
PHYSICAL REVIEW C 79, 054909 (2009)
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I use the space-time distribution of energy and momentum deposited by a fast parton traversing a perturbative
quark-gluon plasma as a source term for the linearized hydrodynamical equations of the medium. A method of
solution for the medium response is presented in detail. Numerical results are given for different values of the
shear viscosity to entropy density ratio, η/s, and speed of sound, cs . Furthermore, I investigate the relevance of
finite source structure by expanding the source term up to first order in gradients of a δ function centered at the
fast parton and comparing the resulting dynamics to that obtained with the full source. It is found that, for the
source term used here, the medium response is sensitive to the finite source structure up to distances of several
femtometers from the source parton.
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I. INTRODUCTION

A relatively new and exciting problem in quark-gluon
plasma (QGP) physics is to determine the response of the
medium to the passage of a fast parton. Fast partons are
created by hard transverse scattering in the early moments
of a heavy-ion collision and have long been considered a
useful probe in understanding the QGP. The primary emphasis
has focused on the process of jet quenching in which fast
partons lose energy and momentum by interacting with the
surrounding medium (see, for instance, Refs. [1–8]). Recently,
the question of how the energy and momentum deposited
by the fast parton affects the bulk behavior of an evolving
QGP has gained attention (see, e.g., Refs. [9–18]). Interest in
understanding the medium’s response to the passage of a fast
parton has been spurred on by experimental measurements
at the Relativistic Heavy-Ion Collider (RHIC) [19–21] of
hadron correlation functions, which suggest the fast parton
may produce a propagating Mach cone in the medium.

There is strong evidence [22,23] that the matter produced
at RHIC obeys the hydrodynamic assumption of local thermal
equilibrium. For this reason, the common theoretical approach
to examining the QGP’s response to a fast parton has been to
treat it as a source of energy and momentum coupled to the
hydrodynamic equations of the medium. This makes sense
provided the medium maintains local thermal equilibrium
following the passage of a fast parton. Assuming the medium
does respond hydrodynamically to a fast parton then raises the
question of what the distribution of energy and momentum
deposited is. It has been observed [9,11,17] that the medium’s
response to fast partons is sensitive to the specific form of
energy and momentum deposition, creating the need for a
hydrodynamic source term derived from first principles.

It is instructive to consider the mechanism of energy and
momentum deposition and the different scales involved. In a
quantum chromodynamic (QCD) plasma fast partons interact
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with the medium at a distance scale of the order of the inverse
Debye mass, (mD)−1. This interaction creates a disturbance,
which in turn interacts with the surrounding medium, creating
a new disturbance at some larger distance scale. The new
disturbance again interacts with the surrounding medium, and
eventually the initial disturbance propagates outward to some
arbitrarily large distance scale. At distances much greater than
the mean free path, �f , the medium’s response to the initial
disturbance can be accurately described by hydrodynamics.
Thus an effective QCD hydrodynamic source term should
include the medium’s response up to distances of order �f ,
at which point the system evolves hydrodynamically. Whether
the plasma is weakly or strongly coupled, the initial energy and
momentum deposition occurs at a distance scale of the order
of the inverse Debye mass, although the specific value of the
Debye mass depends on the strength of the coupling. However,
in a strongly coupled plasma, the concept of a mean free path
loses meaning, and instead the de Broglie wavelength sets the
minimum scale at which the hydrodynamical description is
valid. In general, the application of hydrodynamics is valid on
shorter distance scales for more strongly coupled mediums.

Recently, Neufeld [24] presented a derivation of the
hydrodynamic source term expected from a fast parton moving
through a perturbative QGP, both with and without including
the effect of color screening, by including the medium response
at a distance scale of the order (mD)−1. Using the unscreened,
relativistic form of this source term coupled to the linearized
hydrodynamical equations of the medium the authors of
Ref. [18] showed that the medium response includes a
propagating sound wave with the shape of a Mach cone and
a diffusive wake. In this work, I will use a slightly modified
form of the relativistic limit of this source term in the linearized
hydrodynamical equations of the medium. A detailed solution
of the equations of motion will be presented along with the
resulting dynamics for a range of values of the shear viscosity
to entropy density ratio, η/s, and speed of sound, cs . I will
also expand the source term up to first order in a series of
gradients of a δ function and compare to the full result, in an
effort to understand the relevance of finite source structure.
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FIG. 1. Some of the distance scales relevant to the hydrodynamic
response of a weakly coupled QGP to fast partons.

It will be shown that the medium response is sensitive to the
finite source structure up to distances of several femtometers
from the source parton for the source term used here.

In a weakly coupled QCD plasma at high temperature
T , the inverse Debye mass is of order (gT )−1, where g

is the running coupling, whereas the transport mean free
path is of order (g4T )−1 [25]. The medium’s response to
disturbances at distance scales between (gT )−1 and (g4T )−1

is accurately described by the Boltzmann equation (see
Fig. 1). The hydrodynamic source term examined here includes
the medium’s response at a distance scale of the order
of the inverse Debye mass, at which point the medium’s
hydrodynamic response is invoked. This is a simplification
of the true QCD evolution, where the medium’s evolution
between (gT )−1 and (g4T )−1 should be described by the
Boltzmann equation, after which the hydrodynamic response
can be invoked. However, in the QGP produced at RHIC, it
is likely that the mean free path is comparable in size to the
inverse Debye mass (compare, for instance, Refs. [26] and
[27]). Thus, from a phenomenological point of view, physics
at a distance scale of the order (mD)−1 may be relevant to the
specific structure of the medium’s hydrodynamic response to
fast partons. However, this also suggests the QGP produced
at RHIC may be strongly coupled, limiting the application of
perturbation theory.

The paper is structured as follows. In Sec. II I consider
the general form of linearized hydrodynamics with a source
term. I then introduce the specific source term studied here. In
Sec. III the source term is expanded in terms of gradients of a
δ function up to first order. Both the full source term and the
δ function expanded form are then Fourier transformed into
momentum space. In Sec. IV the hydrodynamic equations are
solved in terms of a one-dimensional numerical integration.
In Sec.V results are given for both the full source and the δ

function expanded version, as well as different values of the
viscosity and speed of sound. In what follows I choose units
such that h̄ = c = kb = 1.

II. LINEARIZED HYDRODYNAMICS WITH
A SOURCE TERM

The first-order hydrodynamical equations for a medium
with nonzero shear viscosity η in the presence of a source
term J ν are given by

∂µT µν = J ν, (1)

where T µν is the energy-momentum tensor of the system. If
one assumes that the energy and momentum density deposited
by the fast parton is small compared to the equilibrium energy
density of the medium, the hydrodynamical equations [Eq. (1)]
can be linearized. Defining T µν = T

µν

0 + δT µν , where δT µν

is the perturbation of the energy-momentum tensor resulting
from the source in an otherwise static medium, one has

∂µδT µν = J ν, (2)

where ∂µT
µν

0 = 0 and δT µν is given by [9]

δT 00 ≡ δε, δT 0i ≡ g,
(3)

δT ij = δij c
2
s δε − 3

4�s

(
∂igj + ∂jgi − 2

3δij∇ · g
)
.

In Eqs. (3) cs denotes the speed of sound, �s ≡ 4η

3(ε0+p0) =
4η

3sT
is the sound attenuation length, and ε0 and p0 are the

unperturbed energy density and pressure, respectively.
By introducing the general rule for Fourier transforms

F (x, t) = 1

(2π )4

∫
d3k

∫
dω eik·x−iωtF (k, ω), (4)

the equations given by Eq. (2) are written in momentum space
as

J 0 = −iωδε + ik · g, (5)

J = −iωg + ikc2
s δε + 3

4�s

(
k2g + k

3 (k · g)
)
. (6)

Solving for k · g in Eq. (6) allows for δε to be determined from
Eq. (5):

k · g = kgL = k · J − ik2c2
s δε

−iω + �sk2
(7)

and hence

δε(k, ω) = ikJL(k, ω) + J 0(k, ω)(iω − �sk
2)

ω2 − c2
s k

2 + i�sωk2
, (8)

where the source and perturbed momentum density vectors
are divided into transverse and longitudinal parts: g = k̂gL +
gT and J = k̂JL + JT , with k̂ denoting the unit vector in the
direction of k. Similarly, one has from Eqs. (5) and (8)

kgL = −iJ 0 + ωδε, (9)

yielding

gL(k, ω) = k̂gL = iωk̂JL(k, ω) + ic2
s kJ 0(k, ω)

ω2 − c2
s k

2 + i�sωk2
. (10)

The transverse part of g can be obtained from Eq. (6). The
calculation is simplified by considering that any part of g
proportional to k is a part of gL. This leaves

gT (k, ω) = g − gL = iJT (k, ω)

ω + 3
4 i�sk2

. (11)

Equation (11) is a diffusion equation and the quantity gT

is interpreted as diffusive momentum density generated by the
fast parton. Equations (8) and (10) describe damped sound
waves propagating at speed cs ; it follows that δε and gL

are interpreted as the energy and momentum density carried
by sound generated by the fast parton. The importance of
the explicit form of the source term can be readily seen. In
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a homogeneous medium symmetries ensure that the source
vector, J, can be written generally as

J(x, t) = up(r) + ∇q(r), (12)

where u is the velocity of the source particle and p(r) and
q(r) are scalar functions of the (possibly Lorentz-contracted)
magnitude r =

√
(x − ut)2. If we instead write Eq. (12) in

momentum space we have

J(k, ω) = u
∫

d4x eik·xp(r) + ik
∫

d4x eik·xq(r) (13)

and JT is found to be

JT (k, ω) = J − k(k · J)

k2

=
(

uk2 − k(k · u)

k2

)∫
d4x eik·xp(r), (14)

so that q(r) does not contribute to JT . If one chooses the source
[Eq. (12)] such that p(r) = 0 then there is no excitation of the
diffusive momentum density. It is clear that the hydrodynamics
of the system are sensitive to the specific form of the source
term. In particular, terms that are in the form of a gradient only
generate sound.

As mentioned previously, in this work I use the source term
derived in Ref. [24]. There, the fast parton was treated as the
source of an external color field interacting with a perturbative
QGP through a Vlasov equation. For a gluonic medium at
temperature T in the presence of a parton moving with velocity
u = uẑ at position r = utẑ in the relativistic limit [γ = (1 −
u2)−1/2 � 1], the source is given by

J ν(x) = [J 0(x), uJ 0(x) − Jv], (15)

where

J 0(ρ, z, t) = d(ρ, z, t)γ u2

⎛
⎝1 − γ uz−√

z2−γ 2 + ρ2

⎞
⎠ , (16)

Jv(ρ, z, t) = (x − ut)d(ρ, z, t)
u4√

z2−γ 2 + ρ2
, (17)

and

d(ρ, z, t) = αs

(
Qa

p

)2
m2

D

8π (ρ2 + γ 2z2−)3/2
. (18)

In these expressions, (Qa
p)2 = 3 for a gluon and 4/3 for a quark,

ρ = (x2 + y2)1/2 is the radius transverse to the z axis, αs =
g2/4π is the strong coupling constant, mD = gT , and z− =
(z − ut). In what follows any numerical coefficient suppressed
by powers of γ 2 will be dropped. For instance, terms such as
γ 2 + 1 will be taken as γ 2.

The vector part of the source, J = uJ 0 − Jv , is explicitly

J = αs

(
Qa

p

)2
m2

Du2

8π

(
γ u

(z2−γ 2 + ρ2)3/2
− u2(x, y, z−γ 2)

(z2−γ 2 + ρ2)2

)
,

(19)

which, as one can verify, can be rewritten in the form of
Eq. (12),

J = αs

(
Qa

p

)2
m2

Du2

8π

(
γ u

(z2−γ 2 + ρ2)3/2
+ ∇ u2

2(z2−γ 2 + ρ2)

)
.

(20)

III. DELTA FUNCTION EXPANSION AND MOMENTUM
SPACE REPRESENTATION OF THE SOURCE

At distances increasingly far from the fast parton, one
expects that the source term will begin to look like a δ function.
Since hydrodynamics is a long-distance effective theory, the
hydrodynamic solutions (in the range of validity) should be
dominated by the lowest order terms in an expansion of
gradients of a δ function centered at the location of the source
parton. (A detailed discussion of this is given in Ref. [16].)
Higher order terms in the expansion, which are sensitive to
the detailed structure of the source term, will become less
important at larger distances. In this section, I will expand the
source term, as given by Eqs. (16) and (20), up to first order in
gradients of a δ function. Later, the hydrodynamic equations,
Eqs. (8), (10), (11), will be solved for both the full source term
and the truncated series. A comparison of the solutions will
highlight at what distance scales the detailed structure of the
source term becomes negligible. It will prove convenient to
Fourier transform the source into momentum space, which
I will also do in this section, before attempting to solve
the hydrodynamic equations. The effect of color screening,
which is absent in Eqs. (16) and (20), will be modeled by
including a damping factor of the form e−ρ m, where m−1 is
a typical screening scale. In a perturbative QGP the inverse
screening scale is given by mD = gT , which appears as a
coefficient in front of the source term used here. However, in
principle, at higher orders the screening scale may be different
than what appears as the coefficient of the source term. It is
thus instructive to keep m arbitrary; however, in solving the
hydrodynamical equations in Sec. IV I will set m = gT . Also,
when necessary, a short-distance cutoff will be used to regulate
ultraviolet divergences. A common choice, which will also be
used here, for the short-distance cutoff in collisional energy
loss is ρmin = (2

√
EpT )−1, where Ep is the energy of the fast

parton (see, for instance, Ref. [28]).
Consider Eq. (16), which can be expanded as

J 0(ρ, z, t) = C0δ(x−) + C1 · ∇δ(x−) + · · · , (21)

where I have used the shorthand notation

δ(x−) ≡ δ(x)δ(y)δ(z − ut). (22)

The coefficients C0 and C1 are found by taking the appropriate
moment of J 0(ρ, z, t). Introducing the damping factor e−ρ m,
one has, for C0,

C0 =
∫

d3xJ 0(ρ, z, t)e−ρ m

=
∫

d3x
αs

(
Qa

p

)2
m2

Dγu2

8π (ρ2 + γ 2z2−)3/2
e−ρ m

= αs

(
Qa

p

)2
m2

Du2

2
G0

(
m

2
√

EpT

)
, (23)
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where (2
√

EpT )−1 has been introduced as a short-distance
cutoff and G0 is a representation of the incomplete Gamma
function

G0(z) =
∫ ∞

z

dt
e−t

t
. (24)

The coefficient given by Eq. (23) gives the total energy
deposited into the medium per unit time.

Similarly, C1 can be obtained as

C1 = −
∫

d3x(x, y, z−)J 0(ρ, z, t)e−ρ m

=
∫

d3x
αs

(
Qa

p

)2
m2

Dγ 2u3

8π

z−(x, y, z−)

(ρ2 + γ 2z2−)2
e−ρ m

= αs

(
Qa

p

)2
m2

Du2

2

(
0, 0,

πu

4mγ

)
. (25)

The results from Eqs. (23) and (25), together with Eq. (21),
give

J 0
D(ρ, z, t) = αs(Qa

p)2m2
Du2

2

×
(

G0

(
m

2
√

EpT

)
+ πu

4mγ
∂z

)
δ(x−) + · · · ,

(26)

where the subscript D is meant to indicate the expansion in
gradients of a δ function. Proceeding in an analogous manner
yields for Eq. (20), we have

JD(ρ, z, t) = αs

(
Qa

p

)2
m2

Du2

2

(
uG0

(
m

2
√

EpT

)

+ π

8mγ
(u2∇ + u(u · ∇))

)
δ(x−) + · · · . (27)

Equations (26) and (27) provide the expansion of the full
source, Eqs. (16) and (20), up to first order in gradients of
a δ function.

As previously mentioned, it is easiest to solve for the
hydrodynamics in Fourier space. To do this, it is necessary
to first transform the source terms into momentum space,
following the general rule given by Eq. (4). The details of
the Fourier transforms of Eqs. (16) and (20) are give in the
Appendix, and the result is

J 0(k, ω) = αs

(
Qa

p

)2
m2

Du2

2
(2π )δ(ω − ukz)

×
⎛
⎝G0

(
m + kT

2
√

EpT

)
+ iπ (u · k)

4γ

√
k2
T + m2

⎞
⎠ ,

J(k, ω) = αs

(
Qa

p

)2
m2

Du2

2
(2π )δ(ω − ukz)

×
⎛
⎝uG0

(
m + kT

2
√

EpT

)
+ iπ

4γ

⎛
⎝

√
k2
T + m2 − m

k2
T

⎞
⎠

×
⎛
⎝u2k + u(u · k)m√

k2
T + m2

⎞
⎠

⎞
⎠ . (28)

These equations should be compared to the Fourier transforms
of Eqs. (26) and (27), which are found by making the
replacements δ(z−) → (2π )δ(ω − ukz) and ∇ → ik:

J 0
D(k, ω) = αs

(
Qa

p

)2
m2

Du2

2
(2π )δ(ω − ukz)

×
(

G0

(
m

2
√

EpT

)
+ iπ (u · k)

4 mγ

)
,

JD(k, ω) = αs

(
Qa

p

)2
m2

Du2

2
(2π )δ(ω − ukz)

×
(

uG0

(
m

2
√

EpT

)
+ iπ

8mγ
(u2k + u(u · k))

)
.

(29)

One can verify that Eq. (28) reduces to Eq. (29) by
taking the kT → 0 limit in the coefficients of 1 and k.
Equations (28) and (29) will be used in the next section to
solve for the hydrodynamic variables of the medium.

As discussed at the beginning of the section, at distances
increasingly far from the fast parton the source term is
dominated by the lowest order terms in an expansion of
gradients of a δ function. It is clear from inspection that
the detailed structure of the full source term, given by
Eq. (28), becomes important at a momentum scale k ∼ m.
This could have been anticipated, since the full source term is
calculated up to distances of the order of the screening length.
A quantitative comparison of the effects of Eqs. (28) and (29)
requires solving the hydrodynamic equations. This will be
done in the next section.

IV. SOLVING THE EQUATIONS

The result given by Eq. (28) is combined with Eqs. (8),
(10), and (11) to yield δε(k, ω), gL(k, ω), and gT (k, ω). These
are then transformed back to position space using Eq. (4). In
δε(k, ω) and gL(k, ω), one can find JL by taking k̂ · J, which
is written conveniently as

JL = αs

(
Qa

p

)2
m2

Du2

2k
(2π )δ(ω − ukz)

×
⎛
⎝(u · k)

⎛
⎝G0

(
mD + kT

2
√

EpT

)
+ iπ (u · k)

4γ

√
k2
T + m2

D

⎞
⎠

+ iπu2

4γ

(√
k2
T + m2

D − mD

)⎞⎠

= (u · k)J 0

k
+ αs

(
Qa

p

)2
m2

Du2

2k
(2π )δ(ω − ukz)

iπu2

4γ

× (√
k2
T + m2

D − mD

)
, (30)
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where I am now taking m = mD . After integrating out δ(ω −
ukz) and using Eq. (A5), the expression for δε(x, t) is given by

δε(x, t) = αs

(
Qa

p

)2
m2

Du2λ2

8π2c2
s

∫
dkT dkz

kT J0(ρkT )eikz(z−ut)

k2
z − λ2k2

T + iσ

×
⎛
⎝

⎛
⎝G0

(
mD + kT

2
√

EpT

)
+ iπukz

4γ

√
k2
T + m2

D

⎞
⎠

× (2iukz − �sk
2) − πu2

4γ

(√
k2
T + m2

D−mD

)⎞⎠ ,

(31)

where λ2 = c2
s /(u2 − c2

s ), σ = �su(λ2/c2
s )kz(k2

T + k2
z ), and I

am again working in plane polar coordinates. The integral
over kz can be performed by using contour integration.
Poles are located at kz = ±(k2

T λ2 ∓ i|σ |)1/2, where |σ | is
itself a function of kz. When evaluating the residues at
these poles I make the approximation σ (kz) ≈ σ (±kT λ). This
approximation is valid at momentum scales for which the
sound attenuation is small (kT 	 c2

s /�s), which should be
reasonable in the hydrodynamic limit. Both poles are located in
the lower complex plane so that the integration only contributes
for z < ut (i.e., behind the source parton). Performing the
integration yields

δε(x, t) = αs

(
Qa

p

)2
m2

Du2λ2

4πc2
s

× Re

⎡
⎣∫

dkT

iJ0(ρkT )eikT

√
λ2−ikT α(z−ut)√

λ2 − ikT α

×
⎛
⎝πu2

4γ

(√
k2
T + m2

D − mD

)

−
⎛
⎝G0

(
mD + kT

2
√

EpT

)
+ iπukT

√
λ2 − ikT α

4γ

√
k2
T + m2

D

⎞
⎠

× (
2iukT

√
λ2−ikT α−�sk

2
T (1+λ2−ikT α)

)⎞⎠
⎤
⎦ ,

(32)

where α ≡ �suλ3/[c2
s (λ2 + 1)]. The final integration over kT

is performed numerically. The analogous expression resulting
from Eq. (29) is given by

δεD(x, t) = αs

(
Qa

p

)2
m2

Du2λ2

4πc2
s

× Re

[∫
dkT

iJ0(ρkT )eikT

√
λ2−ikT α(z−ut)√

λ2 − ikT α

×
(

πu2k2
T

8γmD

−
(

G0

(
mD

2
√

EpT

)

+ iπukT

√
λ2 − ikT α

4γmD

)(
2iukT

√
λ2 − ikT α

−�sk
2
T (1 + λ2 − ikT α)

))]
. (33)

The same approach is applied to gL(x, t). The contour
integration proceeds in the same manner as in Eq. (31) with
the exception that one term has additional poles at kz = ±ikT .
The additional pole at kz = ikT allows for some contribution
in the region in front of the source parton. The result is

gL(x, t) = αs

(
Qa

p

)2
m2

Du2λ2

4πc2
s

× Re

⎡
⎣∫

dkT

kT eikT

√
λ2−ikT α(z−ut)√

λ2 − ikT α

×
(
x

ρ
iJ1(ρkT ),

y

ρ
iJ1(ρkT ),

√
λ2−ikT αJ0(ρkT )

)

×
(

G0

(
mD + kT

2
√

EpT

)(
u2(λ2 − ikT α)

(1 + λ2 − ikT α)
+ c2

s

)

+ iπukT

√
λ2 − ikT α

4γ

√
k2
T + m2

D

×
⎛
⎝(

u2 + c2
s

) +
u2mD

(
mD −

√
k2
T + m2

D

)
k2
T (1 + λ2 − ikT α)

⎞
⎠

⎞
⎠

⎤
⎦

+ αs

(
Qa

p

)2
m2

Du2

8π

∫
dkT e−kT |z−ut |

×
(

−x

ρ
J1(ρkT ),−y

ρ
J1(ρkT ), J0(ρkT )

)

×
(

kT G0

(
mD + kT

2
√

EpT

)

+ πmD

4γ

⎛
⎝1 − mD√

k2
T + m2

D

⎞
⎠

⎞
⎠ for z < ut,

gL(x, t) = −αs

(
Qa

p

)2
m2

Du2

8π

∫
dkT e−kT |z−ut |

×
(

x

ρ
J1(ρkT ),

y

ρ
J1(ρkT ), J0(ρkT )

)

×
(

kT G0

(
mD + kT

2
√

EpT

)

− πmD

4γ

⎛
⎝1 − mD√

k2
T + m2

D

⎞
⎠

⎞
⎠ for z > ut,

(34)

which must be done numerically. The analogous expressions
resulting from Eq. (29) are given by

gLD(x, t) = αs

(
Qa

p

)2
m2

Du2λ2

4πc2
s

× Re

⎡
⎣∫

dkT

kT eikT

√
λ2−ikT α(z−ut)√

λ2 − ikT α
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×
(
x

ρ
iJ1(ρkT ),

y

ρ
iJ1(ρkT ),

√
λ2−ikT αJ0(ρkT )

)

×
(

G0

(
mD

2
√

EpT

) (
u2(λ2 − ikT α)

(1 + λ2 − ikT α)
+ c2

s

)

+ iπukT

√
λ2 − ikT α

4γ mD

×
((

u2 + c2
s

) + u2

2(1 + λ2 − ikT α)

) ⎞
⎠

⎤
⎦

+ αs

(
Qa

p

)2
m2

Du2

8π

∫
dkT e−kT |z−ut |

×
(

−x

ρ
J1(ρkT ),−y

ρ
J1(ρkT ), J0(ρkT )

)

×
(

kT G0

(
mD

2
√

EpT

)
+ πk2

T

8γmD

)
for z < ut,

gLD(x, t) = −αs

(
Qa

p

)2
m2

Du2

8π

∫
dkT e−kT |z−ut |

×
(

x

ρ
J1(ρkT ),

y

ρ
J1(ρkT ), J0(ρkT )

)

×
(

kT G0

(
mD

2
√

EpT

)
− πk2

T

8γmD

)
for z > ut.

(35)

Combining Eq. (14) with Eq. (11) and following the same
approach just used allows for the determination of gT (x, t).
The denominator of Eq. (11) has a simpler structure than in
Eqs. (8) and (10), which allows the contour integration to be
performed exactly. Defining � ≡ 4u/3�s I find that

gT (x, t) = αs

(
Qa

p

)2
m2

D

4π

∫
dkT

k2
T e±�∓|z−ut |

(
k2
T − (�∓)2

)√
1 + 4k2

T

�2

×
(

G0

(
mD + kT

2
√

EpT

)

− πmD�∓

4γ

⎛
⎝

√
k2
T + m2

D − mD

k2
T

√
k2
T + m2

D

⎞
⎠

⎞
⎠

×
(

J1(ρkT )
x

ρ
�∓, J1(ρkT )

y

ρ
�∓, J0(ρkT )kT

)

± αs

(
Qa

p

)2
m2

D

16uπ

∫
dkT e−kT |z−ut |

×
(

±J1(ρkT )
x

ρ
kT ,±J1(ρkT )

y

ρ
kT ,−J0(ρkT )kT

)

×
(

G0

(
mD + kT

2
√

EpT

)

∓ πmDkT

4γ

⎛
⎝

√
k2
T + m2

D − mD

k2
T

√
k2
T + m2

D

⎞
⎠

⎞
⎠ , (36)

where ∓ refers to the sign of (z − ut) and

�∓ ≡ �

2

⎛
⎝1 ∓

√
1 + 4k2

T

�2

⎞
⎠ . (37)

The analogous result from Eq. (29) is given by

gT D(x, t) = αs

(
Qa

p

)2
m2

D

4π

∫
dkT

k2
T e±�∓|z−ut |

(
k2
T − (�∓)2

)√
1 + 4k2

T

�2

×
(

G0

(
mD

2
√

EpT

)
− π�∓

8γmD

)

×
(

J1(ρkT )
x

ρ
�∓, J1(ρkT )

y

ρ
�∓, J0(ρkT )kT

)

± αs

(
Qa

p

)2
m2

D

16uπ

∫
dkT e−kT |z−ut |

×
(
±J1(ρkT )

x

ρ
kT ,±J1(ρkT )

y

ρ
kT ,−J0(ρkT )kT

)

×
(

G0

(
mD

2
√

EpT

)
∓ π kT

8γmD

)
. (38)

V. NUMERICAL RESULTS AND DISCUSSION

Having obtained expressions for the hydrodynamic quan-
tities δε(x, t), gL(x, t), and gT (x, t) I now consider the results
of numerical integration. All calculations are performed for a
gluon moving along the positive z axis at position ut and speed
u = 0.99955c (γ ≈ 33). The strong coupling constant, αs , is
chosen to be 1/π , the temperature is taken to be T = 350 MeV,
and Ep = 16 GeV. As mentioned in Sec. I, I will compare
the solutions resulting from the full source term and the δ

function expanded source term, given by Eqs. (28) and (29),
respectively. I will also make a comparison of the results for a
range of values of the shear viscosity to entropy density ratio,
η/s, and speed of sound, cs .

The solutions resulting from the the full source term and
the δ function source are shown in Figs. 2 and 3. In both
figures the results are plotted for η/s = 1/4π and cs = c/

√
3.

Figure 2(a) shows a contour plot of δε(x, t) for each source. In
both cases a well-defined Mach cone is visible in the trailing
medium. Figure 2(b) shows the result for the magnitude of
the momentum density, |g| = |gL(x, t) + gT (x, t)|. One now
sees both a sound contribution from gL(x, t), which excites a
Mach cone, and a diffusive contribution from gT (x, t), which
is excited in the region directly behind the source gluon. The
diffusive momentum density produces flow almost exclusively
in the direction of the source parton’s velocity, whereas the
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FIG. 2. (Color online) Plots of (a) the perturbed energy density and (b) the perturbed momentum density for both the full source term and
the δ function expanded source term. Here, η/s = 1/4π and cs = 0.57. The direction of the momentum density is indicated by the arrows.

Mach cone generates flow outward and perpendicular to its
boundary, as indicated by the arrows. One can see from Fig. 2
that the full source term and the δ function expanded source
term provide qualitatively similar results, particularly in the
region far from the source parton. In the region near z− = 0,
the full source solution has a noticeably larger transverse extent
than the corresponding δ source result. A more quantitative
comparison can be made by examining Fig. 3, where δε(x, t)
is plotted as a function of z− for fixed ρ. Here one sees that
the two results converge at a distance of about 5–6 fm behind
the source parton for the chosen ρ values.

Results are next presented for three different values of the
shear viscosity to entropy density ratio, η/s. The first value
chosen for η/s is 1/4π ≈ 0.08, which has been proposed [29]
as a universal lower bound for all relativistic quantum field

theories and is calculated in the strongly coupled limit. The
other two values for η/s are multiples of the previous value,
3/4π and 6/4π , and are more consistent with the application
of perturbation theory, which is the method used to calculate
the source used in this paper. For example, Arnold et al. [30]
found for the leading order result η/s = 0.48 for a gluonic
plasma with αs = 0.3. More recently, Xu and Greiner found
η/s = 0.13 for a gluonic plasma with the same value of αs by
going beyond leading order in the diluteness of the medium
[31]. A small value of the shear viscosity, which is required
by the RHIC data [32], is not necessarily incompatible with
perturbation theory, especially if the viscosity is lowered by
anomalous contributions [33].

The results for δε(x, t) and |g| = |gL(x, t) + gT (x, t)| for all
three viscosities are shown in Figs. 4 and 5, where cs = c/

√
3.

FIG. 3. (Color online) A comparison of the perturbed energy density generated by the full source term and the δ function expanded source
term for two different values of ρ. The two results converge at a distance of about 5–6 fm behind the source parton for the chosen values of ρ.
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FIG. 4. (Color online) Plots of (a) the perturbed energy density and (b) the perturbed momentum density for different values of the shear
viscosity to entropy density ratio, η/s. The black lines in (a) are drawn where one would expect to find the boundary of a Mach cone in the
absence of dissipative effects. Plots scaled by the radius ρ, which factor in the conical broadening of the cone, are shown in Fig. 5.

FIG. 5. (Color online) Plots of (a) the total perturbed energy density and (b) the total perturbed momentum density, contained at a given
radius in the ρ-z− plane for different values of η/s. As one can see in (b) the total perturbed momentum density carried by the sonic Mach
cone exceeds that contained in the diffusive wake.
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FIG. 6. (Color online) Plots of (a) the perturbed energy density and (b) the perturbed momentum density for different values of the speed
of sound, cs . Plots scaled by the radius ρ, which factor in the conical broadening of the cone, are shown in Fig. 7.

The black lines in the contour plots of Fig. 4(a) are drawn
along the slope x = ±λ(z − ut), which is where one would
expect to find the boundary of a Mach cone in the absence of
dissipative effects. Figure 5 shows the total energy density (a)
and magnitude of momentum density (b), contained at a given
radius. It is clear from the plots that the Mach cone broadens
and weakens as the viscosity is increased.

Finally, results are shown for three different values of
the speed of sound, cs . The first value is cs = 0.57, which
is the the limiting value for a conformal ideal relativistic gas;
the other two values are cs = 0.45 and 0.3. It is likely that the
QGP produced at RHIC experiences a speed of sound close to
all three of these values during its evolution [34]. The results
are shown in Figs. 6 and 7, where I have chosen η/s = 1/4π .
One should note that the diffusive contribution, gT (x, t), is
independent of the speed of sound.

It is interesting to consider how the results presented here
compare to experimental data. In the dihadron correlation
functions measured at RHIC there is a double-peak structure
in the back-jet (source parton) distribution, which has been
interpreted by some as the result of Mach-cone-generated
flow. In the spectrum presented here one indeed finds Mach-
cone-generated flow but also finds a substantial diffusive flow,
which seems to be missing from the RHIC data. To make
a comparison, however, one must consider that the matter
created in heavy-ion collisions at RHIC rapidly expands, in
contrast to the static background assumed here. The diffusive
momentum is deposited locally and is thus probably difficult
to observe in an expanding medium. However, the Mach
cone propagates at the speed of sound, which is of the
same order of magnitude as the expansion velocities in the
matter produced at RHIC and is likely more readily observed
experimentally.

Care should be taken when examining the azimuthal particle
spectrum generated by a fast parton using an isochronous
Cooper-Frye freeze-out from a static medium, such as in the
work done by Betz et al. [35]. In their paper, the authors
compared the perturbative-QCD-based source term studied
here with one derived in the strongly coupled Ads/CFT
correspondence [16]. Their conclusion was that the anomalous
azimuthal hadron correlations observed at RHIC are likely the
result of flow generated by the nonequilibrium neck zone in
the Ads/CFT case, a contribution that does not obey Mach’s
law [36]. In the isochronous Cooper-Frye freeze-out scenario
the entire volume of matter is assumed to hadronize at the same
time, independent of physical processes. This is in contrast to
the freeze-out in a heavy-ion collision, which occurs as the
result of an expanding and cooling medium. The effect of
an isochronous freeze-out scenario is that any cylindrically
symmetric, or conical, contributions tend to be washed out
(see the discussion in Ref. [37]). Any rigorous comparison
to experimental results will require incorporating a realistic
source term in an expanding medium.

In summary, I have here presented in detail a method of
solution for the linearized hydrodynamical equations of a
QGP coupled to the source term generated by a fast parton.
The solution has been examined for different values of the
shear viscosity to entropy density ratio and speed of sound.
Additionally, the relevance of finite source structure has been
investigated by performing an expansion in gradients of a
δ function centered at the location of the source parton.
Comparison of the medium response generated by the full
source with that generated by the δ expanded one shows that
the result is sensitive to the finite structure up to distances
of several femptometer from the fast parton for the source
examined here.
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FIG. 7. (Color online) Plots of (a) the total perturbed energy density and (b) the total perturbed momentum density, contained at a given
radius in the ρ-z− plane for different values of cs . The magnitude of the Mach cone, when integrated, is similar for the different plots.
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APPENDIX: OBTAINING THE FOURIER
REPRESENTATION OF EQS. (16) AND (20)

In Sec. III the explicit determination of the Fourier
transform of the full source was put off to this Appendix.
Including the damping factor, e−ρm, one has for the inverse
Fourier transforms of Eqs. (16) and (20),

J(k, ω) = αs

(
Qa

p

)2
m2

Du2

8π

∫
d4xeik·x−ρm

×
(

γ u

(z2−γ 2 + ρ2)3/2
+ ∇ u2

2(z2−γ 2 + ρ2)

)
(A1)

and

J 0(k, ω) = αs

(
Qa

p

)2
m2

Dγu2

8π

∫
d4xeik·x−ρm

×
(

1

(z2−γ 2 + ρ2)3/2
− γ uz−

(z2−γ 2 + ρ2)2

)
. (A2)

After an integration by parts, the second term in Eq. (A1) takes
the form∫

d4x
u2eik·x−ρm

2(z2−γ 2 + ρ2)
[ik + m(cos φ, sin φ, 0)], (A3)

where I am working in plane polar coordinates, ρ and φ, such
that x = ρ cos φ and y = ρ sin φ.

It is clear that there are three distinct integral forms that
need to be evaluated. After (trivially) integrating out the t

dependence to bring down a factor of 2πδ(ω − ukz), the three
distinct integral forms are

∫
dx e−ik·x−ρm

(z2γ 2 + ρ2)

⎡
⎢⎢⎢⎢⎣

(1, cos φ, sin φ)
z

(z2γ 2 + ρ2)
1√

z2γ 2 + ρ2

⎤
⎥⎥⎥⎥⎦ ≡

⎡
⎣�1

�2

�3

⎤
⎦ . (A4)

The exponential dependence upon the variable φ is in the
term −iρ(kx cos φ + ky sin φ). By rewriting this term as
−iρkT cos [φ − α], where kx = kT cos α and ky = kT sin α,
the φ integration can be done using the relations

∫ 2π

0

dφ

2π

⎡
⎣ 1

cos φ

sin φ

⎤
⎦ exp [±ikT ρ(cos [φ − α])]

=
⎡
⎣ J0(ρkT )

±iJ1(ρkT ) cos α

±iJ1(ρkT ) sin α

⎤
⎦ , (A5)
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where Ji(x) is the Bessel function of the first kind of order i.
The final result for �2 is obtained by using the relation∫ ∞

−∞
dz

∫ ∞

0
dρ

e−izkz−ρmJ0(ρkT ) z ρ

(ρ2 + γ 2z2)2

= − ikzπ

2γ 2
√

k2
z + (

k2
T + m2

)
γ 2 + 2mγ |kz|

, (A6)

which gives, in the large-γ limit,

�2 = − (2π )ikzπ

2γ 3
√

k2
T + m2

. (A7)

The first component of �1, denoted by �1a , requires
evaluating ∫ ∞

−∞
dz

∫ ∞

0
dρ

e−izkz−ρmJ0(ρkT ) ρ

(ρ2 + γ 2z2)

= π√
k2
z + (

k2
T + m2

)
γ 2 + 2mγ |kz|

. (A8)

The second two components of �1, denoted by �1b, can be
determined after evaluating∫ ∞

−∞
dz

∫ ∞

0
dρ

e−izkz−ρ mJ1(ρkT ) ρ

(ρ2 + γ 2z2)

= π

kT γ

⎛
⎝1 − mγ + |kz|√

k2
z + (

k2
T + m2

)
γ 2 + 2mγ |kz|

⎞
⎠ . (A9)

Again, working in the large-γ limit, this gives for �1

�1a = 2π2

γ

√
k2
T + m2

,

(A10)

�1b = −2π2i

γ kT

⎛
⎝1 − m√

k2
T + m2

⎞
⎠ (cos α, sin α).

To determine �3 it is necessary to evaluate∫ ∞

−∞
dz

∫ ∞

0
dρ

e−izkz−ρmJ0(ρkT ) ρ

(z2γ 2 + ρ2)3/2
. (A11)

This form of (A11) is difficult to evaluate analytically.
However, it can be made more manageable by including the
screening factor in the z, rather than ρ, integration. In this case,
one has in the large-γ limit∫ ∞

−∞
dz

∫ ∞

0
dρ

e−izkz−γ |z|mJ0(ρkT ) ρ

(z2γ 2 + ρ2)3/2

= 2

γ
G0

(
m + kT

2
√

EpT

)
, (A12)

where zmin = (2γ
√

EpT )−1 has been used as a short distance
cutoff in the z integration. This gives for �3

�3 = 4π

γ
G0

(
m + kT

2
√

EpT

)
. (A13)

It is now possible to write down the final result for Eqs. (A2)
and (A1). Remembering to include the factor of 2πδ(ω − ukz)
from the t integration, one has

J 0(k, ω) = αs

(
Qa

p

)2
m2

Du2

2
(2π )δ(ω − ukz)

×
⎛
⎝G0

(
m + kT

2
√

EpT

)
+ iπ (u · k)

4γ

√
k2
T + m2

⎞
⎠ ,

J(k,ω) = αs

(
Qa

p

)2
m2

Du2

2
(2π)δ(ω − ukz)

(
uG0

(
m + kT

2
√

EpT

)

+ iπ

4γ

⎛
⎝

√
k2
T + m2 − m

k2
T

⎞
⎠

⎛
⎝u2k + u(u · k)m√

k2
T + m2

⎞
⎠
⎞
⎠ ,

(A14)

which is the result quoted in Eq. (28).
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