs. [18,20,21].
For electromagnetic scattering, the total 2γ exchange ampli-
tude for the box and crossed-box diagrams with a nucleon
intermediate state has the form [20]

MγNγ

= e4
∫

d4k

(2π )4
ūe(p3)

×[γµSF (p1 − k,me)γν + γνSF (p3 + k,me)γµ]

× ue(p1)ūN (p4)�µ
γ (q − k)SF (p2 + k,M)

×�ν
γ (k)uN (p2) �F (k, λ)�F (k − q, λ), (29)

where me is the electron mass, and the fermion (electron) and
gauge boson (photon) propagators are given by

iSF (k,m) = i(	k + m)

k2 − m2 + iε
, (30)

i�F (k, λ) = −i

k2 − λ2 + iε
, (31)

respectively, with λ introduced as an infinitesimal photon mass
to regulate the infrared divergences.

The calculation of the γ -Z interference amplitude proceeds
along lines similar to those of the 2γ amplitudes above, with
the appropriate replacements of the photon propagator by the
Z-boson propagator, and the γNN vertex function by �

µ

Z in
Eq. (8),

MγNZ

= e2g2

(4 cos θW )2

∫
d4k

(2π )4

× ūe(p3)
[(

ge
V γµ + ge

Aγµγ5
)
SF (p1 − k,m)γν

+ γνSF (p3 + k,m)
(
ge

V γµ + ge
Aγµγ5

)]
ue(p1)

× ūN (p4)�µ

Z(q − k)SF (p2 + k,M)

×�ν
γ (k)uN (p2) �F (k, λ)�F (k − q,MZ). (32)

A similar expression holds for the conjugate amplitudeMZNγ .
For the electromagnetic nucleon form factors we use the

global fit to the proton electric and magnetic form factors
from Arrington, Melnitchouk, and Tjon [24], and for the
neutron form factors we use those from Bosted [26]. For
technical reasons, we parametrize the form factors by a sum
of three monopoles. To examine the model dependence of the
calculation, we also consider a dipole shape for the proton form
factors, with a dipole mass of �N(V ) = 0.84 GeV [20,21].

The weak ZNN form factors are less well determined.
Using the conservation of the vector current (CVC), the
weak vector form factors can be directly related to the γNN

form factors. For the axial-vector form factor, on the other
hand, we use an empirical dipole fit, GA(Q2) = GA(0)/(1 +
Q2/�2

N(A))
2, where GA(0) = 1.267 is the axial-vector charge,

with the mass parameter �N(A) = 1 GeV. Varying �N(A) by
20% does not affect the results significantly. Because the main
purpose of the PV experiments is to extract strange quark
contributions to form factors by comparing the measured
asymmetry with the predicted zero-strangeness asymmetry, in
all our numerical simulations we set the strange form factors
to zero, F s

1,2 = 0 = Gs
A.

In Fig. 1 we show the various contributions to the two-
boson exchange correction δN as a function of ε for several
values of Q2(Q2 = 0.01, 0.1, 1, and 5 GeV2). The infrared
divergences [27,28] in the boxes have been removed following
the standard treatment of Mo and Tsai [27]. It should be noted,
however, that, in contrast to the 2γ box diagrams, the infrared
contributions for the γZ box diagrams are significantly
different using the procedure of Ref. [28]. At small Q2

values (Q2 <∼ 0.1 GeV2) the γ (γ γ ) and Z(γ γ ) contributions
are very similar and considerably smaller in magnitude than
the γ (Zγ ) component. Because the γ -Z interference and the
purely electromagnetic contributions enter in the numerator
and denominator of the PV asymmetry, respectively, the γ (γ γ )
and Z(γ γ ) will partially cancel in their effect on APV, which
will be determined mostly by the γ (Zγ ) component. At larger
Q2(>∼ 1 GeV2), the γ (Zγ ) component decreases in magnitude,
while the γ (γ γ ) Z(γ γ ) pieces become large and more negative
[18,20,21].

The dependence of the total correction δN on the input
form factors is illustrated in Fig. 2. The difference between
the results using the empirical form factors and the dipole
approximation is very small for all values of ε and only
becomes appreciable at large Q2(Q2 >∼ 1 GeV2), consistent
with the findings of our earlier analysis [20]. Interestingly,
the correction at Q2 = 0.01 GeV2 is relatively flat over the
range 0.1 <∼ ε <∼ 0.8, before dropping rapidly as ε → 1. At
large Q2 the total TBE correction becomes more strongly
ε dependent, decreasing in magnitude at forward scattering
angles but increasing at backward angles (ε → 0).

B. � intermediate states

In evaluating the contribution to the TBE amplitude from
the excitation of the �(1232) isobar, we use the formalism
outlined in Ref. [22] for the γN� interaction and extend this to
the weak sector with the introduction of axial ZN� couplings.
The γN� vertex is given by [22,29]

�
µα

γ�→N (p, q)

= i

2M2
�

√
2

3

{
g1(Q2)

×[gµα 	p 	q − pµγ α 	q − γ µγ αp · q + γ µqα 	p]

+g2(Q2)[pµqα − gµαp · q] + g3(Q2)

M�

× [q2(pµγ α − gµα 	p) + qµ(qα 	p − γ αp · q)]

}
γ5,

(33)

where p and q are the incoming � and photon momenta,
with corresponding Lorentz indices α and µ, respectively.
The overall factor

√
2/3 arises from the N → � isospin

transition operator. Electromagnetic gauge invariance im-
plies that qµ�

µα

γ�→N (p, q) = 0. The coupling constants gi ≡
gi(Q2 = 0) for i = 1, 2, 3 can be related to the magnetic,
electric, and Coulomb components of the γN� vertex by g1 =
gM, gE = g2 − g1, gC = g3. The vertex with an outgoing �
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FIG. 1. (Color online) TBE corrections δN (ε, Q2) with nucleon intermediate states for the γ (γ γ ) (dotted), Z(γ γ ) (dashed), and
γ (Zγ ) (solid) contributions at Q2 = 0.01, 0.1, 1, and 5 GeV2. The correction is defined relative to that of Mo and Tsai [27]. Note that
the γ (γ γ ) correction enters with the opposite sign in the asymmetry, Eq. (28).

can be obtained from the relation

�
αµ

γN→�(p, q) = γ0
[
�

µα

γ�→N (p, q)
]†

γ0, (34)

where p is the outgoing � momentum and q the incoming
photon momentum.

0 0.2 0.4 0.6 0.8 1
ε

−0.01

0

0.01

0.02

0.03

0.04

δ N
 (ε

,Q
2 )

empirical
dipole

0.1

Q
2
 = 0.01 GeV

2

1

5

FIG. 2. (Color online) Model dependence of the total TBE
corrections δN (ε, Q2) with nucleon intermediate states for Q2 =
0.01, 0.1, 1, and 5 GeV2, using the empirical form factors as described
in the text (solid) and using a dipole approximation (dashed).

The amplitude for the box and crossed-box diagrams with
a � intermediate state can then be written as

Mγ�γ

= e4
∫

d4k

(2π )4
ūe(p3)

× [γµSF (p1 − k,me)γν + γνSF (p3 + k,me)γµ]

× ue(p1)ūN (p4) �
µα

γ�→N (p2 + k, q − k)

× SF (p2 + k,M)P3/2
αβ (p2 + k) �

βν

γN→�(p2 + k, k)

× uN (p2)�F (k, 0)�F (k − q, 0), (35)

where the projection operator

P3/2
αβ (p) = gαβ − 1

3
γαγβ − 1

3p2
(	pγαpβ + pαγβ 	p) (36)

ensures that only spin-3/2 components are present. Suppres-
sion of the unphysical spin-1/2 contributions also leads to
the condition on the vertex pα�

µα

γ�→N (p, q) = 0. Note that
in Eq. (35) a finite photon mass is not needed in the photon
propagators, because, in contrast to Eq. (29), the result here is
infrared finite.

For simplicity, we assume a dipole shape for the three γN�

transition form factors, gi(Q2) ≡ giF
�
V (Q2) for i = 1, 2, 3,

where F�
V (Q2) = (1 + Q2/�2

�(V ))
−2, with a dipole mass

��(V ) = 0.84 GeV for each. For the electric and magnetic
couplings we use the values g1 = 7 and g2 = 9 [22], obtained
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from a K-matrix analysis of pion photoproduction data [29].
A more realistic πN coupled channel quasipotential study
[30] gives similar values, g1 = 6.3 and g2 = 9.7. For the g3

coupling, an estimate from the γN → �E2/M1 transition
strength yields g3 = 5.8. To test the sensitivity of the TBE
corrections to the value of g3, we consider a range of couplings,
as discussed below. Note that the interference contributions
between the g1, g2, and g3 terms cancel in the TBE amplitude
because of the odd and even character of these vertices in the
loop variable k.

For the ZN� vertex both vector and axial-vector contribu-
tions enter. For the vector transitions, CVC requires the same
form for the ZN� vertex as for the γN� vertex,

�
µα(V )
Z�→N (p, q)

= i

2M2
�

√
2

3

{
gV

1 (Q2)

× [gµα 	p 	q − pµγ α 	q − γ µγ αp · q + γ µqα 	p]

+ gV
2 (Q2)[pµqα − gµαp · q] + gV

3 (Q2)

M�

× [q2(pµγ α − gµα 	p) − qµ(qα 	p − γ αp · q)]

}
γ5,

(37)

where again the factor
√

2/3 is associated with the N → �

weak isospin transition. Using CVC and isospin symmetry,
the vector ZN� form factors can be related to the γN� form
factors by

gV
i (Q2) = 2(1 − 2 sin2 θW )gi(Q

2), (38)

where the Q2 dependence of the electromagnetic γN� form
factor is parametrized as above.

For the axial-vector vertex, nonconservation of the axial
current implies the existence of an addition form factor.
However, one can use the partially conserved axial current
(PCAC) hypothesis to relate two of the form factors, leaving a
similar expression to that in Eq. (37),

�
µα(A)
Z�→N (p, q)

= i

2M2
�

{
gA

1 (Q2)

× [gµα 	p 	q − pµγ α 	q − γ µγ αp · q + γ µqα 	p]

+ gA
2 (Q2)[pµqα − gµαp · q] + gA

3 (Q2)

M�

× [q2(pµγ α − gµα 	p) − qµ(qα	p − γ αp · q)]

}
. (39)

Note that here the weak isospin transition factor has been ab-
sorbed into the definition of the couplings [31]. The axial form
factors are less well determined, but some constraints have
been extracted from analysis of ν scattering data. In a recent
analysis, Lalakulich and Paschos [31] parametrized the νN →
µ� cross sections from bubble chamber experiments at low Q2

in terms of phenomenological form factors. The available data
can be described by the form factors gA

1 (Q2) = 0, gA
2 (Q2) =

(M2
�/2M2)CA

5 (Q2) = (Q2/4M2)gA
3 (Q2), where CA

5 is given
in Appendix A, with CA

5 (Q2 = 0) = 1.2 [31]. For the Q2

dependence we again take a dipole form, with a cutoff mass
of ��(A) = 1.0 GeV.

As for the electromagnetic case, the vertex with an outgoing
� can be obtained from the relation

�
αµ(V,A)
ZN→� (p, q) = γ0

[
�

µα(V,A)
Z�→N (p, q)

]†
γ0, (40)

where p is the outgoing � momentum and q the incoming
Z-boson momentum. The ZN� amplitude for the box and
crossed-box diagrams with a � intermediate state can then be
written

Mγ�Z = e2g2

(4 cos θW )2

∫
d4k

(2π )4

× ūe(p3)
[(

ge
V γµ + ge

Aγµγ5
)
SF (p1 − k,m)γν

+γνSF (p3 + k,m)
(
ge

V γµ + ge
Aγµγ5

)]
ue(p1)

× ūN (p4)�µα

Z�→N (p2 + k, q − k)SF (p2 + k,M)

×P3/2
αβ (p2 + k) �

βν

γN→�(p2 + k, k)uN (p2)

×�F (k, 0)�F (k − q,MZ), (41)

where �
µα

Z�→N is the sum of the vector (37) and axial-vector
(39) vertices. The corresponding amplitude Mγ�Z can be
derived in a similar manner.

In Fig. 3 we plot the individual TBE contributions to δ�

from processes with intermediate �(1232) states as a function
of ε for a range of Q2 values between 0.01 and 5 GeV2.
Several interesting features can be noted. First, the magnitude
and shape of the � corrections are very different from the
nucleon corrections in Fig. 1. At low Q2(<∼ 0.1 GeV2) the
two-photon interference with either the Born γ or Z exchange
is almost negligible, increasing somewhat at larger Q2. The
γ (Zγ ) contribution is also relatively small at low ε, and none
of the corrections exceed ∼1% in magnitude for ε <∼ 0.8 and
Q2 <∼ 1 GeV2 and ∼2% for Q2 <∼ 5 GeV2.

At larger ε, however, the γ (Zγ ) correction increases
rapidly, becoming even bigger than the nucleon correction,
and in fact appears to diverge as ε → 1. The increase of the
one-loop contributions to the asymmetries may be related to
the growth of the invariant center of mass energy for fixed Q2

as ε → 1. Because the � intermediate state amplitudes Mγ�γ

andMγ�Z have numerators that have powers of loop momenta
higher than those of the corresponding nucleon amplitudes
MγNγ and MγNZ , one expects that the � contributions
should grow faster with invariant energy than the nucleon.
It is also interesting to observe the cusp behavior of the γ (γ γ )
and Z(γ γ ) corrections at Q2 = 0.1 GeV2 around ε = 0.6, the
kinematics of which corresponds to the threshold point of the
e-� channel.

The combined TBE correction from � intermediate states
is shown in Fig. 4(a), for various input form factors. In general
the behavior of the total correction δ� is quite dramatic at
high ε, with the magnitude increasing as ε → 1. The total
correction for Q2 <∼ 0.1 GeV2 is positive for most ε values,
but changes sign to become negative at larger Q2. As for
the nucleon case, the dependence on the input form factors
is relatively weak for all Q2 <∼ 1 GeV2, whether one uses
empirical form factors for the vector γNN or ZNN vertices or
a dipole approximation for all the form factors. Similarly, the
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FIG. 3. (Color online) TBE corrections δ�(ε, Q2) with �(1232) intermediate states, for the γ (γ γ ) (dotted), Z(γ γ ) (dashed), and
γ (Zγ ) (solid) contributions at Q2 = 0.01, 0.1, 1, and 5 GeV2.

dependence on the dipole cutoff masses ��(V,A) for the γN�

and ZN� vertices is small for the same Q2 range, Fig. 4(b).
The sensitivity to the input form factors becomes more
appreciable at larger Q2, however, as the Q2 = 5 GeV2 results
demonstrate. One should caution, though, that at momentum
transfers of Q2 ∼ 5 GeV2 or higher the reliability of a purely
hadronic resonance description of the TBE process is more
questionable.

Finally, the dependence of δ� on the Coulomb coupling
constant g3 is illustrated in Fig. 5, where the total correction
at Q2 = 0.01 and 1 GeV2 is shown for g3 = −2 [22], 0,
and 5.8 [29]. The results with g3 = −2 and 0 are almost
indistinguishable, while using the preferred coupling g3 = 5.8
gives slightly smaller contributions for most ε. One can
conclude, therefore, that the uncertainty in the Coulomb
coupling should not affect the overall results or conclusions.
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1

FIG. 4. (Color online) Total TBE correction δ�(ε, Q2) with �(1232) intermediate states for Q2 = 0.01, 0.1, 1, and 5 GeV2. (a) Comparison
between using empirical nucleon form factors (solid) and a dipole approximation (dashed). (b) Dependence on the N → � transition
form factors, using the standard cutoffs ��(V ) = 0.84 GeV, ��(A) = 1.0 GeV, as described in the text (solid), and the modified cutoffs
��(V ) = 0.68 GeV, ��(A) = 0.8 GeV (dashed).
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FIG. 5. (Color online) Total TBE correction δ�(ε, Q2) with
�(1232) intermediate states for Q2 = 0.01 and 1 GeV2, with different
Coulomb couplings g3 = −2 (solid), 0 (dotted), and 5.8 (dashed).

IV. EFFECTS ON OBSERVABLES

A comparison of the total TBE corrections with nucleon
and �(1232) intermediate states, together with their sum, is
presented in Fig. 6 for Q2 = 0.01, 0.1, 1, and 5 GeV2. As
observed in the previous section, at small ε(ε <∼ 0.6) the TBE
correction at Q2 <∼ 1 GeV2 is dominated by the nucleon elastic
contribution. At larger ε, the � plays an increasingly important
role and generally exceeds the nucleon piece at ε >∼ 0.9. At
higher Q2, the magnitude of the � contribution is larger than
that of the nucleon for most ε values, although, as remarked

above, the reliability of a purely resonant description of TBE
is less clear at momentum transfers above Q2 ∼ 5 GeV2.

The Q2 dependence is more clearly illustrated in Fig. 7,
where we show the nucleon and � corrections for fixed
ε = 0.1, 0.5, and 0.9. At low Q2 the nucleon correction δN

increases as Q2 → 0, but flattens out somewhat for larger Q2.
The � correction δ�, in contrast, is almost Q2 independent
for Q2 <∼ 1 GeV2, except at very high ε, but rapidly becomes
large and negative at higher Q2.

The results for δ� are different in shape and magnitude
from those reported by Nagata et al. [19], which are more
pronounced at large Q2. As observed in Figs. 4 and 5, the
dependence on the input form factors and N� couplings is
unlikely to account for these differences. We have checked
the numerical calculations of the TBE amplitudes using two
independent computer codes and find agreement between
them. It is not clear therefore what the origin of the differences
may be. Nevertheless, we do agree with the general finding
in Ref. [19] that the � plays an increasingly important role at
forward angles compared with the nucleon.

While the � correction is relatively small for Q2 between
around 0.01 and 3 GeV2, at very low Q2 there can be a sizable
enhancement of the γZ contribution at extremely forward
angles, ε → 1, corresponding to large incident electron en-
ergies. This point was made recently in Ref. [32], which
argued for a large inelastic Regge contribution in the high
energy limit. In this region the TPE contribution is suppressed,
and the Born term is dominated by the proton weak charge,
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FIG. 6. (Color online) TBE corrections δN (ε,Q2) for the nucleon (dashed) and δ�(ε, Q2) for the �(1232) (dotted) intermediate states, and
the sum (solid), for Q2 = 0.01, 0.1, 1, and 5 GeV2.
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FIG. 7. (Color online) Total TBE corrections δN (upper three
curves) and δ� (lower three curves) versus Q2 for fixed ε values:
ε = 0.1 (dashed), 0.5 (dotted), and 0.9 (solid).

Qw. Hence the � contribution would be enhanced by a
factor (1 + Qw)/Qw ≈ 14. In Fig. 8 we show the sum of
the nucleon and � contributions to δγ (γZ) as a function of
the incident electron energy, for Q2 = 0 and for the Qweak
[10] value Q2 = 0.03 GeV2. The � contribution rises linearly
with energy up to E ∼ 0.5 GeV, where it reaches ≈2–3%,
after which it decreases. This is qualitatively similar to the
resonance contributions found in Ref. [32].

The corrections to the APV asymmetry at kinematics
corresponding to past and planned experiments [1–5,7,10]
are listed in Table I, where the nucleon (δN ) and �(δ�)
contributions, together with their sum, are shown (in percent
%) for various Q2 and laboratory scattering angles θ . In
the numerical calculations the empirical proton [24] and
neutron [26] electromagnetic form factors are used, with dipole
parametrizations for the axial form factors, as discussed in
Sec. III.

For the forward angle HAPPEX [1] and G0 [2] mea-
surements, the nucleon correction δN is in the vicinity of
∼0.1–0.2%, but increases to ∼1.0–1.5% for the backward
angle G0 [4] and the earlier SAMPLE [5] measurements.
In contrast, at forward kinematics the � contribution δ� is

0 1 2 3 4 5
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δ γ 
(γ

Z
)

Q
2
 = 0

Q
2
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2

FIG. 8. (Color online) TBE correction δγ (γZ) arising from nucleon
and � intermediate states as a function of the incident electron energy
E, for Q2 = 0 (solid) and Q2 = 0.03 GeV2 (dashed).

negative and of order −0.5% to −1%, but is almost negligible
(∼ − 0.1%) at backward angles.

When combined, the results reveal a nontrivial interplay
between the total nucleon and � contributions, with the
nucleon dominating the backward angle corrections and the
� contribution driving the forward angle kinematics, where it
is rapidly varying with both ε and Q2. Consequently, at the
intermediate angles θ ≈ 35◦ of the PVA4 experiment both the
N and � corrections are positive and combine to give a net
of ∼1–2% effect. For the planned Qweak experiment [10] at
very low Q2(=0.03 GeV2) and θ = 8◦, on the other hand, the
positive nucleon and negative � contributions mostly cancel,
leaving a much smaller overall correction of ∼0.1%.

Before correcting the experimental asymmetries for the
above TBE effects, one should note that the standard data
analyses do already include an estimate of TBE effects [13,23].
These are usually taken from the classic analysis of Marciano
and Sirlin [12,13] who computed the γ (Zγ ) contributions at
Q2 = 0. Recent explicit calculations [17,18], however, have
found a strong Q2 dependence at small values of Q2, which
could significantly impact the extrapolation of the Q2 = 0
results to the experimental kinematics. To implement the full
Q2 dependence of the TBE corrections, and avoid double
counting of the effects in the data analyses, one must remove
the Q2 = 0 TBE corrections, which are usually parametrized
in terms of ρ and κ [13,23], before adding the corrections
computed here.

In Ref. [13] the loop integration in the box diagram is broken
up into a “hadronic,” low-mass part and an “asymptotic,” high-
mass contribution given by

Kasy = M2
Z

∫ ∞

µ2
dk2 1

k2
(
k2 + M2

Z

) = log
M2

Z

µ2
+O

(
µ2

M2
Z

)
,

(42)

where µ is the cutoff mass that defines the mass separation,
typically of the order of 1 GeV. For µ ≈ 0.5–1 GeV, Kasy is in
the range ≈8–10. The hadronic part is computed in Ref. [13]
at Q2 = 0 using dipole form factors.

To assess the effect of the new TBE contribution, we display
in Table I the corrections δMS (in percent) defined as

δMS = AV (ρ, κ) − AV (ρ − �ρMS, κ − �κMS)

AV (ρ, κ)
, (43)

where the numerical values for the �ρMS and �κMS corrections
(for µ = 1 GeV) are(

�ρhad
MS ,�κhad

MS

) = (−0.07%,−0.10%), (44a)(
�ρ tot

MS,�κ tot
MS

) = (−0.37%,−0.53%), (44b)

for the hadronic only and total (hadronic + asymptotic)
contributions, respectively. The latter were subtracted in the
analyses of Refs. [17] and [19], whereas we believe that only

the Q2 = 0 hadronic component should be removed when
adding the new TBE corrections. Numerically the hadronic
contribution is much smaller than the asymptotic, with the
total δtot

MS being around 1–3% for forward kinematics and over
4% for the proposed Qweak experiment [10]. The hadronic
correction δhad

MS is also largest at forward angles, but is typically
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TABLE I. TBE corrections for the nucleon (δN ) and �(δ�) intermediate states, and their sum (in percent),
at various experimental kinematics. Also shown are corrections from removing the existing hadronic δhad

MS

and total (hadronic + asymptotic) δtot
MS corrections at Q2 = 0 [13,23].

Q2 (GeV2) θ Expt. δN δ� δN+� δhad
MS δtot

MS

0.099 6.0◦ HAPPEX [1] 0.19 −1.20 −1.01 0.45 2.42
0.477 12.3◦ HAPPEX [1] 0.13 −0.44 −0.31 0.16 0.86
0.077 6.0◦ HAPPEX [3] 0.22 −1.04 −0.82 0.52 2.78
0.1 144.0◦ SAMPLE [5] 1.63 −0.09 1.54 0.06 0.33
0.108 35.37◦ PVA4 [7] 1.05 0.78 1.83 0.37 1.98
0.23 35.31◦ PVA4 [7] 0.62 0.34 0.96 0.23 1.22
0.122 6.68◦ G0 [2] 0.18 −1.06 −0.88 0.40 2.13
0.128 6.84◦ G0 [2] 0.18 −1.03 −0.85 0.39 2.07
0.136 7.06◦ G0 [2] 0.18 −0.99 −0.81 0.37 1.99
0.144 7.27◦ G0 [2] 0.17 −0.96 −0.79 0.36 1.92
0.153 7.5◦ G0 [2] 0.17 −0.92 −0.75 0.35 1.85
0.164 7.77◦ G0 [2] 0.17 −0.88 −0.71 0.33 1.77
0.177 8.09◦ G0 [2] 0.16 −0.83 −0.67 0.32 1.69
0.192 8.43◦ G0 [2] 0.16 −0.79 −0.63 0.30 1.60
0.21 8.84◦ G0 [2] 0.16 −0.73 −0.57 0.28 1.51
0.232 9.31◦ G0 [2] 0.16 −0.68 −0.52 0.26 1.41
0.262 9.92◦ G0 [2] 0.15 −0.62 −0.47 0.24 1.30
0.299 10.63◦ G0 [2] 0.15 −0.55 −0.40 0.22 1.19
0.344 11.46◦ G0 [2] 0.15 −0.48 −0.33 0.20 1.07
0.41 12.59◦ G0 [2] 0.15 −0.41 −0.26 0.18 0.95
0.511 14.2◦ G0 [2] 0.15 −0.32 −0.17 0.15 0.81
0.631 15.98◦ G0 [2] 0.15 −0.26 −0.11 0.13 0.70
0.788 18.16◦ G0 [2] 0.16 −0.23 −0.07 0.11 0.60
0.997 20.9◦ G0 [2] 0.17 −0.22 −0.05 0.10 0.51
0.23 110.0◦ G0 [4] 1.37 −0.10 1.27 0.09 0.47
0.62 110.0◦ G0 [4] 1.10 −0.15 0.95 0.07 0.35
0.03 8.0◦ Qweak [10] 0.57 −0.45 0.13 0.80 4.25

0.1–0.4% for most of the experiments and ranges up to 0.8%
for the Qweak kinematics.

The impact of these differences on the strange form factors
is difficult to gauge without performing a full reanalysis of
the data, because in general different electroweak parameters
and form factors are used in the various experiments [1–5,7].
Following Zhou, Kao, and Yang [17], an estimate of the
induced difference between the strange asymmetry extracted
using the different form factors was made in Ref. [18].
Differences of the order of 15% were found between the
empirical and monopole form factors (as used in Ref. [17])
for the HAPPEX kinematics [1,3], around 20% for the G0
datum [2] in Table I, and over 30% for the PVA4 kinematics [7].
One should caution, however, that these values are indicative
only, and a more detailed reanalysis of the strange form factor
data including TBE effects is currently in progress [33].

V. CONCLUSION

In this article we have presented a comprehensive analysis
of two-boson (γ and Z) exchange corrections in parity-
violating electron-proton elastic scattering, paying particular
attention to the effects arising from the substructure of the

nucleon. Working within a hadronic framework, we have
computed contributions from box (and crossed-box) diagrams
in which the intermediate states are described by nucleons and
� baryons.

The � contribution is found to be much smaller than
the nucleon at small ε, but becomes dominant at forward
scattering angles. The dependence of the corrections on the
input hadronic form factors is small for Q2 <∼ 1 GeV2, but
becomes appreciable at higher Q2(Q2 >∼ 5 GeV2), indicating
the approximate limit beyond which the hadronic calculations
may no longer be reliable.

As well as studying their detailed ε and Q2 dependence,
we have evaluated the nucleon and � TBE corrections
relevant for recent and planned parity-violating experiments
[1–5,7,10], finding a nontrivial interplay between the N

and � contributions. The total corrections at low Q2 range
from ∼ − 1% for forward angles to ∼1–2% at backward
kinematics. For the planned Qweak experiment [10] we find a
large cancelation between the (positive) δN and (negative) δ�

corrections, resulting in a modest, ∼0.1% effect overall.
Our results for the � differ significantly from those in the

recent analysis of Ref. [19], with the correction δ� differing
both in sign and magnitude. We have explored the possible
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origin of these differences by studying the dependence of
the corrections on the input nucleon and N� transition
form factors, but find the effects to be much smaller than
those needed to explain the discrepancy. We also highlight
the need for a careful treatment of the subtraction of the
standard Marciano-Sirlin γZ correction at Q2 = 0 before
adding the new contributions. The results computed here
can be used in future data analyses to more reliably extract
strange electromagnetic form factors [8,33] or standard model
electroweak parameters [11].
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APPENDIX: RELATIONS TO OTHER N� TRANSITION
FORM FACTORS

In the literature other notations exist for the N� transition
form factors. In this appendix we relate the form factors defined
in this analysis with those used elsewhere.

In Ref. [34] (see also Refs. [30,35]) the electromagnetic
γN� vertex is defined as

�
µα

γ�→N (p, q) = 3(M + M�)

2M[(M + M�)2 + Q2]

×
√

2

3

{
ḡM (Q2)εµανβpνqβ

− ḡE(Q2)[pµqα − gµαp · q]iγ5

− ḡC(Q2)

M
[q2(pµγ α − gµα 	p)

−qµ(qα 	p − γ αp · q)]iγ5

}
. (A1)

To relate this form to that in Eq. (33), we note for the ḡM term
the identity

εµναβγ5uβ(p) = σµνuα(p) − σµαuν(p) + σ ναuµ(p), (A2)

where σµν = i
2 [γ µ, γ ν] and uα(p) is the Rarita-Schwinger

spinor-vector for the spin-3/2 � field. Contracting with pν and
qα and making use of the constraint relations

pµuµ(p) = 0 γµuµ(p) = 0, (A3)

one finds that the couplings are related by

gM,E = −3M2
�

M(M + M�)
ḡM,E, (A4a)

gC = −3M3
�

M2(M + M�)
ḡC. (A4b)

For the axial current, a vertex that one often encounters in
the literature is [31] (see also Refs. [36,37])

− i�
αµ

ZN→�(p, q) = CA
3 (Q2)

M
(gαµ 	q − qαγ µ)

+ CA
4 (Q2)

M2
(gαµp · q − qαpµ)

+CA
5 (Q2)gαµ + CA

6 (Q2)

M2
qαqµ, (A5)

for an outgoing � with momentum p and an incoming Z boson
with momentum q. Comparing with the expression in Eq. (39),
and using the Dirac equation, one finds the following relations
for the form factors:

CA
3

M
= 1

2M�

gA
1 , (A6a)

CA
4

M2
= 1

2M2
�

(
gA

2 − 2gA
1

)
, (A6b)

CA
5 = q2

2M2
�

gA
3 , (A6c)

CA
6

M2
= − 1

2M2
�

gA
3 . (A6d)

The form factors CA
5 and CA

6 are related by PCAC, CA
6 →

CA
5 M2/Q2 in the chiral limit, with CA

5 (0) = fπgπN�/
√

3 =
1.2. The fit in Ref. [31] to the neutrino �-production data
gives CA

3 = 0 and CA
4 = −CA

5 /4, leaving a single unique form
factor, which is taken to be CA

5 . One may therefore identify
the axial couplings in Eq. (39) as

gA
1 (Q2) = 0, (A7a)

gA
2 (Q2) = − M2

�

2M2
CA

5 (Q2), (A7b)

gA
3 (Q2) = 2M2

�

q2
CA

5 (Q2). (A7c)

To compute the gA
3 contribution, we include the 1/q2 factor

in the form factor and use the relation 1
q2

1
q2−�2 = 1

�2 (− 1
q2 +

1
q2−�2 ).
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