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Phase transition dynamics for baryon-dense matter
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We construct a simple two-phase equation of state intended to resemble that of compressed baryon-rich matter
and then introduce a gradient term in the compressional energy density to take account of finite-range effects in
nonuniform configurations. With this model we study the interface between the two coexisting phases and obtain
estimates for the associated interface tension. Subsequently, we incorporate the finite-range equation of state
into ideal or viscous fluid dynamics and derive the collective dispersion relation for the mechanically unstable
modes of bulk matter in the spinodal region of the thermodynamic phase diagram. Combining these results with
time scales extracted from existing dynamical transport simulations, we discuss the prospects for spinodal phase
separation to occur in nuclear collisions. We argue that these can be optimized by a careful tuning of the collision
energy to maximize the time spent by the bulk of the system inside the mechanically unstable spinodal region
of the phase diagram. Our specific numerical estimates suggest cautious optimism that this phenomenon may in
fact occur, though a full dynamical simulation is needed for a detailed assessment.
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I. INTRODUCTION

The phase structure of strongly interacting matter presents a
focal point for current theoretical and experimental investiga-
tions. In particular, the Relativistic Heavy Ion Collider (RHIC)
at BNL is preparing for a beam energy scan that aims to identify
signals of the expected critical point and the CBM experiment
at the future Facility for Antiproton and Ion Research (FAIR) at
GSI will explore the properties of compressed baryonic matter
and search for the expected first-order phase transition.

On the theoretical side, the situation is far from clear.
Whereas lattice QCD calculations [1,2] find that the de-
confinement phase transformation is of the crossover type
at vanishing chemical potential, µ = 0, they have inherent
difficulties treating finite µ values and any predictions in the
baryon-rich domain are still very uncertain [3–5]. Even the
very existence of a critical point has recently been called
into doubt [6]. Experimental information would therefore be
invaluable.

However, it will be no easy task to extract the thermody-
namic phase structure from nuclear collision experiments. In
addition to the inherent problems arising from the smallness of
the collision system (which renders its spatial configuration far
from uniform) and its rapid evolution (which prevents global
equilibrium from being established), the experimentalist is
faced with the problem that there exists yet no suitable
dynamical model with which to simulate the collisions for
the purpose of anticipating the observable effects of the phase
structure.

This crucial point deserves elaboration: First of all, the basic
theory, quantum chromodynamics, is currently tractable only
in either the perturbative limit of hard elementary processes
or in the thermodynamic limit at vanishing (or small) net
baryon density. Any dynamical transport treatment of nuclear
collisions must therefore involve a considerable degree of
modeling.

Ideally, one would devise a transport model that explicitly
treats the dynamics of the microscopic degrees of freedom

in the system, which change from being partonic in the
deconfined sector to being hadronic in the confined sector.
Unfortunately, it has yet not been possible to develop such a
description, even for static scenarios. Nevertheless, a variety
of microscopic transport models have achieved considerable
success with regard to calculating (and reproducing) observ-
ables for high-energy collisions over a large range of energies.
However, their thermodynamic properties are (yet) inadequate.
For one thing, they usually lack detailed balance (as is often
well justified in the context of the dynamical processes for
which they are intended) and therefore they are inadequate
for thermal equilibrium. Furthermore, these models do not (as
of yet) incorporate a first-order phase transition. Therefore, at
this point, they appear to be unsuitable for simulations that
aim to bring out the dynamical effects of a phase transition
and elucidate their observability.

Considerable success has been obtained as well with
macroscopic models within the framework of fluid dynamics.
These models have the practical advantage that the underlying
microscopic degrees of freedom do not enter explicitly, the
state of the system being described merely through its local
energy and charge densities (and the associated currents) with
the interactions entering via the equation of state and the
transport coefficients. (Of course, in order to make contact
with experiment, such a treatment must ultimately convert the
macroscopic information into hadrons by a suitable freeze-out
prescription, but this occurs at densities well below the phase
transition region and is well developed.) Thus fluid dynamics,
especially ideal fluid dynamics for which the transport coeffi-
cients vanish, possesses a very close relationship between the
dynamics and the underlying object of study, the equation of
state.

However, a closer analysis reveals that standard fluid
dynamics has certain inherent problems in the presence of
a first-order phase transition. Of particular importance is the
fact that standard fluid dynamics is strictly local which leads
to both static and dynamic shortcomings, as we shall now
discuss.
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With regard to the former, imagine that two thermody-
namically coexisting bulk systems are brought into contact
along a common interface. In a realistic description, a diffuse
interface would develop, with the various densities changing
smoothly from one bulk value to the other, and there would
be an interface tension. By contrast, when the equation of
state is strictly local, the interface will be sharp (so the
various densities will change abruptly from one bulk value
to the other across the interface) and there will be no
interface tension. Such a description would not be adequate for
finite systems such as blobs of matter produced in a collision,
whose sizes are determined primarily by the surface tension
and for which much of the matter is located in the diffuse
surface region. While this generic shortcoming may be less
serious for high-energy collisions, where the matter is being
torn apart due to the rapid longitudinal stretching, it is expected
to play a significant role at the lower collision energies relevant
for the exploration of the deconfinement phase transition.

As for the dynamics, consider the evolution of nearly
uniform matter that has been prepared in a state of expansion
at a density just above the phase coexistence region. The
system would then continue its expansion and the associated
phase point would soon enter the phase coexistence region
in which uniform matter is thermodynamically metastable.
While this would pose no particular problem as long as the
deviations from uniformity remain small, the further expansion
would drive the phase point into the region of spinodal
instability, where uniform matter is both thermodynamically
and mechanically unstable (the speed of sound is imaginary).
As a result, density undulations would (and should) become
amplified.

This scenario is familiar from many areas of physics and it
has been studied both theoretically and experimentally for a
variety of substances [7,8]. Generally, the associated collective
dispersion relation (which in this situation gives the growth rate
as a function of the wave number, γk) exhibits a maximum,
thus leading to preferential amplification of certain modes and
the appearance of a characteristic length scale in the ensuing
phase separation. This remarkable phenomenon, known as
spinodal phase decomposition, is an indicator of a first-order
phase transition. It was found to present a powerful means for
the experimental exploration of the nuclear liquid-gas phase
transition [8,9], because the unstable dilute bulk matter tends to
condense into fragments of similar sizes, a highly nonstatistical
outcome that is easy to identify in the event analysis. This
success has given rise to the hope that spinodal decomposition
could be useful as well for probing the confinement phase
transition and some explorations of possible experimental
signals have already been made [10–13].

Naturally, since standard fluid dynamics is local, so is
its collective dispersion relation, ωk = v0k. Consequently,
inside the spindoal region of the phase diagram, the growth
rate will increase monotonically with the wave number of
the undulation. Thus γk will not display a maximum and the
characteristic spinodal decomposition phenomenon would not
be develop, as density irregularities of ever smaller scale would
be amplified at ever larger rates. In ideal fluid dynamics, this
problem would be computationally intractable (and in fact
mathematically meaningless) [14]. The inclusion of viscosity

would modulate the dispersion relation and cause the growth
rate to approach a constant value for large k. While this would
facilitate the numerics, the monotonic growth of γk would still
preclude the occurrence of a spinodal decomposition.

Because of the considerable potential for fluid dynamics as
a tool for obtaining insight into the phase transition dynamics,
we address here this generic shortcoming. Our main purpose
is to illustrate the advantages of remedying this problem
and, along the way, make rough estimates for various key
quantities. Since the problem arises from the local nature of
fluid dynamics, we introduce a finite range into the treatment
by means of a gradient term in the compressional energy
density. The specific model developed here is intended to
serve mainly as a framework for illustrating the effect of
incorporating a finite range into the dynamical description
and the specific quantitative results should be regarded as
correspondingly rough.

We first (Sec. II) construct a somewhat schematic equation
of state for uniform matter, trying to incorporate the most
essential features expected; it should be considered as merely
a temporary substitute subject to refinement. Subsequently
(Sec. III) the finite range is introduced by means of a simple
gradient term. Then (Sec. IV) we consider the equilibrium
interface between two bulk systems, a property that could
not be addressed with the standard treatment due to its strict
locality, and obtain expressions for the associated interface
tension. The collective modes in bulk matter are then treated
(Sec. V) and we consider particularly the spinodal growth
rates which now display the characteristic features known
from other substances. Finally (Sec. VI), on this basis, we
discuss the phase transition dynamics expected for the planned
nuclear collision experiments and the prospects for spinodal
decomposition to actually occur.

II. BULK MATTER EQUATION OF STATE

We wish to employ an equation of state that is suitable
for numerical illustrations. For this purpose, we design a
schematic model that is a generalization of a classical gas
in a density-dependent mean field. The resulting equation of
state has certain generic deficiencies and the results should
therefore not be taken at face value. (For example, there are no
bosonic degrees of freedom.) It would of course be of interest
to repeat the present analysis as more refined descriptions
become available.

The equation of state provides the thermodynamic prop-
erties of bulk matter, i.e., uniform matter of sufficient spatial
extension to render finite-size effects (including those from any
surfaces) insignificant. In the microcanonical representation,
the state of the system is given in terms of the basic
mechanical densities, the (baryon) charge density ρ and
the energy density ε which we take as a thermal energy,
κ = 1

2dρT , plus a compressional energy, w0(ρ), where d is
an adjustable parameter (equal to three for an ordinary gas).
Further adjustable parameters appear in the compressional
energy density, w0(ρ), which is specified in Appendix A.

The key thermodynamic quantity is the entropy density
σ (ε, ρ), which we express in terms of the entropy density
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◦
σ (κ, ρ) for a generalized ideal classical gas of density ρ and
thermal density κ ,

σ (ε, ρ) ≡ ◦
σ (ε − w0(ρ), ρ) = 5

6
dρ − 1

3
dρ ln

ρ

ρT

, (1)

where we have defined the thermal density as

ρT (ε, ρ) ≡
[

2πm

h2
T (ε, ρ)

]3/2

, (2)

with T (ε, ρ) = 2
d

[ε − w0(ρ)]/ρ (see below). The Lagrange
coefficients β = 1/T and α = −µ/T are given by

β(ε, ρ) ≡ ∂εσ (ε, ρ) = ∂κ

◦
σ (κ − w0(ρ), ρ) = ◦

σκ, (3)

α(ε, ρ)≡∂ρσ (ε, ρ) = ∂ρ

◦
σ (κ − w0, ρ) = ◦

σρ − ◦
σκw

′
0,

(4)

with
◦
σκ ≡ ∂κ

◦
σ (κ, ρ),

◦
σρ≡ ∂ρ

◦
σ (κ, ρ), and w′

0 ≡ ∂ρw0(ρ).
Thus, the temperature and the chemical potential are

T (ε, ρ) = 1

β
= 2

d

ε − w0(ρ)

ρ
= 2

d

κ

ρ
, (5)

µ(ε, ρ) = −αT = 1

3
dT ln

ρ

ρT

+ w′
0(ρ). (6)

The pressure and the enthalpy density may be obtained
subsequently,

p(ε, ρ) = σT − ε + µρ = 1
3dρT − w0 + ρw′

0, (7)

h(ε, ρ) ≡ p + ε = 5
6dρT + ρw′

0. (8)

Two bulk systems with the densities (ε1, ρ1) and (ε2, ρ2)
are in mutual thermodynamic equilibrium if and only if the
total entropy is stationary under arbitrary exchanges of energy
and charge, yielding the requirement that they have equal
temperatures, chemical potentials, and pressures: β1

.= β2 ≡
β0, α1

.= α2 ≡ α0, p1
.= p2 ≡ p0. Thus phase coexistence re-

quires that the gradient of σ (ε, ρ), (σε, σρ) ≡ (∂εσ, ∂ρσ ), be
the same at the two phase points and, furthermore (since
p = T [σ − βε − αρ]), that the tangent to σ (ε, ρ) at these
two points be common. Furthermore, local thermodynamic
stability requires that the second variation of the entropy
be positive under such exchanges, yielding the requirement
that the curvature matrix of σ (ε, ρ) be positive definite.
Consequently, the region of spinodal instability is delineated
by the occurrence of a vanishing curvature eigenvalue.

In the canonical representation ε is replaced by T , and the
free energy density is then of special interest,

fT (ρ) ≡ εT (ρ) − T σT (ρ) = µT (ρ)ρ − pT (ρ)

= ρT ln
ρ

ρT

− ρT + w0(ρ), (9)

where the subscript T indicates that the quantity is obtained at
the specified temperature. We also note that the slope of the free
energy density is the chemical potential, ∂ρfT (ρ) = µT (ρ).

For w0(ρ) we use an interpolated form that produces a
first-order phase transition (see Appendix A). To achieve a
semiquantitative correspondence with expectations for actual
baryon-rich matter, we adjust the parameters such that the co-
existence densities at T = 0 are ρ1 = 3ρ0 and ρ2 = 8ρ0, where
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FIG. 1. (Color online) The equation of state pT (ρ): The pressure
p as a function of the density ρ for a range of temperatures,
T/Tc = 0, 1

4 , 1
2 , 3

4 , 1, 5
4 , 3

2 , obtained with the adopted model. The
phase coexistence (solid) and the spinodal (dashes) boundaries are
indicated; they coincide at the critical point (dot).

ρ0 ≈ 0.153 fm−3 is the nuclear saturation density; the associ-
ated zero-temperature specific heat is then w0(ρ2) − w0(ρ1) =
590 MeV/fm3. Furthermore, the value d = 5.5 yields a critical
temperature of Tc = 170 MeV; the critical density is then
ρc = 4.70 ρ0. Other values of particular interest are listed in
Table I. (These values are of course somewhat arbitrary but will
serve well for illustrative purposes.) The resulting equation
of state, pT (ρ), is shown in Fig. 1, while Fig. 2 displays the
associated phase diagram expressed in terms of the mechanical
densities ρ and ε. The more familiar (ρ, T ) phase diagram,
for which the energy density ε has been replaced by the
temperature T , is shown in Fig. 3. It is important to recognize
that whereas the transformation from ε to T is always unique,
the reverse transformation is triple-valued in the presence of
a phase transition: Any (ρ, T ) phase point inside the phase
coexistence region in Fig. 3 could arise any of three different
(ρ, ε) phase points in Fig. 2.

At a given temperature T , bulk matter at the two different
densities ρ1 and ρ2 are in mutual thermodynamic equilibrium
if the corresponding tangents of fT (ρ) are common: the two
chemical potentials are then equal since µT (ρ) = ∂ρfT (ρ), and
the relation pT (ρ) = µT (ρ)ρ − fT (ρ) guarantees that also the
two pressures match. Thus phase coexistence at T = 0 requires

TABLE I. Values of the temperature T , compression ρ/ρ0,
energy density ε, pressure p, and chemical potential µ at the two
zero-temperature coexistence points (#1 and #2), the two spinodal
boundaries at zero temperature (#A and #B), and the critical point
(#c) (see Figs. 1 and 2).

# T (MeV) ρ/ρ0 ε (MeV/fm3) p (MeV/fm3) µ (MeV)

1 0 3.00 182 171 769
A 0 3.76 276 201 829
c 170 4.70 729 395 923
B 0 6.18 563 130 732
2 0 8.01 772 171 769
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FIG. 2. (Color online) The phase diagram in the ρ-ε plane, as
obtained from the equation of state (Fig. 1), with the phase coexistence
boundary (solid, red), the (isothermal) spinodal boundary (short
dashes, green), and the critical point (dot) indicated. The hadronic
freeze-out line (lower left) is included for reference (from Ref. [15]).
Also shown are the two functions wH (ρ) (dashed blue curve) and
wQ(ρ) (dashed red curve) between which the compressional energy
w0(ρ) (solid curve) is interpolated, as well as three isentropic phase
trajectories (dot-dashed curves), for which ρδε = (ε + p)δρ.

that the tangents of w0(ρ) at the two densities be common. (We
have used this property to guide our choice of mean field.) As
the temperature is increased, the difference between the two
coexistence densities will steadily shrink until they coincide
at the critical temperature Tc.

At supercritical temperatures (T >Tc) the pressure in-
creases steadily with T , ∂ρpT > 0, whereas its behavior is
undulatory at subcritical temperatures: when the density is
increased from the lower to the higher coexistence density,
the pressure exhibits first a maximum and then a minimum.
The associated densities ρA and ρB where pT (ρ) is sta-
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FIG. 3. (Color online) The phase diagram in the ρ-T plane
indicating the phase coexistence boundary (solid), the isothermal
spinodal boundary (long dashes), the isentropic spinodal boundary
(short dashes), and the critical point (dot). Also shown are several
isentropic phase trajectories, for which ρδε = (ε + p)δρ.

tionary delineate the region of mechanical instability, within
which ∂ρpT (ρ) is negative. Since ∂ρpT (ρ) = d

3 T + ρw′′
0 , the

spinodal boundary densities at T = 0 are determined by
ρw′′

0 (ρ)
.= 0 and w′′

0 (ρ) is negative in between. The region
of mechanical instability shrinks steadily as T is increased
and disappears at Tc, which is thus determined by the
condition d

3 Tc + ρmw′′
0 (ρm)

.= 0, where ρm is the density at
which ρw′′

0 (ρ) is most negative. The adopted compressional
energy density w0(ρ) is depicted in Fig. 1 together with the
coexistence and spinodal boundaries.

Dynamical transport calculations suggest that the expan-
sion stage in a nucleus-nucleus collision proceeds in an
approximately isentropic manner [16], i.e., the entropy per
(net) baryon remains nearly constant. Since Tρ2δ(σ/ρ) =
(ρδε − µρδρ) − (hδρ − µρδρ) = ρδε − hδρ, the isentropic
trajectories in the (ρ, ε) phase plane are characterized by
ρδε

.= hδρ. Figures 2 and 3 display several such isentropic
phase trajectories and they are seen to not be noticeably
affected by the presence of the phase transition. This feature
brings out the fact that the locations of the boundaries
for thermodynamic and mechanical instability, including the
critical point itself, result from a rather subtle interplay
between the underlying interactions. One may therefore expect
that the overall phase evolution obtained in a dynamical
transport calculation is not very sensitive to the specific phase
structure.

III. GRADIENT CORRECTIONS

The above thermodynamics discussion applies to bulk mat-
ter, i.e., large and uniform systems. In heavy-ion physics, the
systems encountered are neither and it is therefore practically
important to extend the treatment to systems whose densities
vary with the location, ε̃(r) and ρ̃(r), where we use a tilde
over a quantity as a reminder that it pertains to a nonuniform
system.

As a simple way to take approximate account of finite range
effects, we employ a gradient correction in the compressional
energy. (A gradient term was also employed in recent hy-
drodynamical studies of the hadron-quark first-order phase
transition [17].) Accordingly, we write the local interaction-
energy density on the form

w̃(r) = w0(ρ̃(r)) + 1

2
C(∇ρ̃(r))2

= w0(ρ̃(r)) + 1

2
a2εg

(∇ρ̃(r)

ρg

)2

. (10)

It is convenient to write the strength of the gradient term on the
form C = a2εg/ρ

2
g , where ρg is a characteristic charge density

and εg is a characteristic energy density. Since we are here
particularly interested in the dynamics in the phase transition
region, we choose the phase point (ρg, εg) to be in the middle
of the phase coexistence region, ρg

.= ρc = 4.70 ρ0 and εg
.=

εT =Tc/2(ρc) = 1
2 (w0(ρc) + εc) = 561 MeV/fm3. The strength

of the gradient term is then governed by the length a which we
consider to be somewhat adjustable. Our present calculations
have been made with a = 0.2 fm.
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The introduction of the gradient term leads to gradient
corrections in the expressions for the various thermodynamic
quantities. In order to derive those, we start from the
entropy density, which we assume to still have the form

σ̃ (r) = ◦
σ (κ̃(r), ρ̃(r)) = ◦

σ (ε̃(r) − w̃(r), ρ̃(r)), where κ̃(r) =
ε̃(r) − w̃(r) is the local thermal energy density. A variation
of the total entropy S[ε̃(r), ρ̃(r)] = ∫

d r σ̃ (r) then yields the
local Lagrange coefficients β̃ and α̃,

β̃(r)
.= δS

δε̃(r)
= ◦

σκ (κ̃(r), ρ̃(r)) = 1/T̃ (r), (11)

α̃(r)
.= δS

δρ̃(r)
= ◦

σρ (κ̃(r), ρ̃(r)) − β̃(r)w′
0(ρ̃(r))

+C∇(β̃(r) · ∇ρ̃(r)) = −µ̃(r)/T̃ (r). (12)

Using that the entropy density gradient is then given by

∇σ̃ (r) = β̃(r)∇ε̃(r) + α̃(r)∇ρ̃(r)) − C∇(β̃(r)(∇ρ̃(r))2),

(13)

we see that the following expression for the local pressure:

p̃(r) = σ̃ (r)T̃ (r) − ε̃(r) + µ̃(r)ρ̃(r) + C(∇ρ̃(r))2, (14)

leads to the relation

∇ p̃(r)

T̃ (r)
= −ε̃(r)∇β̃(r) − ρ̃(r)∇α̃(r), (15)

which can be regarded as a generalization of the familiar
thermodynamic relation δ(p/T ) = −εδβ − ρδα. This rela-
tion ensures that p̃(r) will be constant whenever T̃ (r) and
µ̃(r) are. We also note that the gradient correction to the
compressional energy migrates directly into the free energy
density,

f̃T (r) = κT (ρ̃(r)) + w̃(r) − T
◦
σ (κT (ρ̃(r)), ρ̃(r)),

= fT (ρ̃(r)) + 1
2C(∇ρ̃(r))2. (16)

IV. INTERFACE EQUILIBRIUM

Once the finite-range effects have been included in the
thermodynamics, one may treat the interface between two
coexisting phases. For this purpose, we consider a semi-infinite
geometry with the two coexisting systems having a planar
interface perpendicular to the x direction. The coexistence
values of temperature, chemical potential, and pressure are
denoted by T0, µ0, and p0.

We first note that global equilibrium, including equilibrium
between two bulk systems with a common interface, requires
that the total entropy S be constant under variations δε̃(x) and
δρ̃(x) that conserve the total energy E = ∫

dx ε̃(x) and the
total (net) charge B = ∫

dx ρ̃(x),

0
.= δS − β0δE − α0δB

= δ

∫
dx [σ̃ (x) − β0ε̃(x) − α0ρ̃(x)]

=
∫

dx {[β̃(x) − β0]δε̃(x) + [α̃(x) − α0]δρ̃(x)}, (17)

thus implying spatial constancy of the temperature and the
chemical potential, β̃(x)

.= β0 and α̃(x)
.= α0, as one should

expect.
Therefore, assuming that the temperature is constant,

β̃(x) = β0 = 1/T0, it is convenient to work in the canonical
framework and our analysis is then similar to that carried
out by Ravenhall et al. [18]. With the temperature given,
the local density ρ̃(x) determines the local energy density,
ε̃(x) = d

2 ρ̃(x)T0 + w̃(x), and the local entropy density is

then in turn determined, σ̃ (x) = ◦
σ (ε̃(x) − w̃(x), ρ̃(x)) = ◦

σ

( d
2 ρ̃(x)T0, ρ̃(x)). The local free energy density is then readily

obtained:

f̃ (x) = ε̃(x) − T0σ̃ (x) = fT0 (ρ̃(x)) + 1
2C(∂xρ̃(x))2, (18)

where fT (ρ) is the free energy density in bulk matter at
temperature T and density ρ (see Sec. II). The corresponding
bulk chemical potential is µT (ρ) = ∂ρfT (ρ), while the bulk
pressure is pT (ρ) = µT (ρ)ρ − fT (ρ).

The condition for equilibrium can now be expressed as

0
.= δ

∫
dx[f̃ (x) − µ0ρ̃(x)]

=
∫

dx
[
µT0 (ρ̃(x)) − C∂2

x ρ̃(x) − µ0
]
δρ̃(x), (19)

which then requires

C∂2
x ρ̃(x)

.= µT0 (ρ̃(x)) − µ0 = ∂ρ�f (ρ̃(x)). (20)

Here �f (ρ) is the difference between the free energy density of
a uniform system of density ρ, fT0 (ρ), and the corresponding
“Maxwell” free energy density, defined as the free energy
density along the common tangent,

f M
T0

(ρ) ≡ fT0 (ρi) + µ0(ρ − ρi) � fT0 (ρ), (21)

where ρi refers to either one of the two coexistence densities.
Thus �f (ρ) can be thought of as the free energy (density)
gained by performing a phase mixture.

The equilibrium condition (20) for the density profile
ρ̃(x) is formally equivalent to an equation of motion for a
particle of mass C moving in the potential V (ρ) = −�f (ρ),
with ρ denoting the coordinate and x the time. [We note
that �f (ρ) vanishes at the two coexistence densities and
is positive in between.] Conservation of the corresponding
energy 1

2C(∂xρ̃)2 + V (which vanishes) then determines the
gradient at each position:

∂xρ̃(x) =
[

2

C
�f (ρ̃(x))

] 1
2

. (22)

The local excess in the free energy density due to the
interface (see Appendix C) is given by

f̃ 12
T0

(x) = f̃ (x) − f M
T0

(ρ̃(x))

= �f (ρ̃(x)) + 1
2C(∂xρ̃(x))2 = 2�f (ρ̃(x)). (23)
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FIG. 4. (Color online) The specific interface tension γ 12
T0

as a
function of the coexistence temperature T0 for various values of the
range a.

The total deficit in free energy per unit interface area, equal to
the interface tension, is then given by1

γ 12
T0

=
∫ +∞

−∞
dx f̃ 12

T0
(x) = 2

∫
dρ̃(x)

∂xρ̃(x)
�f (ρ̃(x))

=
∫ ρ2

ρ1

dρ [2C�f (ρ)]
1
2 = a

∫ ρ2

ρ1

dρ

ρg
[2εg�f (ρ)]

1
2. (24)

We note that this quantity can be obtained without explicit
knowledge of the interface density profile ρ̃(x) and it scales
directly with the length parameter a. It is shown in Fig. 4 as
a function of temperature. As expected, it decreases steadily
from its maximum value at T = 0 until it vanishes at Tc. With

1There are two common notations for the interface tension, σ and
γ ; since σ might be confused with the entropy density, we use γ ,
hoping that it will not be confused with the spinodal growth rate.

the (somewhat arbitrary) parameter values adopted, the zero-
temperature interface tension is γ 12

0 ≈ 16 MeV/fm3, about
16 times the familiar nuclear surface tension. This value lies
near the lower end of the rather wide range of expected values
for the tension between quark and nuclear matter (typical
low values are 10–20 MeV/fm2, while typical high values
are 50–100 MeV/fm2, see for example Refs. [19,20]).

The density profile itself, ρ̃(x), can be obtained by integrat-
ing Eq. (22),

ρ̃(x) = ρ̃(x0) + ρc

∫ x

x0

[
2

εg

�f (ρ̃(x))

] 1
2 dx

a
, (25)

where x0 is some location where the density is known. We
note that it would not be feasible to start the integration at
x0 → ±∞, where ρ̃(x0) → ρi , since the gradient vanishes
in the same limit, ρ̃x(x0) → 0. In stead, we take x0 to be
that location where the function �f (ρ̃(x)) has its maximum.
Since the derivative ∂ρ�f (ρ) = µT0 (ρ) − µ0 thus vanishes at
ρ = ρ̃(x0), it follows that the local bulk chemical potential at
x0 matches the coexistence value, µT0 (ρ̃(x0)) = µ0, and this
relation can be used to find the starting density value ρ̃(x0).
[The local bulk chemical potential µT0 (ρ) must match the
coexistence value µ0 = µT0 (ρi) for some intermediate density
because µT0 (ρ) exhibits an undulation between ρ1 and ρ2,
going first through a maximum µT0 (ρA) > µ0 and then through
a minimum µT0 (ρB) < µ0, so it must equal µ0 somewhere
between ρA and ρB .]

The density profile ρ̃(x) is shown in Fig. 5 for T0 = 0
and T0 = 1

2Tc. At each temperature, it scales horizontally
with the length parameter a. The interface profile can be
characterized by the cumulants of the associated interface
location function, g(x) = ρ̃x(x)/(ρ2 − ρ1) (see Appendix C).
So the mean interface location is x̄ = 〈x〉 ≡ ∫

dxxg(x), while
its width b is the corresponding dispersion, b2 = 〈(x − x̄)2〉.
A convenient measure of the profile skewness is given
by the dimensionless parameter γ3 ≡ 〈(x − x̄)3〉/b3. As the
temperature is increased, the profile grows progressively wider
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FIG. 5. (Color online) Top: The surface profile ρ̃(x) for T = 0 (solid) and T = 1
2 Tc (dashed), using as a reference for x the position x0

where the chemical potential equals the coexistence value of the bulk chemical potential, µT (ρ̃(x = x0))
.= µ0(T ). The limiting (coexistence)

densities are shown by the horizontal lines, while the bottom curve is the interface location function g(x) for T = 0. Bottom: The mean location
x̄ of the interface and its width b as functions of temperature. Also shown is the profile skewness parameter γ3 ≡ 〈(x − x̄)3〉/b3.
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and more symmetric, while its mean location moves closer
to x0. With the adopted parameter values we find x̄ − x0 =
1.01 a, b = 2.62 a, and γ3 = 0.96 at T0 = 0.

It should be noted that in the present simple treatment,
where the finite range is taken into account by means of a
gradient term, the interface tension as well as the detailed
density profile shape reflect the specific density dependence
of the free energy fT (ρ), i.e., they follow directly from the
employed bulk equation of state, apart from scalings related to
the strength of the gradient term.

V. COLLECTIVE MODES

We now wish to study the dynamical response to the
introduction of small density undulations imposed on a system
that is static and uniform, δε(r) = ε̃(r) − ε̄ and δρ(r) =
ρ̃(r) − ρ̄. We first note that the local change in the pressure
is then of a similar form, δp(r) = p̃(r) − p̄ with p̄ = p(ε̄, ρ̄).
For simplicity, we assume that the time evolution is described
by fluid dynamics and we first disregard dissipation. The
equations of motion then arise from energy-momentum con-
servation, ∂µT µν = 0, together with conservation of (baryon)
charge, ∂µjµ = 0.

Assuming that the local flow velocities v(r) are nonrela-
tivistic, we may ignore v2 and thus put γ to unity. This yields
the following five equations of motion:

0 = ∂µT µ0(r, t) ≈ ∂t δε + h̄∂iv
i, (26)

0 = ∂µT µi(r, t) ≈ h̄∂tv
i + ∂iδp, (27)

0 = ∂µjµ(r, t) ≈ ∂t δρ + ρ̄∂iv
i, (28)

where h̄ = ε̄ + p̄ is the enthalpy density of the uniform
system. As usual, the equations for T µν can be combined
to a sound-wave equation, while a comparison of the first and
last equations yields the evolution of the density disturbance
in terms of that of the energy disturbance, so

∂2
t δε(r) = ∂i∂

iδp(r), (29)

h̄ ∂t δρ(r) = ρ̄ ∂t δε(r). (30)

It is straightforward to see that, to leading order in the
disturbances δε(r) and δρ(r), the local pressure is

p̃(r) ≈ p(ε̃(r), ρ̃(r)) − Cρ̄∇2ρ(r). (31)

The first term is the usual local-density approximation, i.e.,
the pressure is calculated as in uniform matter that has been
prepared with the local density values, while the second term
arises from the gradient correction to the chemical potential
(12). Therefore, to the same order,

∇2δp(r) ≈ pε∇2ε(r) + pρ∇2ρ(r) − Cρ̄∇4ρ(r), (32)

where pε ≡ ∂εp(ε, ρ) and pρ ≡ ∂ρp(ε, ρ) evaluated at the
local phase point (ε, ρ) = (ε̃(r), ρ̃(r)).

If we require the undulations to be of harmonic
form, δε(r) = εk exp(ik · r − iωt) and δρ(r) = ρk exp(ik ·
r − iωt), then Eq. (30) requires h̄ρk = ρ̄εk. The dispersion
relation is then readily obtained from Eq. (29),

ω2
k = v2

s k
2 + C

ρ̄2

h̄
k4 = v2

s k
2 + a2 εg

h̄

ρ̄2

ρ2
g

k4. (33)

Here the first term is what emerges in ordinary ideal fluid
dynamics, with vs being the isentropic speed of sound [see
Eq. (B7)],

v2
s = pε + ρ̄

h̄
pρ = − T̄

h̄
[h̄2σεε + 2h̄ρ̄σερ + ρ̄2σρρ], (34)

with σερ ≡ ∂ε∂ρσ (ε, ρ) evaluated at (ε, ρ) = (ε̄, ρ̄), etc. This
part of the dispersion relation is perfectly linear, ωk = vsk.
That pathological behavior is modified by the gradient term
which generally increases ω2

k . In the spinodal region, where
v2

s is negative, the collective frequency is imaginary, ωk =
±iγk , and the gradient term then suppresses the growth of
high-k modes. As a result, the growth rate γk will exhibit a
maximum followed by a rapid fall-off to zero as a function
of the wave number k, as is familiar from other substances
exhibiting spinodal instability [7,8].

It is instructive to write the growth rate on the form γk =
|vs |k(1 − k2/k2

max)1/2 where the maximum wave number for
which spinodal instability occurs is given by

k2
max = h̄

C

∣∣v2
s

∣∣
ρ̄2

= − h̄

εg

ρ2
g

ρ̄2

∣∣v2
s

∣∣
a2

. (35)

The maximum in γk occurs at the “optimal” wave number
kopt = kmax/

√
2 and, as the amplification process proceeds, un-

dulations of this size will become dominant and a characteristic
spinodal pattern will thus emerge. The corresponding largest
growth rate is γopt = 1

2 |vs |kmax = |vs |kopt/
√

2. This quantity
scales inversely with the length parameter a and the associated
optimal wave length λopt = 2π/kopt thus scales directly with
a. Consequently, an increase of a will increase the scale of the
most rapidly amplified mode as well as the associated shortest
growth time topt = 1/γopt.

The spinodal growth rates γk depend on the environment,
as specified for example by ρ̄ and T̄ . The temperature
dependence is illustrated in Fig. 6 for ρ̄ = ρc, while the density
dependence is shown in Fig. 7. γk(ρ̄, T̄ ) generally vanishes
along the spinodal boundary and it decreases as a function
of temperature. With the present model, we thus find that
the fastest mode at ρ̄ = ρc has a wavelength of λopt ≈ 3 fm
and a growth time of topt ≈ 1.0 fm/c. As the temperature is
raised, the maximum wave number kmax decreases as do the
optimal values kopt and γopt. While the obtained temperature
dependence is quite significant, it should be recognized that the
thermal properties of the present model may not be realistic.
(By contrast, the spinodal growth rates in nuclear matter are
relatively independent of temperature at the low end because
of the fermion nature of the constituents [8].) On the other
hand, the dependence of γk(ρ̄, T̄ ) on density is more moderate
in the phase region of most rapid growth (as in dilute nuclear
matter [8]).

It is important to appreciate that the phase region of
instability for ideal fluid dynamics is bounded by the isentropic
spinodal (where vs = 0) and it therefore lies inside the
region of thermodynamic instability which is bounded by the
isothermal spinodal (see Fig. 3). There are unstable isentropic
modes whenever v2

s < 0. Insertion of the susceptibilities
σεε, σεε, σεε (see Appendix B) into Eq. (34) yields an explicit
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expression for the speed of sound,

v2
s ≡ ρ

h

(
∂p

∂ρ

)
s≡σ/ρ

=
5
9dT + ρw′′

0
5
6dT + w′

0

, (36)

so the condition for instability becomes 5
9dT + ρw′′

0 < 0.
At zero temperature this amounts to ∂2

ρw0(ρ) < 0, which
occurs exactly within the isothermal spinodal density region,
as one would expect since T = 0 ⇔ σ = 0. However, as T is
increased, the region of isentropic instability shrinks faster than
the region of isothermal instability and it disappears entirely
at Tmax = 3

5Tc.
The above analysis was based on ideal fluid dynamics which

conserves entropy, ∂µσµ = 0, where σµ = σuµ is the entropy
current density. We wish to conclude this section by briefly
discussing the effects of including viscosity into the fluid-
dynamic treatment. Within the nonrelativistic framework used
for the derivation of the dispersion relations for the normal
modes in bulk matter, the inclusion of shear and bulk viscosity
into the fluid-dynamic treatment changes the pressure gradient
by the term −∇[ 4

3η + ζ ]∇ · v where η and ζ are the shear
and bulk viscosity coefficients, respectively. The dispersion
equation is then modified accordingly,

ω2 = v2
s k

2 + a2 εg

h̄

ρ̄2

ρ2
g

k4 − i

[
4

3
η + ζ

]
k2

h̄
ω, (37)

where we have assumed that the combination ξ ≡ 4
3η + ζ

can be regarded as constant, for simplicity. Clearly, the
zero-frequency modes occur for the same wave numbers as
before, k = 0 and k = kmax, and the inclusion of viscosity does
not affect the location of the spinodal boundary. (However,
if thermal conductivity were included, the spinodal boundary
would gradually expand toward the isothermal boundary [18].)
To leading order, the viscosity adds a negative imaginary term
to the frequency, − i

2ξk2/h̄, which in turn gives rise to an
exponential damping factor. Furthermore, inside the spinodal
region the collective frequencies are still purely imaginary,
ω = iγ±, and we find

γ± = ±
[∣∣v2

s

∣∣k2 − a2 εg

ε̄

ρ̄2

ρ2
g

k4 + 1

4
ξ 2 k4

h̄2

] 1
2

− 1

2
ξ
k2

h̄
. (38)

Thus the growth rate γ+ is reduced by ≈ 1
2ξk2/h̄ and the

optimal wave number becomes smaller as well. Even though
the qualitative features will remain the same, the viscous
effects may be quantitatively important [17].

In order to illustrate the key role played by the finite range in
producing spinodal decomposition, let us briefly consider what
would happen without the gradient term. We already noted
that the resulting nonviscous dispersion relation would exhibit
linear growth, γk = |v2

s |k, and thus not favor any particular
length scale. When viscosity is included, the growth rate would
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still grow monotonically, ∂kγ+(k) > 0, but level off for large
k,

γ+(k → ∞) ≈ ρ̄

ξ

∣∣v2
s

∣∣ [1 − 3

4

ρ̄2

ξ 2

∣∣v2
s

∣∣
k2

+ · · ·
]

. (39)

Thus the large-k divergence characteristic of standard ideal
fluid dynamics would be eliminated, but there would still not
be a preferred length scale.

VI. SPINODAL DECOMPOSITION?

Using the particular model and parameter values chosen
here, we now discuss the prospects for spinodal decomposition
to occur during a nuclear collision. Although the explored
mean-field model is rather simplistic and the specific parameter
values are somewhat uncertain, the resulting features appear
to be within the range of plausibility. It may therefore be
instructive to explore the consequences. Obviously, as further
progress is made, both theoretically and experimentally, the
models should be appropriately refined.

In order to understand under what experimental conditions
spinodal decomposition may actually occur, it is useful to
consider how the thermodynamic conditions in the bulk of
the collision system evolve in the course of time. Such phase
trajectories were studied for gold-gold collisions with a variety
of existing dynamical transport models [16] and we shall make
use of those results for our estimates. Ref. [16] calculated the
evolution of the mechanical phase point (ρ(t), ε(t)) in order
to avoid making any assumption about local thermalization;
since we are here mainly concerned with the expansion stage,
we assume that equilibrium has been established and so we
shall frame our discussion in terms of the canonical phase
variables (ρ(t), T (t)) which are somewhat more intuitive.

Generally speaking, the prospects for spinodal decompo-
sition can be expected to be better the more time the bulk
of the matter spends inside the region of spinodal instability.
Let us therefore consider how this quantity develops with the
collision energy. For the discussion below, we assume that the
equation of state has the expected form with a first-order phase
transition terminated by a critical point, as drawn schematically
in Fig. 8 (see also Fig. 3). It seems natural to introduce
a number of threshold values of the collision energy E:

Density ρ

T
C

2

A

B

1

FIG. 8. (Color online) Illustration of the dynamical phase tra-
jectories for the most compressed matter produced at the various
threshold collision energies E1, EA, EB, E2, Ec.

E1, EA,EB,E2, Ec. Their meaning is illustrated in Fig. 8 and
they will be explained in turn below.

At the lowest collision energies, E < E1, the compressions
achieved are insufficient to bring any part of the matter inside
the region of phase coexistence. Consequently, at such low
energies, it would probably not be possible to probe the phase
transition.

As the collision energy is raised above E1, the phase
trajectory (ρ(t), T (t)) of the most compressed matter makes
ever larger incursions into the phase coexistence region. Char-
acterizing such phase trajectories by the highest compression
achieved, ρmax(E), we expect this “turning point” to gradually
move across the phase coexistence region as E is raised. It first
enters the spinodal region for E = EA and it has traversed it
fully for E = EB , reaching the other side of the coexistence
region at E = E2.

At collision energies above E2, the steady expansion of the
bulk matter subsequent to its maximum compression drags
its phase trajectory through the phase coexistence region (and
the spinodal region within it). As E is increased the slope
of the expansion phase trajectory steepens (see Ref. [16])
and the traversal time becomes steadily shorter, both because
the expansion is faster and because the region of instability
becomes narrower at the ever higher excitations encountered.
At a certain “critical” collision energy, E = Ec, the phase
trajectory passes right through the critical point (ρc, Tc) and at
supercritical collision energies, E > Ec, the phase trajectory
will miss the unstable phase region altogether.

Generally, the evolving local thermodynamic conditions
during a collision will differ from one location to another.
Consequently, a single collision event gives rise to an entire
bundle of phase trajectories and the above discussion pertains
to just the phase trajectory of the most compressed matter
of the collision system which, for a symmetric collision,
is presumably located around the center. Furthermore, there
is a dependence on the geometric features of the collision
system, such as the nuclear sizes and the impact parameter.
Thus the precise meaning of the various threshold energies
is somewhat fuzzy and they play primarily a conceptual role.
This underscores the fact that quantitative predictions must
rely on detailed dynamical calculations.

Our special interest here concerns the relatively narrow
interval of collision energy within which the turning point
lies inside the spinodal region, EA < E < EB . Intuitively,
one would expect that collision energies slightly below EB

would be optimal for maximizing the time spent by the phase
trajectory inside the spinodal region. Such collisions, in turn,
would presumably be most favorable for the development of
spinodal decomposition. The transport calculations reported in
Ref. [16] suggest that this optimal beam energy is 5–15 GeV
per nucleon for a stationary target setup. The precise values
depend not only on the specific location of the spinodal phase
boundaries, i.e., on the specific equation of state (which is
still unknown), but also on the complications arising from the
nonuniformity of the density and its time evolution.

In order to get a rough idea of the degree of spinodal growth
that could be expected during a given collision, we assume
that we know the time evolution of the bulk density, ρ(t),
and the associated temperature, T (t). As pointed out above,
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these quantities are local and the present analysis employs
suitable average values that can be taken as representative of
an extended part of the system. For a given collision energy
between EA and EB , the phase trajectory (ρ(t), T (t)) enters
the spinodal region at the time t = ti and exits it again at
the time t = tf . Thus, for ti < t < tf the collective dispersion
relation yields unstable modes with associated growth rates
γk(t) ≡ γk(ρ(t), T (t)) which serve to amplify irregularities in
the density.

An accurate calculation would need to take account not only
of the distribution of density fluctuations but also of the fact
the entire scenario changes in time (and relatively rapidly).
This is beyond our present scope and we seek to obtain a
simple estimate by considering the following amplification
coefficient [14],

�0 ≡
∫ tf

ti

γ0(t) dt ≈ 2

3
γmax�t, (40)

where γ0(t) is the maximum growth rate at the time t, γ0(t) ≡
γopt(ρ(t), T (t)) and γmax is the largest growth rate overall. The
factor of two thirds accounts roughly for the fact that γ0(t)
has a parabola-like appearance, starting out from zero at ti ,
exhibiting a broad maximum of γmax, and then dropping to
zero again at tf , so we put 〈γ0(t)〉 ≈ 2

3γmax. Judging from the
transport calculations reported in Ref. [16], we estimate the
duration of the spinodal stage to be �t ≡ tf − ti ≈ 6 fm/c. To
estimate γmax is more difficult. Our present calculations give an
overall fastest growth time of ≈1 fm/c, obtained for relatively
broad range of densities and for zero temperature. However,
the compression achieved in a nuclear collision is inevitably
accompanied by a corresponding agitation, and we therefore
expect T/Tc = 1

3 − 1
2 to be more realistic. In this connection it

should be realized that the the rapid decrease of the calculated
growth rate as the temperature is increased is to some extent
a reflection of the fact that the present instability region is
bounded the isentropic rather than the isothermal spinodal
line. On the other hand, the inclusion of dissipation (which
would expand the region of instability) is expected to slow
the dynamics down to a significant degree [17]. Therefore it is
probably more realistic to expect the fastest growth time to be
several times that most optimistic value, so we use γ −1

max ≈ 2–
4 fm/c.

With these rough numbers, we then find the value of
the amplification coefficient to be �0 ≈ 2

3 · 6/(2–4) = 1 − 2.
The corresponding amplitude growth factor [14] is then
given by G0 ≡ exp(�0) ≈ 2.7–7.4. When trying to judge the
significance of this value, one should keep in mind that
the density-density correlation function is proportional to the
square of the amplitude growth factor, i.e., 〈δρ(r1) exp(ir12 ·
k)δρ(r2)〉 ∼ G2

k .
It should also be realized that after the system exits

the spinodal instability region of the phase diagram, it has
still to traverse the metastable region between the spinodal
boundary and the phase coexistence line. While nearly uniform
matter is mechanically stable in this regime, this is no longer
so for matter having significant deviations from uniformity.
Therefore, the undulations resulting from even relatively
modest amplifications during the spinodal stage may be

further amplified during the metastable stage and thus lead to
observationally interesting clumping of the expanding matter.

The above numerical estimates were obtained for the
adopted range value of a = 0.2 fm which is of course rather
uncertain. We recall that it leads to an interface tension of
γ 12

T =0 ≈ 16 MeV/fm2 and an optimal wavelength of λopt ≈
4 fm at T ≈ 1

3Tc. The interface tension is at the lower end
of what has been used by various authors [19,20], but does not
appear to be unreasonable considering the large uncertainties
on this quantity. As for the wave length, it is of interest to note
that a spherical volume having such a diameter would contain a
baryon number of B0 = π

6 λ3
0ρc ≈ 24. At a temperature of half

the critical value, the completion of the phase decomposition
would distribute this matter approximately evenly between
the two coexisting phases, assuming the high-density phase is
concentrated in a sphere embedded into the low-density phase.
Such a blob of deconfined matter is large enough to constitute
a macroscopic statistical source, while at the same time being
probably a sufficiently small part of the total system to permit
the simultaneous formation of several such blobs and thus
make it feasible to perform a size-correlation analysis.

If we were to use only half that range, a = 0.1 fm,
those quantities would decrease correspondingly to γ 12

T =0 ≈
8 MeV/fm2, which would be somewhat low in comparison
to the existing estimates, though perhaps not impossible, and
λopt( 1

3Tc) ≈ 2 fm, leading to B0 ≈ 3 which seems too small to
constitute a macroscopic source that could have observational
significance. On the other hand, if we were to double the range,
a = 0.4 fm/c, we would obtain γ 12

T =0 ≈ 32 MeV/fm2, which
would seem quite reasonable, but λopt( 1

3Tc) ≈ 8 fm (hence
B0 ≈ 192) would be far too large to produce a useful effect.

This analysis reveals that whether a given model leads
to spinodal phase decomposition in simulations of nuclear
collisions depends rather delicately on the specific values of its
parameters. Consequently, it is far from certain that collisions
of real nuclei would in fact produce this phenomenon at any
collision energy.

The estimates above suggest that collisions within a suitably
tuned energy range may produce bulk matter that stays inside
the mechanically unstable phase region sufficiently long for
some degree of spinodal clumping to occur. However, it is hard
to predict whether the amplification of the fluctuations will
suffice to bring about the characteristic spinodal enhancement
of a certain length scale. Indeed, the degree of amplification
might be so marginal that the matter will revert to approximate
uniformity after reentering the stable regime and no clumping-
like phase separation would then occur.

This uncertainty underscores the need for studying the
observable consequences of a spinodal decomposition. Indeed,
only if the spinodal phenomenon manifests itself in detectable
signals can it be turned into a useful tool for probing the
equation of state. It is as of yet far from clear whether
any proposed “signals” of the phase decomposition would
in fact survive the subsequent expansion stage dominated
by hadronic resonances. While current microscopic transport
models present useful tools for such investigations, the insight
that can be gained will likely remain somewhat limited until we
achieve a better understanding of the phase transition dynamics
itself.
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VII. CONCLUDING REMARKS

The present study was motivated by the need for developing
theoretical models that can address the dynamics of the con-
finement phase transition that is expected to occur during the
expansion stage of collisions between heavy nuclei at suitably
tuned energies. As a step toward this goal, we have developed a
simple model within which we have studied both the collective
dispersion relation for the mechanically unstable modes of
bulk matter in the spinodal region of the thermodynamic
phase diagram and the properties of the interface between
the two coexisting phases into which such an unstable system
seeks to decompose. These properties are central to the phase
transition dynamics and since they are fundamentally related
it is important they that be treated consistently. As far as we
are aware, this is the first time that these different properties
have been addressed within the same model framework.

The key element is the inclusion of a finite interaction range
without which there would be neither an interface tension nor
spinodal decomposition. Indeed, a zero-range model would
render any interface perfectly sharp and there would be no
associated energy cost, hence no basis for determining the
geometric structure of a system composed of coexisting phases
(a zero-range model would admit even fractal intermingling
of the phases). Furthermore, without a finite range to suppress
the dynamics of short wavelength disturbances, the growth
rate would increase steadily with wave number (even in the
presence of viscosity), hence not display a maximum as is
characteristic of spinodal decomposition. Thus, any model
that aspires to be of use for phase transition dynamics must
incorporate a finite range.

A recent study by Skokov and Voskresensky has sought to
accomplish that by means of a gradient term in the free energy
functional [17]. In the present study, we take a similar approach
by constructing an equation of state in which the interaction-
energy density in non-uniform matter contains a gradient term.
This can be thought of as approximating a convolution with
a kernel of finite range, as is often done for the mean field in
low-energy nuclear physics.

Considering that no quantitatively reliable calculations are
yet available, we have had to fix the parameters of the equation
of state for bulk matter on the basis of our best guess for
the location of the coexistence region, including the critical
point. Consequently, our results should not be considered as
more than suggestive. The additional range parameter entering
into the gradient term has been adjusted to yield reasonable
values for the interface tension and the spinodal growth rates.
Importantly, a change in this range by a factor of two or more
would render the model results either implausible (relative
to existing estimates) or phenomenologically uninteresting
(in that the resulting model would not produce spinodal
decomposition in a collision scenario).

With the gradient term included, we have then studied
the equilibrium interface between two coexisting phases and
determined the temperature dependence of the density profile
and the associated interface tension.

In order to address the collective modes in bulk matter,
a dynamical model is needed and we have adopted fluid
dynamics, which can readily be adapted to the finite-range
equation of state. The gradient term suppresses the growth

of short wavelengths and thus yields a physically reasonable
dispersion relation for the spinodal modes.

Taking guidance from existing phase trajectories extracted
from various transport simulations [16], we have used the
calculated growth rates to estimate the degree of amplification
that might occur when the collision energy is adjusted to
maximize the exposure to the spinodal instabilities. The
resulting amplification amounts to one or two factors of e,
which may suffice to trigger a phase separation due to the sub-
sequent further amplification from the intermediate metastable
phase region. While this conclusion gives grounds for guarded
optimism, it also brings out the fact that a full dynamical
simulation is needed for a more detailed assessment.
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APPENDIX A: COMPRESSIONAL ENERGY

The key quantity in the employed illustrative equation of
state is the energy density associated with the compression of
bulk matter at zero temperature, w0(ρ) = εT =0(ρ). We obtain
this basic function by interpolating between a “hadron gas”
and a “quark-gluon plasma,”

w0(ρ) = χ (ρ)wH (ρ) + [1 − χ (ρ)]wQ(ρ), (A1)

where the interpolation function is taken as

χ (ρ) = [1 + e(ρ−ρχ )/ρw ]−1 (A2)

and each phase is taken to display a simple power form,

wH (ρ) = cH (ρ/ρ0)2, wQ(ρ) = cQ(ρ/ρ0)4/3 + B, (A3)

ρ0 ≈ 0.153 fm−3 being the nuclear saturation density.
For a wide range of parameter values, the resulting

compressional energy density w0(ρ) exhibits a region of
negative curvature, thus ensuring the existence of a first-order
phase transition. [We recall that phase coexistence requires
equal chemical potentials, µ(ρ1)

.= µ(ρ2), hence equal slopes
of w0(ρ) (since µT =0 = ∂ρw0), as well as equal pressures,
p(ρ1) = p(ρ2), hence a common tangent of w0(ρ) (since
pT =0 = µρ − f = ρ∂ρw0 − w0).] Adopting the specific val-
ues cH = 92.6, cQ = 288.9, and B = 408.3 (all in MeV/fm3)
together with ρχ = 3.2535 ρ0 and ρw = 0.945 ρ0, we obtain
ρ1 = 3ρ0 and ρ2 = 8ρ0 for the zero-temperature coexistence
densities. (It would be straightforward to obtain other values
by readjusting the parameters.)

The resulting compressional energy density w0(ρ) is shown
in Fig. 1 by the solid (black) curve, while the dashed (blue and
red) curves are the individual functions wH (ρ) and wQ(ρ). It
is apparent from the plot that the coexistence features depend
delicately on the parameter values. One would therefore expect
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any model calculation of the phase structure to be endowed
with rather large uncertainties, thus reinforcing the need for
experimental information.

Table I summarizes the values of the various quantities of
interest at the phase and spinodal boundaries.

APPENDIX B: SUSCEPTIBILITIES

Mechanical stability is determined by the curvature tensor
σ of the entropy density, which in the present model has the
elements σεε, σρε = σερ, σρρ , where

σεε ≡∂2
ε σ (ε, ρ) = −d

2

ρ

(ε − w0)2
= −d

2

ρ

κ2
< 0, (B1)

σρε ≡∂ρ∂εσ (ε, ρ) = σερ = d

2

1

κ
+ d

2

ρw′
0

κ2
, (B2)

σρρ ≡ ∂2
ρσ (ε, ρ) = −5

6

d

ρ
− d

w′
0

κ
− d

2

ρw′′
0

κ
− d

2

ρw′2
0

κ2

(B3)

with κ(ε, ρ) ≡ ε − w0(ρ) = 1
2dρT . We generally have

|σ | ≡ σεεσρρ − σ 2
ερ = −σεε

ρT
∂ρpT (ρ), (B4)

which in the present case amounts to

|σ | = 2

d

1
3dT + ρw′′

0

ρ2T 3
. (B5)

Since the occurrence of mechanical instability requires that
at least one of the eigenvalues of σ be positive, and |σ | is
the product of the eigenvalues, it follows that mechanical
instability occurs at densities for which w′′

0 (ρ) is negative and
then extends up to the temperature Tmax(ρ) = − 3

d
ρw′′

0 (ρ). The
critical temperature is the largest of those, Tc = Tmax(ρc) =
3
d
ρcw

′′
0 (ρc).

The isothermal sound speed vT readily follows:

v2
T = ρ

h

(
∂p

∂ρ

)
T

= −ρ

h
ρT

|σ |
σεε

=
1
3dT + ρw′′

0
5
6dT + w′

0

, (B6)

where h ≡ p + ε and we have used (∂p/∂ρ)T = ∂ρpT (ρ),
while the isentropic sound speed vs is given by

v2
s = ρ

h

(
∂p

∂ρ

)
s

= ∂εp(ε, ρ) + ρ

h
∂ρp(ε, ρ)

= −T

h
[h2σεε + 2hρσερ + ρ2σρρ] =

5
9dT + ρw′′

0
5
6dT + w′

0

, (B7)

where s = σ/ρ is the entropy per particle and we have used
that the requirement δs

.= 0 implies ρδε
.= hδρ. We note that

v2
s � v2

T for T � 0.

APPENDIX C: INTERFACE

Consider a planar interface between two semi-infinite
systems and let the bulk values of the charge and energy
densities in system i be εi and ρi , respectively, and assume that
ρ1 � ρ2. Presumably the local densities ρ(x) and ε(x) rapidly
approach these asymptotic values away from the interface.
We may generally define the interface location function
[21],

gρ(x) ≡ ∂xρ(x)

ρ2 − ρ1
,

∫ +∞

−∞
gρ(x) dx = 1, (C1)

which peaks near the interface and is normalized to unity. Its
moments provide quantitative characteristics of the interface
profile and we list here the first three [21]:

Location : x̄ = 〈x〉 ≡
∫ +∞

−∞
x gρ(x)dx, (C2)

Width : b = [〈(x − x̄)2〉]1/2, (C3)

Skewness : γ3 = 〈(x − x̄)3〉/b3. (C4)

In order to extract the interface tension, we follow
the discussion in Ref. [22]. Thus, the difference between
the actual diffuse energy density ε(x) and that associated
with the corresponding sharp-surface configuration that would
result if there were no gradient term is given by

ε12(x) = ε(x) − εi − ε2 − ε1

ρ2 − ρ1
(ρ(x) − ρi), i = 1, 2. (C5)

The function ε12(x) is obviously smooth and, moreover,
it tends quickly to zero away from the interface, so it is
indeed peaked in the interface region. (It is elementary to
see that it does not matter whether one uses i = 1 or i = 2
in the above expression.) Its integral is then the total energy
deficit associated with the diffuse interface, the interface
tension,

γ12
.=

∫ +∞

−∞
ε12(x)dx, (C6)

which can thus readily be calculated once the profile densities
ρ(x) and ε(x) are known.
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