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The influence of the medium-dependent finite width of quark gluon plasma (QGP) bags on their equation of
state is analyzed within an exactly solvable model. It is argued that the large width of the QGP bags not only
explains the observed deficit in the number of hadronic resonances but also clarifies the reason why the heavy
QGP bags cannot be directly observed as metastable states in a hadronic phase. The model allows us to estimate
the minimal value of the width of QGP bags being heavier than 2 GeV from a variety of the lattice QCD data and
get that the minimal resonance width at zero temperature is about 600 MeV, whereas the minimal resonance width
at the Hagedorn temperature is about 2000 MeV. As shown, these estimates are almost insensitive to the number
of the elementary degrees of freedom. The recent lattice QCD data are analyzed and it is found that in addition to
the σT 4 term the lattice QCD pressure contains T -linear and T 4 ln T terms in the range of temperatures between
240 and 420 MeV. The presence of the last term in the pressure bears almost no effect on the width estimates.
Our analysis shows that at high temperatures the average mass and width of the QGP bags behave in accordance
with the upper bound of the Regge trajectory asymptotics (the linear asymptotics), whereas at low temperatures
they obey the lower bound of the Regge trajectory asymptotics (the square root one). Since the model explicitly
contains the Hagedorn mass spectrum, it allows us to remove an existing contradiction between the finite number
of hadronic Regge families and the Hagedorn idea of the exponentially growing mass spectrum of hadronic bags.
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I. INTRODUCTION

The concept of strongly interacting QGP (sQGP) [1,2] has
created a new framework for the quantum chromodynamic
(QCD) phenomenology. However, the very strong argument
that sQGP is not a weakly coupled gas but rather a strongly
coupled liquid [1] does not clarify the question of what
are the relevant degrees of freedom to formulate the proper
statistical description of the sQGP. The idea that the dressed
quarks and gluons should form the multiple binary colored
bound states [1] and even multibody bound states [1,3] does
not help much, because in the sQGP the colored objects
must strongly interact with the surrounding media and form
the colorless clusters whose interaction with each other is
essentially reduced compared to their constituents. Such a
behavior of interacting constituents is typical for the clusters
formed by the molecules in the ordinary liquids [4,5] and
by the nucleons in a nuclear liquid [5–7]. An existence of
colorless clusters in the sQGP is indirectly supported by
the huge quark-antiquark “energy” potentials found from the
lattice QCD (LQCD) simulations [2,8], which indicate us that
at energy densities right above the deconfinement transition
there is no separation of valence quarks belonging to the same
hadron. These huge values of binding energy indicate that the
relevant degrees of freedom in the sQCD are heavy and large
hadrons that nowadays are regarded as the QGP bags.

The idea that the relevant degrees of freedom in the QGP
are the hadronic bags of any volumes and masses that contain
quarks and gluons inside was first formulated in Ref. [9] and
named gas of bags model (GBM). This work has unified several
instructive results obtained earlier: it was shown [9] that the
MIT bag model [10] leads to the Hagedorn mass spectrum of
bags [11] and the phase transition to the QGP corresponds to
a formation of the infinitely large bag. Further development

in this direction led to many interesting findings [12,13]. The
most promising of them is an inclusion of the quark gluon
bags surface tension into statistical description [12] that allows
one to simultaneously describe the first- and second-order
deconfinement phase transition with the crossover.

The existence of the QGP bags with the Hagedorn mass
spectrum near the transition temperature to hadronic phase is
strongly supported by the fact that the Hagedorn resonances
can naturally explain the extra baryon (antibaryon) [14] and
kaon (antikaon) [15] production that was found in the 5%
most central Au-Au collisions at the Relativistic Heavy Ion
Collider (RHIC) [16]. Also it seems that the QGP bags with
the Hagedorn mass spectrum can explain the fast chemical
equilibration of hadrons in an expanding fireball [15]. Such
an equilibration is a manifestation of the fact that the reso-
nances with Hagedorn mass spectrum are the perfect particle
reservoirs and perfect thermostats [17]. Hence our starting
point is the quark gluon bags with surface tension model
(QGBSTM) [12], which includes all the important features of
the previously suggested statistical models discussed above.

The question of the relevant degrees of freedom in the
sQGP is of principle importance not only to formulate the
correct statistical description but also to explain the various
phenomena that occur in the sQGP during its thermalization,
expansion, and hadronization in the course of high-energy
nuclear or elementary particle collisions. We mean not only
the direct flow, conical flow, or the jet quenching but the
mechanism of thermal and chemical equilibration of the sQGP
whose investigation requires the development of nonperturba-
tive methods suited to describe such processes. Unfortunately,
the powerful methods suggested in the past were not developed
further to exploit them for the present needs of heavy-ion
phenomenology. For example, the well-known dual resonance
model [18] is able to explain not only the Hagedorn mass
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spectrum but also the process of thermalization of decaying
resonances [19]. Hence it could be a good starting point to
study the process of thermalization of the QGP bags, but due
to the lack of our knowledge on the relevant degrees of freedom
of sQGP it is as yet unclear to what extent is it possible to use
the dual resonance model for this purpose.

The problem of the relevant degrees of freedom in the sQGP
has another important aspect. Indeed, the masses and bounds
on charge or isospin of the sQGP constituents are intensively
discussed in the LQCD community [20], but at the same
time important characteristics such as their mean volume and
lifetime have not yet caught the necessary attention. However,
these quantities may put some new bounds on the spatial and
temporal properties of the sQGP [21] created in high-energy
collisions. If, for instance, the sQGP consists of droplets of
finite (mean) size, then one could naturally resolve the HBT
puzzles at RHIC energies [22]. However, the short life-time
of heavy QGP bags found recently [21] may not only play
an important role in all thermodynamic and hydrodynamic
phenomena of the sQGP matter mentioned above but may also
explain the absence of strangelets [23] or, more generally, why
the finite QGP bags cannot be observed at energy densities
typical for hadronic phase [21] (see below). Therefore, an
investigation of the mass and volume distributions and the
lifetime of the QGP bags and their consequences for both
the experimental observables and theoretical studies is very
pertinent.

The work is organized as follows. First, we thoroughly
discuss the two conceptual problems of the GBM and its
generalizations that are typical for finite systems created in
high-energy collisions. Then in Sec. III we present the finite
width model (FWM) of QGP bags [21] and in Sec. IV we show
how both conceptual problems can be naturally resolved within
the FWM that is a principally new kind of model compared
to the GBM generalizations and early attempts to derive the
mass-volume spectrum of the QGP bags [13,24]. Section V
is devoted to the analysis of the LQCD pressure and trace
anomaly. These results allow us to estimate the width of the
QGP bags from the LQCD thermodynamics in Sec. VI. In
Sec. VII we compare two regimes of the FWM and show
that in the high-pressure regime the FWM QGP bags behave
in accordance with the upper bound [25] of the asymptotic
behavior of the Regge trajectories for the mass and width
of hadronic resonances, whereas in the low-pressure limit
they obey the lower limit of the asymptotic behavior of the
Regge trajectories [25]. Thus, we explicitly demonstrate that
the large and/or heavy QGP bags can be regarded as the objects
belonging to the Regge trajectories. Furthermore, we establish
the close relations between the Hagedorn idea of exponentially
increasing hadronic mass spectrum and finite number of Regge
trajectories of QGP bags within the Regge poles method. Our
conclusions are formulated in Sec. VII.

II. CONCEPTUAL PROBLEMS OF GBM

Despite the positive features of the GBM [9,26] and its
generalizations [12,13,27], all of them face two conceptual
problems. The first one can be formulated by asking a

very simple question: Why are the QGP bags never directly
observed in the experiments? The routine argument applied
to both high-energy heavy-ion and hadron collisions is that
there exists a phase transition and, hence, the huge energy gap
separating the QGP bags from the ordinary (light) hadrons
prevents the QGP coexistence at the hadron densities below
the phase transition. The same line of arguments is also valid,
if the strong crossover exists. The problem, however, arises
from the fact that in the laboratory experiments we are dealing
with finite systems. From the finite volume exact analytical
solutions of the constrained statistical multifragmentation
model (SMM) [6,7] and the GBM [9,26], found in Ref. [28] and
[29,30], respectively, it is known that in thermally equilibrated
finite system there is a non-negligible probability of finding
the small and not too heavy QGP bags, say with the mass of
10–15 GeV, even in the hadronic phase. Therefore, for finite
volume systems created in high-energy nuclear or elementary
particle collisions such QGP bags could appear as any other
metastable states in statistical mechanics, because in this case
the statistical suppression is just a few orders of magnitude
and not of the order of the Avogadro number.

Moreover, the finite volume solution of the GBM [29],
in which the mean mass of the QGP bag is proportional
to its volume, predicts the decay time τn ≈ V

πnV0T
for the

collective state n(n = 1, 2, 3, . . . , V0 ≈ 1 fm3 [21,29]) of the
mixed phase having the finite volume V and temperature T .
Therefore, if a single statistical state with n � 1 had a
pressure close to zero, its lifetime would be determined by
the temperature and the volume. If, in addition, such a state
could emit the photons or dileptons to reduce its temperature
without an essential reduction of its volume, it could live for
a very long time compared to the typical lifetime of heavy
hadronic resonances. In particular, one could think of the
strangelets [23], as a possible example for such a state.

Consequently, if such QGP bags can be created in high-
energy nuclear and in elementary particle collisions or in
some astrophysical phenomena there must be a reason that
prevents their direct experimental detection. As we will show
in the following there is an inherent property of the strongly
interacting matter equation of state (EOS) that prevents the
appearance of such QGP bags inside of the hadronic phase even
in finite systems and that is also responsible for the instability
of large or heavy strangelets.

The second conceptual problem is rooted in a huge deficit in
the number of observed hadronic resonances [31] with masses
above 2.5 GeV predicted by the Hagedorn model [11] and used,
so far, by all other subsequent models discussed above. Thus,
there is a paradox situation with the Hagedorn mass spectrum:
it was predicted for heavy hadrons that nowadays must be
regarded as QGP bags, but it can be experimentally established
up to hadronic masses of about 2.3 GeV [31]. Of course,
one could argue that heavy hadronic resonances cannot be
established experimentally because both their large width and
very large number of decay channels lead to great difficulties
in their identification. But the point is that, despite the recent
efforts of Ref. [32], the influence of large width of heavy
resonances on their EOS properties and the corresponding
experimental consequences were not studied in full.
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The recent step in this direction was made in Ref. [21].
We introduced the finite and medium-dependent width into
statistical description and studied its influence on the system’s
pressure at vanishing baryonic chemical potential there. We
argued that the FWM requires the inclusion of the width of
the QGP bags that, on one hand, explains the experimentally
observed deficit of heavy hadronic resonances compared to any
of the previous GBM generalizations, and, on the other hand,
we demonstrated that the new physical effect, the subthreshold
suppression of the QGP bags of the FWM, naturally resolves
the first conceptual problem formulated above.

III. BASIC INGREDIENTS OF THE FWM

The most convenient way to study the phase structure of
any statistical model similar to the GBM or QGBSTM is to
use the isobaric partition [12,26,28] and find its rightmost
singularities. Hence, we assume that after the Laplace trans-
form the FWM grand canonical partition Z(V, T ) generates
the following isobaric partition:

Ẑ(s, T ) ≡
∫ ∞

0
dV exp(−sV ) Z(V, T ) = 1

[s − F (s, T )]
,

(1)

where the function F (s, T ) contains the discrete FH and
continuous FQ mass-volume spectrum of the bags

F (s, T ) ≡ FH (s, T ) + FQ(s, T ) =
n∑

j=1

gje
−vj sφ(T ,mj )

+
∫ ∞

V0

dv

∫ ∞

M0

dm ρ(m, v) exp(−sv)φ(T ,m).

(2)

The density of bags of mass mk , eigenvolume vk , and
degeneracy gk is given by φk(T ) ≡ gkφ(T ,mk) with

φk(T ) ≡ gk

2π2

∫ ∞

0
p2dp exp

[
−

(
p2 + m2

k

)1/2

T

]

= gk

m2
kT

2π2
K2

(mk

T

)
. (3)

The mass-volume spectrum ρ(m, v) is the generalization of
the exponential mass spectrum introduced by Hagedorn [11].
Similar to the GBM and QGBSTM, the FWM bags are
assumed to have the hard core repulsion of the Van der Waals
type that generates the suppression factor proportional to the
exponential of bag eigenvolume exp(−sv). Because the mass-
volume spectrum ρ(m, v) can be written in a form containing
the discrete part FH , hereafter we will not distinguish the
discrete bags from the bags of continuous spectrum, if their
properties are similar. However, we will keep the sum and
integrals in Eq. (2) explicitly, because they correspond to
different phases of the model.

The first term of Eq. (2), FH , represents the contribution of
a finite number of low-lying hadron states up to mass M0 ≈
2 GeV [21] which correspond to different flavors. This function
has no s singularities at any temperature T and can generate a

simple pole of the isobaric partition, whereas the mass-volume
spectrum of the bags FQ(s, T ) can be chosen to generate an
essential singularity sQ(T ) ≡ pQ(T )/T that defines the QGP
pressure pQ(T ) at zero baryonic densities [12,24,26].

It is known from the definition of pressure in the grand
canonical ensemble that in the thermodynamic limit its
partition behaves as Z(V, T ) � exp[pV/T ]. An exponentially
increasing Z(V, T ) generates the rightmost singularity s∗ =
p/T of the function Ẑ(s, T ) in variable s. This is because
the integral over V in Eq. (1) diverges at its upper limit for
s < p/T . Therefore, the rightmost singularity s∗ of Ẑ(s, T )
gives us the system pressure:

p(T ) = T lim
V →∞

ln Z(V, T )

V
= T s∗(T ). (4)

The singularity s∗ of Ẑ(s, T ) (1) can be calculated from the
transcendental equation [12,26] s∗(T ) = F (s∗, T ).

As long as the number of sorts of bags, n, is finite, the
only possible singularities of Ẑ(s, T ) (1) are simple poles.
For example, for the ideal gas [n = 1; v1 = 0; FQ ≡ 0 in
Eq. (2)] s∗ = g1φ(T ,m1) and thus from Eq. (4) one gets
p = T g1φ(T ,m1) that corresponds to the grand canonical
ensemble ideal gas EOS for the particles of mass m1 and
degeneracy g1. However, for an infinite number of sorts of
bags, i.e., for FQ �= 0, there may appear an essential singularity
of Ẑ(s, T ) that corresponds to a different phase. This property
is used in the FWM.

Here we use the parametrization of the spectrum ρ(m, v)
introduced in [21]. It assumes that

ρ(m, v) = ρ1(v) N�

�(v) ma+ 3
2

exp

[
m

TH

− (m − Bv)2

2�2(v)

]
, (5)

ρ1(v) = f (T )v−b exp

[
−σ (T )

T
vκ

]
, (6)

where we drop the unimportant dependences. As one can see
from (5) the mass spectrum has a Hagedorn like parametriza-
tion and the Gaussian attenuation around the bag mass Bv

(B is the mass density of a bag of a vanishing width)
with the volume-dependent Gaussian width �(v) or width
hereafter. We will distinguish it from the true width defined as
�R = α�(v)(α ≡ 2

√
2 ln 2 ). We stress that the Breit-Wigner

attenuation of a resonance mass cannot be used in the spectrum
(5) because in case of finite width it would lead to a divergency
of the mass integral in Eq. (2) above TH .

The normalization factor obeys the condition

N−1
� =

∫ ∞

M0

dm

�(v)
exp

[
− (m − Bv)2

2�2(v)

]
. (7)

The constants a > 0 and b > 0 will be specified later.
The present choice of mass-volume spectrum (5) is a natural

extension of early attempts [24] to explore the bag volume
as a statistically independent degree of freedom to derive an
internal pressure of large bags. As it will be shown such a
simple parametrization not only allows us to resolve both of
the conceptual problems discussed above, but also it gives
us an exactly solvable model. Our further motivation for
the mass-volume spectrum (5) is based on two facts: first,
for all known hadronic resonances the width and mass are

054913-3



K. A. BUGAEV, V. K. PETROV, AND G. M. ZINOVJEV PHYSICAL REVIEW C 79, 054913 (2009)

independent characteristics, and, second, in a dense medium
the reaction rates may change and may lead to the medium
dependence of the resonance width. To take both of them
into account we introduced the volume dependence into the
Gaussian width and we came to conclusion that the proper
characteristic to indicate the impact of a medium is not the
resonance width, but the average resonance width. The latter
allows us to get simultaneously the mass and temperature
dependences of the resonance width averaged with respect
to the resonance volume [see Eq. (8)]. Moreover, as will
be shown later such a parametrization of the mass-volume
spectrum leads not only to a single choice for the Gaussian
width volume dependence but also allows us to introduce the
concept of Regge trajectories for the averaged quantities of the
QGP bags.

The volume spectrum in Eq. (6) contains the surface free
energy (κ = 2/3) with the T -dependent surface tension that
is parameterized as σ (T ) = σ0 · [ Tc−T

Tc
]2k+1(k = 0, 1, 2, . . .)

[12,33], where σ0 > 0 can be a smooth function of temper-
ature. For T being not larger than the tricritical temperature Tc

such a parameterization is justified by the usual cluster models
like the FDM [4,5] and SMM [6,7,34], whereas the general
consideration for any T can be driven by the surface partitions
of the Hills and Dales model [33]. In Ref. [12] it was argued
that at low baryonic densities the first-order deconfinement
phase transition degenerates into a crossover just because of
negative surface tension coefficient for T > Tc. The other
consequences of the present surface tension parametrization
and the discussion of the absence of the curvature free energy
in Eq. (6) can be found in Refs. [12,35].

The spectrum (5) has a simple form but is rather general
because both the width �(v) and the bag mass density B

can be medium dependent. It clearly reflects the fact that
the QGP bags are similar to the ordinary quasiparticles
with the medium-dependent characteristics (life-time, most
probable values of mass and volume). Now we are ready
to derive the infinite bag pressure for two choices of the
width: the volume-independent width �(v) ≡ �0 and the
volume-dependent width �(v) ≡ �1 = γ v

1
2 . As will be seen

below the latter resolves both of the conceptual problems
discussed earlier, whereas the former parametrization is used
for a comparison.

IV. ANALYSIS OF THE FWM SPECTRUM

First we note that for large bag volumes (v 	 M0/B > 0)
the factor (7) can be found as N� ≈ 1/

√
2π . Similarly, one can

show that for heavy free bags (m 	 BV0, V0 ≈ 1 fm3 [21],
ignoring the hard core repulsion and thermostate)

ρ(m) ≡
∫ ∞

V0

dv ρ(m, v) ≈ ρ1
(

m
B

)
B ma+ 3

2

exp

[
m

TH

]
. (8)

It originates in the fact that for heavy bags the Gaussian in
Eq. (5) acts like a Dirac δ function for either choice of �0 or
�1. Thus, the Hagedorn form of Eq. (8) has a clear physical
meaning and, hence, it gives an additional argument in favor
of the FWM. Also it gives an upper bound for the volume
dependence of �(v): the Hagedorn-like mass spectrum (8) can

be derived if for large v the width � increases slower than
v(1−κ/2) = v2/3.

Similarly to Eq. (8), one can estimate the width of heavy
free bags averaged over bag volumes and get �(v) ≈ �(m/B).
Thus, for �1(v) the mass spectrum of heavy free QGP bags
must be the Hagedorn-like one with the property that heavy
resonances have to develop the large mean width �1(m/B) =
γ
√

m/B and, hence, they are hardly observable. Applying
these arguments to the strangelets, we conclude that, if their
mean volume is a few cubic fermis or larger, they should
survive a very short time, which is similar to the results of
Ref. [23] predicting an instability of such strangelets.

Note also that such a mean width is essentially different
from both the linear mass dependence of string models [36]
and from an exponential form of the nonlocal field theoretical
models [37]. Nevertheless, as we demonstrate while discussing
the Regge trajectories (30) and (33) the mean width �1(m/B)
leads to the linear Regge trajectory of heavy free QGP bags
for large values of the invariant mass squared.

Next we calculate FQ(s, T ) (2) for the spectrum (5)
performing the mass integration. There are, however, two
distinct possibilities, depending on the sign of the most
probable mass:

〈m〉 ≡ Bv + �2(v)β, with β ≡ T −1
H − T −1. (9)

If 〈m〉 > 0 for v 	 V0, one can use the saddle point method
for mass integration to find the function FQ(s, T )

F+
Q (s, T ) ≈

[
T

2π

] 3
2
∫ ∞

V0

dv
ρ1(v)

〈m〉a exp

[
(p+ − sT )v

T

]
(10)

and the pressure of large bags

p+ ≡ T

[
βB + �2(v)

2v
β2

]
. (11)

To get Eq. (10) one has to use in Eq. (2) an asymptotic form
of the K2 function φ(T ,m) � (mT/2π )3/2 exp(−m/T ) for
m 	 T , collect all terms with m in the exponential, get a
full square for (m − 〈m〉) and make the Gaussian integration.
The resulting mass attenuation of the obtained spectrum
N�Ma

0
�(v)ma exp [− (m−〈m〉)2

2�2(v) ] at the fixed bag volume is shown in
Fig. 1 as the solid curve for the typical range of parameters
(a = 2).

Because for s < s∗
Q(T ) ≡ p+(v → ∞)/T the integral (10)

diverges at its upper limit, the partition (1) has an essential
singularity that corresponds to the QGP pressure of an infinite
large bag. One concludes that the width � cannot grow
faster than v1/2 for v → ∞, otherwise p+(v → ∞) → ∞
and F+

Q (s, T ) diverges for any s. Thus, for 〈m〉 > 0 the phase
structure of the FWM with �(v) = �1(v) is similar to the
QGBSTM [12].

The volume spectrum of bags F+
Q (s, T ) (10) is of general

nature and, in contrast with the one suggested in Ref. [24], has
a clear physical meaning. One can also see that two general
origins of the bulk part of bag’s free energy

−p+v = −T
[
β〈m〉 − 1

2 �2(v)β2
]

(12)

are the bag’s most probable mass and its width. Choosing
different T -dependent functions 〈m〉 and �2(v), one obtains
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different equations of state. Comparing the v power of the
exponential prefactor in Eq. (10) to the continuous volume
spectrum of bags of the QGBSTM [12], we find that a + b ≡
τ � 2.

It is possible to use the spectrum (10) not only for infinite
system volumes but also for finite volumes V 	 V0. In this
case the upper limit of integration should be replaced by
finite V (see Refs. [29,30] for details). This will change the
singularities of partition (1) to a set of simple poles s∗

n(T ) in the
complex s plane that are defined by the same equation as for
V → ∞. Similarly to the finite V solution of the GBM [29,30],
it can be shown that for finite T the FWM simple poles may
have small positive or even negative real part that would lead
to a non-negligible contribution of the QGP bags into the total
spectrum F (s, T ) (2). In other words, if the spectrum (10),
was the only volume spectrum of the QGP bags, then there
would exist a finite (non-negligible) probability to find heavy
QGP bags (m 	 M0) in finite systems at low temperatures
T � Tc. Therefore, using the results of the finite volume GBM
and SMM, we conclude that the spectrum (10) itself cannot
explain the absence of the QGP bags at T � Tc and, hence,
an alternative explanation of this fact is required.

Such an explanation corresponds to the case 〈m〉 � 0 for
v 	 V0. From Eq. (9) one can see that for the volume-
dependent width �(v) = �1(v) the most probable mass 〈m〉
inevitably becomes negative at low T , if 0 < B < ∞. In
this case the maximum of the Gaussian mass distribution is
located at resonance masses m = 〈m〉 � 0. This is true for
any argument of the K2 function in FQ(s, T ) (2). Because
the lower limit of mass integration M0 lies above 〈m〉, only
the tail of the Gaussian mass distribution may contribute into
FQ(s, T ). A thorough inspection of the integrand in FQ(s, T )
shows (see the dashed curve in Fig. 1 for a = 2) that above
M0 it is strongly decreasing function of resonance mass and,
hence, only the vicinity of the lower limit of mass integration
M0 sizably contributes into FQ(s, T ). Applying the steepest
descent method and the K2-asymptotic form for M0T

−1 	 1

FIG. 1. (Color online) The resulting mass attenuation
N�Ma

0
�(v)ma exp [− (m−〈m〉)2

2�2(v)
] as the function of bag mass at the fixed

bag volume for positive and negative values of the most
probable bag mass. The solid (dashed) curve corresponds to
〈m〉 = 7 GeV(〈m〉 = −1.5 GeV). Both curves are shown for the
same width �(v) = 600 MeV and a = 2.

one obtains

F−
Q (s, T ) ≈

[
T

2π

] 3
2
∫ ∞

V0

dv
ρ1(v)N��(v) exp

[ (p−−sT )v
T

]
Ma

0 [M0 − 〈m〉 + a�2(v)/M0]

(13)

with the formal expression for the pressure of QGP bag

p−∣∣
v	V0

= T

v

[
βM0 − (M0 − Bv)2

2�2(v)

]
. (14)

We would like to stress that the last result requires B > 0
and it cannot be obtained for a weaker v growth than
�(v) = �1(v). Indeed, if B < 0, then the normalization
factor (7) would not be 1/

√
2π but would become N� ≈

[M0 − 〈m〉]�−1(v) exp [ (M0−Bv)2

2�2(v) ] and, thus, it would cancel
the leading term in pressure (14). Note, however, that the
inequality 〈m〉 � 0 for all v 	 V0 with positive B and finite
p−(v → ∞) is possible for �(v) = �1(v) only. In this case the
pressure of an infinite bag is

p−(v → ∞) = −T
B2

2γ 2
. (15)

Also it is necessary to point out that the only width �(v) =
�1(v) does not lead to any divergency in the bag pressure
in thermodynamic limit. This is clearly seen from Eqs. (11)
and (14) because the multiplier �2(v) stands in the numerator
of the pressure (11), whereas in the pressure (14) it appears
in the denominator. Thus, if one chooses the different v

dependence for the width, then either p+ or p− would diverge
for the bag of infinite size.

The new outcome of this case with B > 0 is that for
T < TH the spectrum (13) contains the lightest QGP bags
having the smallest volume because every term in the pressure
(14) is negative. The finite volume of the system is no longer
important because only the smallest bags survive in Eq. (13).
Moreover, if such bags are created, they would have mass about
M0 and the width about �1(V0), and, hence, they would not
be distinguishable from the usual low-mass hadrons. Thus, the
case 〈m〉 � 0 with B > 0 leads to the subthreshold suppression
of the QGP bags at low temperatures, because their most
probable mass is below the mass threshold M0 of the spectrum
FQ(s, T ). Note that such an effect cannot be derived within
any of the GBM-kind models proposed earlier. The negative
values of 〈m〉 that appeared in the expressions above serve
as an indicator of a different physical situation comparing to
〈m〉 > 0 but have no physical meaning because 〈m〉 � 0 does
not enter the main physical observable p−.

V. COMPARISON WITH LQCD RESULTS

The obtained results give us an instructive opportunity to
make a bridge between the particle phenomenology, some
experimental facts and the LQCD. For instance, if the most
probable mass of the QGP bags is known along with the QGP
pressure, one can estimate the width of these bags directly from
Eqs. (12) and (14). To demonstrate the new possibilities let us
now consider several examples of the QGP EOS and relate
them to the above results. First, we study the possibility of
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getting the MIT bag model pressure pbag ≡ σT 4 − Bbag [10]
by the stable QGP bags, i.e., �(v) ≡ 0. Equating the pressures
p+ and pbag, one finds that the Hagedorn temperature is related
to a bag constant Bbag ≡ σT 4

H . Then the mass density of such
bags 〈m〉

v
is identical to

B = σTH (T + TH )
(
T 2 + T 2

H

)
, (16)

and, hence, it is always positive. Thus, the MIT bag model EOS
can be easily obtained within the FWM, but, as was discussed
earlier, such bags should be observable.

Second, we consider the stable bags, �(v) ≡ 0, but without
the Hagedorn spectrum, i.e., TH → ∞. Matching p+ = −B

and pbag, we find that at low temperatures the bag mass density
〈m〉
v

= B is positive, whereas for high T the mass density
cannot be positive and, hence, one cannot reproduce pbag

because in this case B � 0 and the resulting pressure is not
p− (14), but rather a zero, as seen from Eqs. (13) and (14) and
the N� expression for the limit �(v) → 0.

One can try to reproduce pbag with the finite T -dependent
width �(v) = 2σT 5v for TH → ∞. Then one can get pbag

from p+, but only for low temperatures obeying the inequality
〈m〉
v

= Bbag − 2σT 4 > 0. Thus, the last two examples show us
that without the Hagedorn mass spectrum one can not get the
MIT bag model pressure.

The FWM is a phenomenological model including two
independent functions, B and γ , which parametrize the QGP
bag pressure and require additional information as an input.
However, the FWM provides us with some general results.
Equating p+ and p−(v → ∞), one can find the transition
width coefficient and pressure as

γ 2
± = −B

β
, p± = BTβ

2
, (17)

and one can easily get that this transition, indeed, corresponds
to 〈m〉 = 0. Thus, although both expressions for pressure were
obtained by different methods they match at the correct value
of the most probable mass. Because B > 0 and γ 2

± > 0 it
follows that such a transition must occur at some temperature
T± = c± TH that is below TH , i.e., 0 < c± < 1.

Another general conclusion concerns the temperature
dependence of the QGP pressure in the limit T → 0. For
nonvanishing γ0 ≡ γ (T = 0) > 0 there are, however, two pos-
sibilities. The first one corresponds to finite B0 ≡ B(T = 0) >

0 values. Then from Eq. (15) one concludes that in the limit
T → 0 the QGP pressure linearly depends on temperature

p−(v → ∞) → −T
B2

0

2γ 2
0

. The second possibility corresponds

to the divergent behavior of B → g0

T D (with D > 0) provided
that 〈m〉

v
< 0 for v → ∞. The latter requires that D � 1 for

finite γ0. In this case at T → 0 the QGP pressure should

behave as p−(v → ∞) → − g2
0

2γ 2
0
T 1−2D . Note that either of

these possibilities is a manifestation of the nonperturbative
effect because in the limit γ = 0 they cannot be obtained.

In Refs. [38–40] it was reported that the LQCD data exhibit
the first of these possibilities. The corresponding EOS of the
QGP has an additional linear temperature dependence

plin = σT 4 − A1T + A0 (18)

FIG. 2. (Color online) LQCD data for trace anomaly (circles)
and pressure per T 4 (squares) as the functions of T −3. Straight lines
represent the fit of the filled symbols. See details in the text. The
curve connecting the squares is to guide the eyes.

with A1 > 0, A0 � 0. However, the recent analysis [41] of new
LQCD data [42] demonstrated not a linear, but the quadratic,
T dependence of the trace anomaly and pressure in the range
of temperatures between about 1.1Tc and 4Tc. Therefore, to
clarify the question of an additional T dependence of the
LQCD pressure we analyzed the old LQCD data [43,44], in
which the finite size effects are accounted for, and also we
fitted the newest LQCD data that are found for the almost
physical quark masses [45]. The fit of pT −4 from Ref. [45]
as function of T −3 shown in Fig. 2 by dashed line clearly
demonstrates the linear T −3 dependence pT −4 = a0 + a1T

−3

with a0 ≈ 4.5094 and a1 ≈ −0.0304 GeV3 for 10 data points
in the range T ∈ [202.5; 419.09] MeV.

The linear T dependence of pressure is rooted in the
behavior of the trace anomaly δ = (ε − 3 p)T −4 (here ε

denotes the energy density). Indeed, plotting δ as the function
of T −3 (see circles in Fig. 2) we found three different types
of behavior. As one can see from Fig. 2 up to T −3 ≈
72.056 GeV−3 (for T � 240.31 MeV) the function δ grows
nearly linearly, and for T −3 � 120.43 GeV−3 (or T �
202.5 MeV) it decreases nearly linearly, whereas between
these values of T −3 the function δ remains almost constant.
The analysis shows that six LQCD data points of the function
δ that belong to the range T −3 ∈ [13.585; 72.056] GeV−3 are,
indeed, described by δ = ã0 + ã1T

−3 with ã0 ≈ 0.2514 and
ã1 ≈ 0.0916 GeV3 and χ2/DOF ≈ 0.063, i.e., with extremely
high accuracy. The linear T −3 dependence of pT −4 is observed
in a slightly wider range of T −3 because of the approximately
constant behavior of the δ function at the moderate values of
T −3, but with lower quality fit that, however, is comparable
with that one of Ref. [39].

The reason for lower quality of the pressure fit can be seen
from its relation to the lattice trace anomaly

pfit

T 4
− p0

T 4
0

=
∫ T

T0

d T
δ

T
= ã0 ln

[
T

T0

]
− ã1

3

[
T −3 − T −3

0

]
,

(19)
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and, hence, one gets a1 = − ã1
3 , which is well supported by

the LQCD data. The last equality in (19) is obtained from the
linear fit of δ and, hence, T0 and p0 ≡ pfit(T0) are the constants
of integration.

Equation (19) shows that for the temperatures between
240.31 and 419.09 MeV the LQCD pressure [45] does not
have a constant term, i.e., A0 = 0 for plin, but there exist higher
order corrections (T 5 and higher) to a pressure. They are small
in this range of temperatures because ã0 � 1, but, in principle,
can be taken into account to improve the quality of the linear fit
of pT −4 function found in Ref. [39]. However, our main point
is that either rough or refined analysis of the modern LQCD
data strongly suggests an existence of the linear T -dependent
term in the LQCD pressure for T ∈ [240.31; 419.09] MeV.

Because neither the nonrelativistic hadron gas with the
hard core repulsion represented by FH (s, T ) in Eq. (2) nor its
relativistic analog analyzed in Ref. [46] can generate the linear
T dependence of pressure, it is possible that such a dependence
is an inherent property of the LQCD data. Assuming this fact,
one obtains that at low T the LQCD pressure of the QGP phase
should behave as pLQCD(T → 0) → −|a1|T . Comparing the
linear T dependence of the LQCD pressure with the FWM
pressure at low temperatures (15), we conclude that the present
model with nonzero width coefficient correctly grasps the
nonperturbative features of the QGP EOS and we consider
it as one of the strongest arguments in favor of the FWM.

VI. WIDTH ESTIMATE

Such a behavior of the LQCD pressure allows us to roughly
estimate the width �1(V0) and to study the possible restrictions
on thermodynamic functions. Because the FWM pressure de-
pends on two functions, to find them it is necessary to know the
form of the QGP pressure in the hadronic phase. Unfortunately
the present LQCD data do not provide us with such detailed
information and, hence, some additional assumptions are
inevitable. Consider first the pressure (18) with A0 = 0 [39] for
nonvanishing B0 and γ0. TH is uniquely fixed to be a positive
solution of equation A0 = A1TH − σT 4

H . Matching plin with
p−(v → ∞) = −T B2

2γ 2 for T � c±TH we can determine B/γ

ratio in this region of temperatures. However, equating plin and
p+, one obtains the width coefficient for T � c±TH

γ 2 = 2β−1
[
σTHT

(
T 2 + T TH + T 2

H

) − B(T )
]
. (20)

To have a positive finite width for all T � c±TH , it is necessary
that (T − TH ) is a divisor of the difference staying in the square
brackets of Eq. (20). Then the simplest possibility is to suppose
that

B(T ) = σT 2
H

(
T 2 + T TH + T 2

H

)
(21)

for any T . Evidently, B(T ) in Eq. (21) is positive and does not
vanish at T = 0. In addition to a simplicity another advantage
of such a choice is that Eq. (21) does not require any new
constant or any new function that is not involved in Eq. (20).
Moreover, comparing ansatz (21) with the mass density (16)
obtained for the pure MIT bag model pressure, one can see
that they differ only by a term σTHT 3 that at low T � 0.5TH

is a negligible correction to Eq. (21). Therefore, for low

TABLE I. The values of the resonance width for different models.
Model A corresponds to the pure gluodynamics for the SU(2)C color
group [43]. Model B describes the SU(3)C color group LQCD data
with two quark flavors [44] and Model C corresponds to the LQCD
of SU(3)C color group with three quark flavors [45].

Model Tc �R(V0, 0) �R(V0, TH )
Ref. (MeV) (MeV) (MeV)

A 170 410 1420
A 200 616 2133
B 170 391 1355
B 200 587 2034
C 196 596 2066

temperatures the ansatz (21) looks quite reasonable because
in this region it corresponds to the mass density of the most
popular EOS of modern QCD phenomenology.

It follows from Eq. (21) that γ 2
0 = B2

0/(2A1) = THB0/2 =
σT 5

H/2 for T = 0 and that γ 2 = 2T B(T ) for T � c±TH . As
an example, let us consider the true width for the SU(3)
color group with two flavors analyzed in Ref. [39] (model
B in Table I) for Tc = 200 MeV. Because for A0 = 0 it
is found A1 ≈ (1.5Tc)3 and on the other hand the FWM
requires A1 = σT 3

H , then one obtains TH ≈ 0.94Tc for σ =
37
90π2. Thus, the true width for the SU(3) color group with

two flavors is �R(V0, T = 0) ≈ 1.22V
1
2

0 T
5
2

c α ≈ 587 MeV and
�R(V0, T = TH ) = √

12 �R(V0, T = 0) ≈ 2034 MeV. These
estimates clearly demonstrate that there is no way to detect
the decays of such short living QGP bags, even if they are
allowed by the subthreshold suppression. The sensitivity of
these results to Tc value for models A and B is given in
Table I, which supports our main conclusion for the short
lifetime of the QGP bags.

The model C in Table I corresponds to plin pressure, but with
A0 = 0 and A1 = ã1

3 obtained from the fit of the function δ.
As one can see from Table I the minimal width of the QGP
bags found for the same value of the transition temperature Tc

practically does not depend on the number of the QGP degrees
of freedom. Such a property is an additional argument in favor
of the ansatz (21).

Now we would like to study the sensitivity of the width
estimates to the choice of the LQCD pressure. For this purpose
we will study the model described by Eq. (19). Let us assume
that the pressure of the QGP below T = 419.09 MeV is given
by Eq. (19) that we found for temperatures between 240.31
and 419.09 MeV. Choosing T0 to be TH , we obtain

pQGP = ã0T
4 ln

[
T

TH

]
− ã1

3
T + ã1T

4

3 T 3
H

, (22)

because the FWM pressure p+ (11) must vanish at T = TH .
Because the coefficient ã0 ≈ 0.2514 � 1 is much smaller than
the Stefan-Boltzmann constant over three σ = 95

180π2 ≈ 5.2 	
1 for the SU(3)C LQCD with three flavors, then the logarithmic
term in Eq. (22) remains a small correction for all temperatures
below a few tens of TH value. Furthermore, the logarithmic
term in Eq. (22) cannot describe an asymptotic behavior of
the LQCD pressure at large T . Thus, there is only a single

054913-7



K. A. BUGAEV, V. K. PETROV, AND G. M. ZINOVJEV PHYSICAL REVIEW C 79, 054913 (2009)

possibility to match Eq. (22) with the LQCD data, namely to
identify the last term in the right-hand side of Eq. (22) with
the Boltzmann limit of the LQCD pressure at T 	 TH . This
condition fixes the value of TH :

ã1

3 T 3
H

= σ ≡ 95

180
π2 ⇒ TH =

[
ã1

3σ

] 1
3

≈ 180 MeV. (23)

Matching p+ and pQGP (22) and expanding the logarithmic
function at T = TH , one can find the width coefficient for
T � c±TH as

γ 2
+ = 2β−1

[
σTHT

(
T 2 + T TH + T 2

H

) − B(T )

+ ã0T
4
∑
k=0

(−1)k

k + 1

(
T − TH

TH

)k ]
. (24)

Note that in evaluating the pressure (22) the coefficient ã1 was
written to take into account Eq. (23).

As in a previous case, it is necessary that (T − TH ) is
a divisor of the difference staying in the square brackets in
Eq. (24). Again here we consider the simplest generalization
of Eq. (21) that satisfies the necessary condition for T � c±TH :

B(T ) = σT 2
H

(
T 2 + T TH + T 2

H

) + ã0T
4−lT l

H , (25)

where power l can be 0, 1, 2, 3, or 4. Note that for l = 1 one
obtains exactly the same T dependence as for the mass density
(16) of the MIT bag model pressure and, hence, l = 1 is of a
special interest.

Substituting Eq. (25) into Eq. (24) one finds

γ 2
+ = 2T TH

[
σTH

(
T 2 + T TH + T 2

H

) + ã0T
4−l

[
T l − T l

H

]
T − TH

− ã0T
4

TH

∑
k=0

(−1)k

k + 2

(
T − TH

TH

)k ]
. (26)

Assume now that the expressions for the pressure (22) and
the mass density of bags (25) are valid for T < c±TH as well.
These assumptions allow us to find the width coefficient in the
region T < c±TH

γ 2
− = B(T )2

2
[
σ
(
T 3

H − T 3
) + ã0T 3 ln[TH/T ]

] . (27)

Taking the limit T → 0 in Eq. (27) one finds the width
coefficient at zero temperature as

γ 2
−(T = 0) = [σ + ã0δl,4]2

2σ
T 5

H , (28)

where δl,k denotes the Kronecker symbol. The last result shows
that the logarithmic term in the pressure (22) modifies our
previous estimates for the width coefficient at T = 0 by about
10% for l = 4 only, whereas for l � 3 and, hence, for l = 1,
the resonance width coefficient at T = 0 remains unchanged.
The corrections of the same order of magnitude are generated
by B(T ) (25) at T = TH :

γ 2
+(T = TH ) = 2 [3σ − lã0] T 5

H . (29)

Thus, the resonance width values given in Table I remain
almost the same for the pressure behavior as in Eq. (22).

VII. ASYMPTOTIC BEHAVIOR OF THE REGGE
TRAJECTORIES

The behavior of the width of hadronic resonances was
extensively studied almost 40 years ago in the Regge poles
method, dictated by an intensive analysis of the strongly
interaction dynamics in high-energy hadronic collisions. A lot
of effort was put forward [25,47] to elucidate the asymptotical
behavior of the resonance trajectories α(S) for |S| → ∞ (S is
an invariant mass square in the reaction). Because the Regge
trajectory determines not only the mass of resonances but
also their width, it would be interesting to compare these
results with the FWM predictions. Note that nowadays there
is great interest in the behavior of the Regge trajectories of
higher resonances in the context of the five-dimensional string
theory holographically dual to QCD [48] that is known as
anti-de-Sitter space/conformal field theory (AdS/CFT).

In our research we follow Ref. [25] that is based on the
following most general assumptions: (I) α(S) is an analytical
function, having only the physical cut from S = S0 to S = ∞;
(II) α(S) is polynomially restricted at the whole physical sheet;
(III) there exists a finite limit of the phase trajectory at S → ∞.
Using these assumptions, it was possible to prove [25] that for
S → ∞ the upper bound of the Regge trajectory asymptotics
at the whole physical sheet is

αu(S) = −g2
u [−S]ν , with ν � 1, (30)

where the function g2
u > 0 should increase slower than any

power in this limit and its phase must vanish at |S| → ∞.
However, in Ref. [25] it was also shown that, if in addition

to (I)–(III) one requires that the transition amplitude T (s, t)
is a polynomially restricted function of S for all nonphysical
t > t0 > 0, then the real part of the Regge tragectory does not
increase at |S| → ∞ and the trajectory behaves as

αl(S) = g2
l [−[−S]

1
2 + Cl], (31)

where g2
l > 0 and Cl are some constants. Moreover, Eq. (31)

defines the lower bound for the asymptotic behavior of the
Regge trajectory [25]. The expression (31) is a generalization
of a well-known Khuri result [49]. It means that for each
family of hadronic resonances the Regge poles do not go
beyond some vertical line in the complex spin plane. In
other words, it means that in asymptotics S → +∞ the
resonances become infinitely wide, i.e., they are moving out
of the real axis of the proper angular momentum J and,
therefore, there are only a finite number of resonances in the
corresponding transition amplitude. At first glance it seems
that the huge deficit of heavy hadronic resonances compared to
the Hagedorn mass spectrum (the second conceptual problem
of Sec. II) supports such a conclusion. Because there are a
finite number of resonance families [50] it is impossible to
generate from them an exponential mass spectrum and, hence,
the Hagedorn mass spectrum cannot exist for large resonance
masses. Consequently, the GBM and its followers run into
deep trouble. We, however, believe that the FWM with negative
value of the most probable bag mass 〈m〉 � 0 can help to resolve
this problem as well.

First we note that the direct comparison of the FWM
predictions with the Regge poles asymptotics is impossible
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because the resonance mass and its width �(v) are independent
variables in the FWM. Nevertheless, we can relate their
average values and compare them to the results of Ref. [25].

To illustrate this statement, we recall our result on the mean
Gaussian width of the free bags averaged with respect to their
volume by the spectrum (8) [see two paragraphs after Eq. (8)
for details]

�1(v) ≈ �1(m/B) = γ

√
m

B
. (32)

Using the formalism of Ref. [25], it can be shown that at
zero temperature the free QGP bags of mass m and mean

resonance width α�1(v)|T =0 ≈ α γ0

√
m
B0

precisely correspond

to the following Regge trajectory

αr (S) = g2
r [S + ar (−S)

3
4 ] with ar = const < 0. (33)

Indeed, substituting S = |S|eiφr into Eq. (33), then expanding
the second term on the right hand side of Eq. (33) and requiring
Im[αr (S)] = 0, one finds the phase of physical trajectory [one
of four roots of one fourth power in Eq. (33)]

φr (S) → ar sin 3
4π

|S| 1
4

→ 0−, (34)

which is vanishing in the correct quadrant of the complex
S plane. Considering the complex energy plane E = √

S ≡
Mr − i �r

2 , one can determine the mass Mr and the width �r

Mr ≈ |S| 1
2 and

�r ≈ −|S| 1
2 φr (S) = |ar ||S| 1

4√
2

= |ar |M
1
2
r√

2
, (35)

of a resonance belonging to the trajectory (33).
Comparing the mass dependence of the width in Eq. (35)

with the mean width of free QGP bags (32) taken at T = 0, it
is natural to identify them,

afree
r ≈ −α γ0

√
2

B0
= −4γ0

√
ln 2

B0
, (36)

and to deduce that the free QGP bags belong to the Regge
trajectory (33). Such a conclusion is in line both with the well-
established results on the linear Regge trajectories of hadronic
resonances [50] and with theoretical expectations of the dual
resonance model [18], the open string model [1,36], the closed
string model [1], and the AdS/CFT [48]. Such a property of the
FWM also gives a very strong argument in favor of both the
volume-dependent width �(v) = �1(v) and the corresponding
mass-volume spectrum of heavy bags (5).

Next we consider the second way of averaging the mass-
volume spectrum with respect to the resonance mass

m(v) ≡
∫ ∞
M0

dm
∫

d3k
(2π)3 ρ(m, v) m e−

√
k2+m2

T∫ ∞
M0

dm
∫

d3k
(2π)3 ρ(m, v) e−

√
k2+m2

T

, (37)

which is technically simpler than averaging with respect to the
resonance volume, but we will make the necessary comments
on the other way of averaging in the appropriate places.

Using the results of Sec. IV one can find the mean mass (37)
for T � c±TH (or for 〈m〉 � 0) to be equal to the most probable
mass of bag from which one determines the resonance width:

m(v) ≈ 〈m〉 (38)

and

�R(v) ≈ 2
√

2 ln 2�1

[ 〈m〉
B + γ 2β

]
= 2 γ

√
2 ln 2 〈m〉
B + γ 2β

. (39)

The last two equations lead to a vanishing ratio �R

〈m〉 ∼ 〈m〉− 1
2

in the limit 〈m〉 → ∞. Comparing Eqs. (38) and (39) with
the mass and width (35) of the Regge trajectory (33) and
applying absolutely the same logic we used for the free QGP
bags, we conclude that the location of the FWM heavy bags
in the complex energy plane is identical to that of resonances
belonging to the trajectory (33) with

〈m〉 ≈ |S| 1
2 and ar ≈ −4γ

√
ln 2

B + γ 2β
. (40)

The most remarkable output of such a conclusion is that the
medium-dependent FWM mass and width of the extended
QGP bags obey the upper bound for the Regge trajectory
asymptotic behavior obtained for pointlike hadrons [25]!

It is also interesting that the resonance width formula (39)
is generated by the most probable volume

vE(m) ≈ m√
B2 + 2γ 2s∗ = m

B + γ 2β
(41)

of heavy resonances of mass m 	 M0 that are described by
the continuous spectrum FQ(s, T ) (2). This result can be easily
found by maximizing the exponential in FQ(s, T ) with respect
to resonance volume v at fixed mass m and by recalling that
at high temperatures the rightmost singularity of the isobaric
partition (1) is defined by the pressure (11) as s∗ = p+

T
.

The extracted values of the resonance width coefficient
along with the relation (21) for B(T ) allow us to estimate ar

as

ar ≈ −4

√
2T TH

2T − TH

ln 2. (42)

This expression shows that for T → TH/2 + 0 the asymptotic
behavior (33) breaks down because the resonance width
diverges at fixed |S|. However, from Eq. (42) it follows
that a2

r (T = TH ) ≈ 22.18TH and a2
r (T 	 TH ) ≈ 11.09TH . In

other words, for a typical value of the Hagedorn temperature
TH ≈ 190 MeV [see a discussion after Eq. (19)] Eq. (42)
gives a reasonable range of the invariant mass |S| 1

2 	 a2
r (T =

TH ) ≈ 4.21 GeV and |S| 1
2 	 a2

r (T 	 TH ) ≈ 2.1 GeV for
which Eq. (33) is true.

Now we can find the spin of the FWM resonances

J = Re αr (〈m〉2) ≈ g2
r 〈m〉

[
〈m〉 − a2

r

4

]
, (43)

which has a typical Regge behavior up to a small correction.
Such a property can also be obtained within the dual resonance
model [18], within the models of open [1] and closed string
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[1,36], and within AdS/CFT [48]. These models support our
result (43) and justify it. Note, however, that in addition to
the spin value the FWM determines the width of hadronic
resonances. The latter allows us to predict the ratio of widths
of two resonances having spins J2 and J1 and appearing at the
same temperature T to be as follows

�R

[ 〈m〉|J2
(B+γ 2β)

]
�R

[ 〈m〉|J1
(B+γ 2β)

] ≈
√

v|J2√
v|J1

≈
√〈m〉|J2√〈m〉|J1

≈
[
J2

J1

] 1
4

, (44)

which, perhaps, can be tested at the Large Hadron Collider
(LHC).

Now we turn to the analysis of the low temperature regime,
i.e., to T � c±TH . Using previously obtained results from (37)
one finds

m(v) ≈ M0, (45)

i.e., the mean mass is volume independent. Taking the limit
v → ∞, we get the ratio �(v)

m(v) → ∞ that closely resembles the
case of the lower bound of the Regge trajectory asymptotics
(31). Similarly to the analysis of high temperature regime,
from Eq. (31) one can find the trajectory phase and then the
resonance mass Mr and its width �r

φr (S) → −π + 2|Cl|| sin(arg Cl)|
|S| 1

2

, (46)

Mr ≈ |Cl|| sin(arg Cl)| and �r ≈ 2|S| 1
2 . (47)

Again comparing the averaged masses and width of FWM
resonances with their counterparts in Eq. (47), we find similar
behavior in the limit of large width of resonances. Therefore,
we conclude that at low temperatures the FWM obeys the
lower bound of the Regge trajectory asymptotics of Ref. [25].

The other way of averaging, i.e., with respect to the
resonance volume, in the leading order gives the most probable
resonance volume of the continuous spectrum FQ(s, T ) (2)
defined by the left equation (41) again. Substituting in it the
corresponding rightmost singularity s∗ = p−

T
and using (15)

for p−, one finds vE(m) → ∞ that leads to an infinite value
of the most probable resonance width defined in this way.
Note that such a result is supported by the high temperature
mean width behavior if T → TH/2 + 0. As one can see from
Eqs. (42) and (35), in the latter case the trajectory (33) also
demonstrates a very large width compared to a finite resonance
mass.

A more refined analysis of the most probable volume
(41) shows that the second derivative of the exponential in
FQ(s, T ) with respect to the resonance volume vanishes at
large resonance masses m and, hence, one needs to account
for even weaker dependences on resonance volume v and to
inspect higher-order derivatives with respect to v, but this task
is out of the scope of present work and we leave it for future
investigation.

Thus, these estimates demonstrate that at any temperature
the FWM QGP bags can be regarded as the medium induced
Reggeons that at T � c±TH (i.e., for 〈m〉 � 0) belong to the
Regge trajectory (31) and otherwise they are described by the
trajectory (33). Of course, both of the trajectories (31) and (33)
are valid in the asymptotic |S| → ∞, but the most remarkable

fact is that, to our knowledge, the FWM gives us the first
example of a model that reproduces both of these trajectories
and, thus, obeys both bounds of the Regge asymptotics.
Moreover, because the FWM contains the Hagedorn-like mass
spectrum at any temperature, the subthreshold suppression of
QGP bags removes the contradiction between the Hagedorn
ideas on the exponential mass spectrum of hadrons and
the Regge poles method in the low-temperature domain!
Furthermore, the FWM opens the possibility of applying the
Regge poles method to a variety of processes in a strongly
interacting matter and account, at least partly, for some of the
medium effects.

VIII. CONCLUSIONS AND PERSPECTIVES

Here we present the novel statistical approach to study the
QGP bags with medium dependent width. We argue that the
volume-dependent width of the QGP bags �(v) = γ v

1
2 leads

to the Hagedorn mass spectrum of heavy bags. Such behavior
of a width allows us to explain a huge deficit of heavy hadronic
resonances in the experimental mass spectrum. The key point
of our treatment is the presence of Gaussian attenuation of bag
mass. Perhaps the nonlocal field theoretical models may shed
light on the origin of the Gaussian mass attenuation.

Under plausible assumptions we derive the general expres-
sion for the bag pressure p+ that accounts for the effect of
finite width in the EOS. We argue that the obtained spectrum
itself cannot explain the absence of directly observable QGP
bags and strangelets in the high-energy nuclear and elementary
particle collisions. Then we demonstrate the possibility to
“hide” the heavy QGP bags for T � c±TH by their subthreshold
suppression. The latter occurs due to the fact that at low
temperatures the most probable mass of heavy bags 〈m〉
becomes negative and, hence, is below the lower cut-off M0

of the continuous mass spectrum. Consequently, only the
lightest bags of mass about M0 and of smallest volume V0

may contribute into the resulting spectrum, but such QGP
bags will be indistinguishable from the low-lying hadronic
resonances with the short lifetime. We show how the FWD
can reproduce a few EOS of the QGP and discuss the
corresponding restrictions.

We analyze the recent LQCD data for the trace anomaly and
extract the linear T -dependent term for the LQCD pressure and
higher-order corrections to it. This linear T -dependent term
in the LQCD pressure is naturally associated with the FWM
pressure at low temperatures p−. Using such a dependence
we estimate the volume-dependent width under plausible
assumptions and find it almost insensitive to the number of
color and flavor degrees of freedom of the LQCD data. These
estimates clearly demonstrate that such short living QGP bags
cannot be established experimentally. We believe that our
finding introduces the new time scale into the high-energy
nuclear and elementary particles collisions and requires some
modifications of the present picture of the collision process
and its subsequent stages.

With the help of formalism of Ref. [25] we show that the
average mass and width of heavy or large free QGP bags
belong to the linear Regge trajectory (33). Similarly, we find
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that at hight temperatures the average mass and width of
the QGP bags behave in accordance with the upper bound
of the Regge trajectory asymptotics (30) (linear trajectory),
whereas at low temperatures they obey the lower bound of
the Regge trajectory asymptotics (31) (square root trajectory).
Because the model explicitly contains the Hagedorn spectrum,
it removes an existing contradiction between the finite number
of hadronic Regge families and the Hagedorn idea of the
exponentially growing mass spectrum of hadronic bags. Such
a result creates a new look onto the large and/or heavy QGP
bags as the medium-induced Reggeons and opens a principal
possibility to apply all the strength of the Regge poles method
to a variety of processes in a strongly interacting media and to
account, at least partly, for some of the medium effects.

In addition to these general results the FWM allows us to
make some predictions that can be soon tested experimentally.
Thus, the relation between the maximal spin of the bag and
the most probable mass (43) or the dependence between the
maximal spin and the mean volume (44) can be, perhaps,
tested at LHC CERN during the hadronic collision runs. It is
also probable that the switch between the Regge trajectories
(31) and (33) can be verified at the Facility for Antiproton and
Ion Research (at GSI) and the Nuclotron-based Ion Collider
Facility (at JINR) energy range. It is clear that the lower bound
trajectory (31) cannot be established in a laboratory, but it
seems reasonable to expect that the experimenters will be able

to find how the parameters of the upper bound trajectory (33)
are changing with the colliding energy. The found parameters
of bag trajectories in combination with the Hanbury Brown-
Twiss analysis of their volume may help us to determine the
resonance width coefficient γ or even the volume dependence
of the resonance width itself.

The generalization of all of the above results to nonzero
baryonic densities can be made straightforwardly by assuming
the dependence of the model functions B and �1(v) on the
baryonic chemical potential. The more detailed quantitative
experimental consequences of the FWM will be published
elsewhere [51].
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