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The relativistic diffusion process of heavy quarks is formulated on the basis of the relativistic Langevin
equation in Itô discretization scheme. The drag force inside the quark-gluon plasma (QGP) is parametrized
according to the formula for the strongly coupled plasma obtained by the anti-de-Sitter space/conformal field
theory (AdS/CFT) correspondence. The diffusion dynamics of charm and bottom quarks in QGP is described by
combining the Langevin simulation under the background matter described by the relativistic hydrodynamics.
Theoretical calculations of the nuclear modification factor RAA and the elliptic flow v2 for the single electrons
from the charm and bottom decays are compared with the experimental data from the relativistic heavy-ion
collisions. The RAA for electrons with large transverse momentum (pT > 3 GeV) indicates that the drag force
from the QGP is as strong as the AdS/CFT prediction.
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I. INTRODUCTION

The physics of the quark-gluon plasma (QGP) is actively
studied by means of the relativistic heavy-ion collisions at
Relativistic Heavy Ion Collider (RHIC) in BNL and will be
pursued further at Large Hadron Collider (LHC) in CERN
[1]. The space-time evolution of the heavy-ion collisions at
RHIC is well described by the (3+1)-dimensional relativistic
hydrodynamics supplemented with the hadronic cascade after
chemical freeze-out [2]. Information on the collective dynam-
ics of QGP is obtained by the soft probes such as distributions
of light hadrons at low momentum, while the information of
microscopic dynamics of QGP is obtained by the hard probes
such as jets, heavy quarks, and heavy quarkoniums [3].

In the present article, we focus on charm and bottom quarks
that behave as impurities in QGP. Experimentally, the signal
of the heavy quarks can be extracted from the single electron
spectra through semileptonic decays [4,5]. Theoretically, the
energy loss of heavy quarks in QGP has been estimated
in perturbative QCD (pQCD) techniques [6,7]. However, it
was pointed out recently that the convergence of the weak
coupling expansion of the drag force for heavy quarks is
rather poor at the temperature relevant to RHIC and LHC so
the calculation in the leading order would not be reliable [8].
Possible alternative way to estimate the drag force is to use
the duality conjecture between the gauge theory and string
theory [anti-de-Sitter space/conformal field theory (AdS/CFT)
correspondence] [9–11]. Although it can be applied only to the
N = 4 supersymmetric Yang-Mills plasma with large ’t Hooft
coupling, the result obtained may provide us with a hint for
the drag force in the strong coupling regime of the quantum
chromodynamics (QCD) plasma if appropriate translation is
made [12].

The purpose of this article is to study the connection
between the drag force acting on the charm and bottom
quarks in QGP and the final electron spectra. To make such
connection, we introduce relativistic Langevin equation for
heavy quarks under the background of the quark-gluon fluid

described by the ideal hydrodynamics. We need relativity
because the transverse momentum of the heavy quarks at RHIC
is not necessarily smaller than their rest masses. Our relativistic
Langevin equation is formulated in Itô discretization scheme.
The diffusion constant and the drag force are related through
a generalized fluctuation-dissipation relation. As for the
drag force, two distinct models, perturbative QCD (pQCD)
and AdS/CFT, are considered. To calculate the space-time
dynamics of light quarks and gluons, (3+1)-dimensional
hydrodynamics is used, which is necessary to calculate the
electron spectra of different impact parameters in the heavy-
ion collisions. The Langevin equation for heavy quarks is
numerically solved from the initial distribution generated by
Monte Carlo generator PYTHIA [13] until the freeze-out of the
heavy quarks. The transverse-momentum (pT ) dependence of
the nuclear modification factor (RAA) and the elliptic flow
(v2) of single electrons as decay products of heavy quarks are
calculated and compared with the RHIC data.

This article is organized as follows. In Sec. II, after
formulating the relativistic Langevin equation and a gen-
eralized fluctuation-dissipation relation, we introduce two
extreme models of the drag force motivated by pQCD and
AdS/CFT. In Sec. III, the relativistic hydrodynamics for light
degrees of freedom and the relativistic Langevin equation
for heavy degrees of freedom are combined to describe
the heavy quark diffusion in dynamical QGP fluid. The
initial condition of heavy quarks, the algorithm of Langevin
simulation in dynamical background, and the treatment of the
freeze-out and decay of heavy quarks are discussed in detail. In
Sec. IV, the numerical results of our calculation are presented.
We show the profile of heavy quark diffusion, heavy quark
spectra, and single-electron spectra and compare our single-
electron spectra with experimental data. Physical meaning of
our results are also discussed. Section V is devoted to summary
and concluding remarks. In Appendix, we show a derivation of
the relativistic Kramers equation from the relativistic Langevin
equation in the Itô discretization scheme.
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II. LANGEVIN DYNAMICS OF HEAVY QUARKS

In this section, we formulate the relativistic Langevin equa-
tion in the local rest frame of the fluid. A generalized form of
the fluctuation-dissipation relation is derived. Then, we discuss
the drag forces calculated in the pQCD approach and in the
AdS/CFT approach. Finally, we introduce a phenomenological
model of the drag coefficient � and the diffusion constant D

that satisfy the generalized fluctuation-dissipation relation.

A. Relativistic Brownian motion

Suppose that there exist a time scale τB during which a
Brownian particle changes its momentum and a microscopic
time scale τm during which light dynamical degrees of freedom
change state and lose time correlation. If these time scales
satisfy τB � τm, one can describe the Brownian particle
by the Langevin equation [14]. In such a situation that the
charm/bottom diffuses inside the quark-gluon plasma, there
are some extra complications: (i) The background quark-gluon
fluid expands rapidly in space and time with the local 4-
velocity uµ(�x, t) and (ii) the initial momentum distribution
of the charm/bottom governed by the hard QCD process has
high momentum component larger than their quark masses.

As for (i), we define the Langevin equation in the rest
frame of matter [uµ = (1, 0, 0, 0)] and the real motion of
the Brownian particle is obtained by the local Lorentz boost
back to the moving frame. As for (ii), we take into account
the relativistic kinematics of the Brownian particle in a
minimal way by using relativistic dispersion relation E(p) =√

p2 + M2. Then the Langevin equation in the rest frame of
matter with minimum relativistic kinematics may be written
as [15]

��x(t) = �p
E(p)

�t, (1)

� �p(t) = −�(p) �p�t + �ξ (t). (2)

Here ��x(t) = �x(t ′) − �x(t) and � �p(t) = �p(t ′) − �p(t) and
�t ≡ t ′ − t is a discrete step of time. The momentum-
dependent drag coefficient is denoted by �(p) that is related
to the time scale of the Brownian particle τB ∼ �−1. Also �ξ (t)
is a noise obeying the probability distribution W [ξ (t)] that
we take to be the Gaussian white noise with a normalization
constant C:

W [�ξ (t)]d3ξ (t) = C exp

[
−

�ξ (t)2

2D(p)�t

]
d3ξ (t). (3)

This leads to

〈ξi(t)〉 = 0, (4)

〈ξi(t)ξj (t ′)〉 = D(p)δij δtt ′�t, (5)

where D(p) is a momentum-dependent diffusion constant.
Note that �ξ (t) is not a single microscopic kick but a sum
of microscopic kicks during the time �t .

Throughout this article, we use the Itô discretization scheme
of the Langevin equation; namely all the argument of �p in the
right-hand side of Eqs. (1) and (2) are evaluated at the prepoint
time t . This is particularly useful for numerical simulations due

to obvious reason. The relativistic Kramers equation, which is
a partial differential equation for the probability of the particle
distribution in the phase space P ( �p, �x, t), is then obtained as
(see the derivation in Appendix)(

∂

∂t
+ �p

E

∂

∂ �x
)

P ( �p, �x, t)

= ∂

∂ �p
[
�(p) �p + 1

2

∂

∂ �pD(p)
]
P ( �p, �x, t). (6)

Note that ∂/∂ �p acts not only on P but also on �(p) and D(p).
Demanding that Eq. (6) has the relativistic Maxwell-

Boltzmann distribution (the Jüttner distribution) P ( �p, �x, t) ∝
exp[−

√
p2 + M2/T ] as a stationary solution, we obtain a

constraint between the drag and the diffusion as

�(p) + G(p) = D(p)

2ET
, (7)

with G(p) ≡ dD(p)/2pdp = dD(p)/d(p2). If D is p in-
dependent, Eq. (7) reduces to the relativistic analog of the
Einstein relation � = D

2ET
= M

E
D

2MT
obtained in Ref. [15].

B. Modeling the energy loss of heavy quarks

Energy loss of heavy quarks in the deconfined phase
has two sources; the collisional energy loss due to elastic
scattering of a heavy quark with the plasma constituents
and the radiative energy loss associated with the induced
emission of the gluon. In the leading order (LO) of the
weak-coupling QCD perturbation, these processes are found to
have different momentum dependence of the heavy quark and
could become comparable in magnitude [6,7]. Recently, the
convergence of such weak-coupling expansion was questioned
by an explicit calculation of the collisional process in the
next-to-leading order (NLO) [8]: The drag coefficient for the
three-color, three-flavor QCD in the nonrelativistic kinematics
(M � T , p) reads

�pQCD|M�T ,p 	 8π

3
α2

s
T 2

M
(− ln g + 0.07428 + 1.8869g) .

(8)

For the QCD coupling constant relevant at RHIC and LHC
(g ∼ 2), the weak-coupling expansion has an obvious problem
of convergence. From the phenomenological point of view, it
has been argued in the past that relatively large drag force is
necessary to account for the RHIC data [16,17].

Alternative approach to the drag force is provided by the
AdS/CFT correspondence [9–11]. In the N = 4 super-Yang-
Mills theory (SYM) at large Nc and large ’t Hooft coupling
λ ≡ g2

SYM
Nc, energy loss of an external quark with velocity v

is obtained as

dp

dt
= −π

√
λ

2
T 2

SYM
v√

1 − v2
(9)

	 −π
√

λ

2
T 2

SYM
p

M
. (10)

Here the first equation is valid for arbitrary mass of external
quark, while the second equation is valid for M � √

λT [11].
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By matching the energy density and the heavy quark potential
in the SYM plasma to those in QCD plasma, one finds TSYM 	
TQCD/31/4 and 3.5 � λ � 8.0 [12]. Then, the drag coefficients
may be estimated as

�AdS/CFT = (2.1 ± 0.5)
T 2

M
. (11)

A remarkable feature of this formula in contrast to the
weak-coupling estimate is that � is p independent [11]. The
fundamental question here is, of course, the reliability of
the translation from SYM to QCD both conceptually and
numerically.

Given the theoretical uncertainties in estimating the drag
force as mentioned above, we will take a phenomenological
approach in this article: We adopt the parametric dependence
of the drag coefficient motivated by the AdS/CFT in Eq. (11)
with the overall magnitude left as a free parameter:

� ≡ γ
T 2

M
. (12)

The dimensionless drag coefficient γ is assumed to be
independent of T ,M , and p throughout this article.
The corresponding diffusion constant D is obtained from
the generalized fluctuation-dissipation relation in Eq. (7) with
the physical boundary condition, D → 0 as � → 0:

D = 2ET · � ·
(

1 + T

E

)
= γ

2T 3

M
(E + T ). (13)

It is in order here to make two remarks on the dynamics
we employed in Eqs. (12) and (13). (i) Because we have
assumed � to be p-independent motivated by AdS/CFT, the
diffusion constant D depends necessarily on the momentum
of the Brownian particle. One may alternatively assume that
D is independent of p while � depends on p as �(p) =
D/[2E(p)T ] [15]. Such dynamics would simulate the p

dependence of the drag force due to collisional process in the
weak-coupling regime [7]. (ii) At ultrahigh energies p � M ,
the dominant energy loss occurs through the induced emission
of the gluons. In this case, the condition τB � τm is violated.
Thus the Langevin approach becomes inapplicable [11] and a
different approach based on radiative energy loss is required
to describe heavy quarks in the QGP [7,18]. With these
reservations in mind, we consider our ansatz Eqs. (12) and
(13) as phenomenological but characteristic dynamics of QCD
and try to estimate γ from the observed single electron data at
RHIC in later sections.

III. HYDRO + HEAVY-QUARK MODEL

A. Background QGP fluid

The hydrodynamics has been quite successful in the
description of collective flow phenomena in heavy-ion col-
lisions at RHIC. Because the hydrodynamics gives space-time
evolution of temperature and flow velocity of the fluid so that
the local rest frame of fluid is well-defined. Then, the Langevin
equation in the previous section formulated in the local rest
frame of the fluid is applicable directly.

Let us first summarize the relativistic hydrodynamic model
[2,19–21] whose basic equation reads

∂µT µν = 0. (14)

Here T µν is energy-momentum tensor. For strongly interacting
matter with zero viscosity, T µν becomes

T µν = (e + P )uµuν − Pgµν, (15)

where e, P , and uµ are energy density, pressure, and four
fluid velocity, respectively. The baryon chemical potential is
neglected, because it is small near midrapidity at RHIC ener-
gies. We solve Eq. (14) in the Bjorken coordinates (τ, x, y, ηs),
where τ = √

t2 − z2 and ηs = 1
2 ln[(t + z)/(t − z)] are proper

time and space-time rapidity, respectively.
In the high temperature (T > Tc = 170 MeV) QGP phase,

we employ the bag equation of state (EOS) for massless partons
(u, d, s quarks and gluons) with B1/4 = 247.19 MeV. Here
the bag constant is tuned to have transition to the hadron
resonance gas at Tc. In the hadron phase (T < Tc = 170 MeV),
a resonance gas of hadrons with the mass up to �(1232) is
employed [21]. Volume fraction of QGP fQGP in the mixed
phase is

fQGP = e − ehad

eQGP − ehad
, (16)

where eQGP (ehad) is the maximum (minimum) value of the
energy density in the mixed phase [22]. Later we will utilize
fQGP to define the effective lifetime of QGP and the freezeout
condition for the heavy quarks.

Hot QGP with local thermalization is assumed to be
produced at τ0 = 0.6 fm. The entropy density distribution
at τ0 in the midrapidity is taken to be proportional to a
linear combination of the number densities of participants and
binary collisions in the transverse plane [19]. For the initial
condition of the flow velocity, Bjorken’s scaling solution,
ux(τ0) = uy(τ0) = 0 and uz(τ0) = sinh ηs , is employed [24].
With these initial conditions, the hydrodynamic model can
well reproduce the experimental data of charged particles at
RHIC [2].

The space-time evolution of the QGP fluid obtained as
above has been exploited for a quantitative study of hard
and rare probes such as azimuthal jet anisotropy, nuclear
modification factor of identified hadrons, disappearance of
back-to-back jet correlation, J/ψ suppression, and direct
photon emission [25].

B. Heavy quark diffusion in quark-gluon fluid

We solve the Langevin equation (1) and (2) with the drag
coefficient � given by Eq. (12) in the local rest frame of
the fluid element. The dimensionless parameter γ is inversely
proportional to the relaxation time τQ of a heavy quark as

τQ = 1

�
= MQ

γT 2
. (17)

The τQ is listed in Table I for three typical values, γ = 0.3
(weak coupling), γ = 1.0 (intermediate coupling), and γ =
3.0 (strong coupling). The characteristic temperature felt by
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TABLE I. Relaxation times of charm and bottom
quarks for γ = 0.3, 1.0, and 3.0 at T = 210 MeV. Mc and
Mb are chosen to be 1.5 GeV and 4.8 GeV, respectively.
(See also Table II.)

γ 0.30 1.0 3.0

τc (fm) 22 6.7 2.2
τb (fm) 72 21 7.2

TABLE II. Lifetimes of QGP for different centralities
and freeze-out conditions. We adopt two characteris-
tic impact parameters b = 3.1 and 5.5 fm. (See also
Table I.)

f0 0 0.5 1

τ b=3.1fm
QGP (fm) 9.8 5.9 4.5

τ b=5.5fm
QGP (fm) 8.7 5.2 4.0

the heavy quark during the space-time history in the QGP fluid
is taken to be 210 MeV (as for the reasoning of this number,
see Sec. IV A1)

Let us now introduce an effective lifetime of QGP, τQGP,
by the following definition: At τ = τQGP, the QGP fraction
fQGP in Eq. (16) at x = y = z = 0 reaches to f0, which takes
a value between 0 and 1. For f0 = 0, the effective lifetime is
defined as the time when QGP disappears completely, while
f0 = 1 corresponds to the time when hadronic phase starts to
appear. The effective lifetime of QGP is listed in Table II for
two different impact parameters and for three different values
of f0.

From the comparison of τQ and τQGP in Tables I and II,
one finds that the initial momentum distributions of charm
and bottom quarks will be changed by QGP only slightly for
the weak drag force (γ = 0.30). However, for the strong drag
force (γ = 3.0), both charm and bottom quarks are affected
by QGP and their momentum distributions would be modified
substantially.

1. Initial distribution of heavy quarks

On the initial hypersurface τ0 = 0.6 fm, initial transverse
positions of heavy quarks are distributed according to the

overlap function of two nuclei A and B in the transverse plane
TAB(x, y):

TAB(x, y) = TA

(
x + b

2
, y

)
TB

(
x − b

2
, y

)
,

(18)
TA(B)(x, y) =

∫
dzρA(B) (x, y, z),

where ρA(B) is the Woods-Saxon parametrization of nuclear
density. The heavy quarks are assumed to stream freely in
the longitudinal direction for 0 < τ < τ0 and acquire the
momentum rapidity yp = ηs . Thus the initial heavy quark
distribution in the phase space reads

dN

d3pd2x⊥τ0dηs

= dσ HQ
pp

d3p
TAB(x, y)

δ(ηs − yp)

τ0
. (19)

The initial momentum spectrum of heavy quarks dσ HQ
pp /d3p in

p + p collisions is calculated by perturbative QCD to leading
order (LO) using the event generator PYTHIA 6.4 [13].

In Fig. 1 the initial distribution of heavy quarks in
the transverse plane and that in the momentum space at
midrapidity (|yp| � 1) are shown. The momentum distribution
is normalized to the invariant cross section in p + p collisions.
Note that the initial momentum distribution of the charm quark
has a steeper slope at high pT than that of the bottom quark.
Nuclear effects such as shadowing and Cronin effect are not
considered for simplicity.

In Fig. 2(a), we show the differential cross section of
electrons from heavy quarks in p + p collisions obtained
by PYTHIA (the LO perturbative QCD). The theoretical cross
section underestimates the experimental value by a factor
5–10 in magnitude as shown Fig. 2(b), while the shape of the
cross section is reproduced well for pT > 3 GeV as shown in
Figs. 2(a) and 2(b). The discrepancy is known to become
smaller by taking into account higher orders beyond LO
[26,27]. Because the pT shape is more relevant than the
magnitude in our study of RAA and v2 for heavy quarks, we
adopt LO for simplicity and compare our results with the data
only above 3 GeV in the following.

2. Simulation of the Brownian motion

The Langevin equation of a heavy quark is defined in the
local rest frame of QGP. The information of local flow velocity
and local temperature at the position of the heavy quark is
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]
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(a) HQ configuration

FIG. 1. (a) A sample of 500 heavy quarks
at the initial in the transverse plane, for the
Au + Au collision with impact parameter 5.5 fm.
(b) Invariant cross sections of charm and bottom
production in p + p collisions in midrapidity
(|yp| � 1.0), which is proportional to the initial
momentum distribution.
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FIG. 2. (a) Experimental cross section
for electron production in p + p collision
at midrapidity [26] and the leading-order
pQCD result by PYTHIA. (b) The ratio of
the experimental data and the LO result.
Theoretical calculations are performed at
|yp| � 0.35 and then properly normalized to
obtain the cross section.

supplied from the relativistic hydrodynamics. The algorithm
of such Langevin simulation is summarized as follows:

(i) Start from a sample of heavy quark at a position
and a momentum according to the initial phase-space
distribution given in Eq. (19).

(ii) Given the phase-space location (pµ, xµ) in the labo-
ratory frame, obtain the information of the local flow
velocity uµ(x) and local temperature T (x) from the
output of the hydrodynamic simulation.

(iii-a) Coordinate step: Make one discrete step for the heavy
quark in the configuration space according to Eq. (1)
by using discrete proper-time step �s = (M/E)�t :

�xν(s) = pν

M
�s. (20)

(iii-b) Momentum step: Move to the rest frame of the fluid
element by the Lorentz transformation, p → k. Make
one discrete step for the heavy quark in momentum
according to Eq. (2) using �s:

��k(s) = −γ
T 2E(k)

M2
�k�s + �ξ (s), (21)

〈ξi(s)ξj (s ′)〉 = δij δss ′
2γ T 3

M2
E(E + T )�s. (22)

Then, move back to the laboratory frame by inverse
Lorentz transformation (k + �k → p′).

(iv) Repeat the steps (ii) and (iii) until the volume fraction
of QGP in the mixed phase (fQGP) reaches f0.

Several comments are in order here about this procedure.

(i) We use the proper time step �s instead of the ordinary
time step �t in our simulation, simply because the former
is a Lorentz scalar and thus easy to handle in going back
and forth between the laboratory frame and the fluid rest
frame. We choose �s = 0.01 fm in our simulation, which
is much shorter than the relaxation time of the drag force
parameter adopted in this article.

(ii) Owing to the Itô discretization scheme, the momentum
step in (iii-b) can be performed only by using the
information of flow and temperature at the current
position of the heavy quark in the phase space.

(iii) It is not clear whether we should stop the heavy quark
diffusion at the point when the mixed phase starts to
appear or at the point when the mixed phase disappears.
We consider this uncertainty as a systematic error and

consider the three cases as shown in Table II, namely
f0 = 0, 0.5, and 1.

3. Freeze-out and decay

Once the local temperature around the charm(bottom) quark
becomes lower than Tc, it hadronizes into D (B) mesons.
Because we need to calculate single-electron spectra from
the heavy quarks, we focus on the following semileptonic
decays: D → e for D decay, B → e for primary B decay,
and B → D → e for secondary B decay. The hadronization
of heavy quarks and the decay of heavy mesons are calculated
by using PYTHIA 6.4 [13]. Because we employ independent
fragmentation given by PYTHIA, the effect of quark recombi-
nation to form D or B mesons is not taken into account. Such
simplification would be more reasonable for heavy quarks
with higher transverse momentum. Therefore, it is the high-pT

region (e.g., above 3 GeV) that is suitable to compare our
results with the experimental data.

C. Observables

Medium modification factor RAA for single electrons is
defined by

RAA(pT ) = 1

Ncoll

dNA+A/dpT

dNp+p/dpT

, (23)

where Ncoll is the number of binary collisions calculated from
the Glauber model. Because the initial heavy quark distribution
is assumed to be without nuclear effects and to scale as Ncoll

in our calculation, the deviation of RAA from unity is solely
attributed to the heavy quark diffusion in the hot medium. The
elliptic flow for single electrons is defined by

v2(pT ) =
∫

dφ
d2NA+A

dpT dφ
cos 2φ∫

dφ
d2NA+A

dpT dφ

= 〈cos 2φ〉. (24)

This quantity indicates how much momentum anisotropy
around the collision axis is given to the heavy quarks from
the background medium.
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FIG. 3. (Color online) The averaged
stay time 〈tS〉 of (a) charm quarks and
(b) bottom quarks with the drag co-
efficient γ = 0, 0.3, 1.0, 3.0, and 30.0
at midrapidity (|yp| � 1.0). The impact
parameter is chosen to be 5.5 fm in Au +
Au collisions. For freeze-out condition,
f0 = 0.5 is adopted.

IV. NUMERICAL RESULTS

Before showing the numerical results in detail, let us
first summarize the basic parameters of our simulation. (1)
The dimensionless drag coefficient γ is a parameter to
control the diffusion of heavy quarks in QGP. We take three
characteristic values, γ = 0.3, 1.0, and 3.0, corresponding to
weak, intermediate, and strong coupling, respectively. (2) The
impact parameter b controls the volume and the lifetime of
QGP. Thus it affects indirectly the heavy quark spectra at
their freeze-out and the single-electron spectra. In all of the
figures below except for Fig. 9, b is taken to be 5.5 fm
(10–20% centrality). (3) The criterion of stopping the heavy
quark diffusion in the mixed phase is given by f0 that takes a
value between 0 and 1. Its dependence on the final results is
considered to be a systematic error of our calculation. In all of
the figures except for Fig. 9, we show the results at the central
value, f0 = 0.5.

A. Heavy quark spectra

1. Profile of heavy quark diffusion

To estimate how long a heavy quark stays in the QGP region
in terms of local fluid proper time, we define the “stay time”
as

tS ≡
∑
steps

�t |FRF =
∑
steps

�s(E/M)|FRF

=
∑
steps

�s(p · u/M)|LF, (25)

where FRF and LF imply the fluid rest frame and laboratory
frame, respectively. By averaging over the heavy quarks
starting initially with pin

T and ending in midrapidity (|yp| � 1.0)
at their freeze-out, we obtain the average stay time 〈tS〉.

Shown in Fig. 3 is the averaged stay time of heavy quarks
as a function of their initial transverse momentum. The
diffusion coefficient is taken to be γ = 0, 0.3, 1.0, 3.0, and
30.0. Here γ = 0 corresponds to the free streaming. However,
γ = 30.0 corresponds to the extremely strong coupling where
the relaxation times at typical temperature 210 MeV are
0.22 fm for charm and 0.72 fm for bottom: The initial
information on pT is completely lost after a few fm of diffusion
in this case.

The figure shows that, for heavy quarks with large initial ve-
locity compared to the fluid velocity (pc,in

T > 1 GeV, p
b,in
T >

3 GeV), the stay time becomes shorter for higher pT because
they get out of the medium in shorter times. Also, as the
drag force becomes stronger, the stay time becomes longer as
expected. As for the heavy quarks with small initial velocity
(pc,in

T < 1 GeV, p
b,in
T < 3 GeV), the stronger the drag force,

the shorter the stay time, because the drag force from the
background fluid accelerates them more strongly.

Next we define the averaged temperature for the heavy
quarks experienced during their stay in the QGP fluid:

T̄ ≡ (1/tS)
∑
steps

T (x)�t |FRF. (26)

By averaging over the heavy quarks starting initially with pin
T

and ending in midrapidity (|yp| � 1.0) at freeze-out, we obtain
the averaged temperature 〈T̄ 〉 shown in Fig. 4.

The figure shows that, for heavy quarks with large initial ve-
locity compared to the fluid velocity (pc,in

T > 1 GeV, p
b,in
T >

3 GeV), the averaged temperature becomes higher for higher
pin

T because they feel only the initial high temperature region
before getting out of QGP. Also, as the drag force becomes
stronger, the stay time becomes longer and averaged tempera-
ture becomes smaller. As for the heavy quarks with small initial
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FIG. 4. (Color online) The av-
eraged temperature 〈T̄ 〉 of (a)
charm quarks and (b) bottom quarks
with the drag coefficient γ =
0, 0.3, 1.0, 3.0, and 30.0 in midra-
pidity (|yp| � 1.0). The collision
geometry and the freeze-out con-
dition are the same with those in
Fig. 3. The fluctuation in high pT in
(a) is due to statistical errors of our
simulation.
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FIG. 5. (Color online) The averaged
momentum loss 〈�pT 〉 of (a) charm
quarks and (b) bottom quarks with drag
coefficients γ = 0.3, 1.0, 3.0, and 30.0
in midrapidity (|yp| � 1.0). The collision
geometry and the freeze-out condition are
the same with those in Fig. 3.

velocity (pc,in
T < 1 GeV, p

b,in
T < 3 GeV), the stronger the drag

force, the higher the averaged temperature, because they are
strongly accelerated and quickly pass the low temperature
region. It turns out that the average temperature lies between
200 and 220 MeV in the wide range of pin

T and γ ; this is the
reason why we adopted the typical temperature 210 MeV in
Sec. III.

Finally, let us define the the transverse momentum loss
(momentum loss for short):

�pT = pin
T − pout

T , (27)

where pout
T is the transverse momentum at the time of the

freeze-out of the heavy quark. By averaging over the heavy
quarks starting initially with pin

T and ending in midrapidity
(|yp| � 1.0) at freeze-out, we obtain the averaged momentum
loss 〈�pT 〉 as shown in Fig. 5.

For heavy quarks with larger initial pin
T , the momentum loss

per unit time (dynamical effect) is larger as seen in Eqs. (2)
and (12) while the average stay time (kinematical effect) is
shorter. Therefore, there are two competing effects in the net
momentum loss: In Fig. 5, we find that larger initial momentum
leads to larger momentum loss, so that the dynamical effect
wins over the kinematical effect. As for the dependence on
drag coefficient, both dynamical and kinematical effects act
additively for heavy quarks with large initial momentum
(pc,in

T > 1 GeV, p
b,in
T > 1.5 GeV) and the momentum loss is

enhanced by increasing γ . For the heavy quarks with small
initial velocity (pc,in

T < 1 GeV, p
b,in
T < 1.5 GeV), these two

effects compete but we find in Fig. 5 that the dynamical effect
seems to win, namely that the stronger the drag force, the
larger the momentum gain by the acceleration from the fluid.
Note here that, for the extreme case γ = 30.0, we have almost

a linear increase of 〈�pT 〉 = pin
T − pout

T as a function of pin
T .

This is simply because the heavy quarks are thermalized and
pout

T is almost independent of pin
T .

2. Nuclear modification factor R Q
AA

Let us define R
Q
AA(Q = c, b) for heavy quarks by replacing

the number of electrons Np+p(NA+A) in Eq. (23) by the number
of heavy quarks at the freeze-out N

Q
p+p (NQ

A+A). This is a
theoretical quantity not directly accessible in experiment, but
it is useful to examine the behavior of heavy quarks without
the kinematical complication due to their semileptonic decays
to electrons.

Shown in Fig. 6 are R
Q
AA for charm and bottom in the

midrapidity at impact parameter 5.5 fm as a function of
pout

T . There are two key factors that determine R
Q
AA; the

momentum loss of heavy quarks and the initial distribution
of heavy quarks. Starting from the initial distribution, the
high-momentum quarks lose energy due to drag force and are
shifted to the low pout

T region. Therefore, R
Q
AA is suppressed

(enhanced) at high (low) pout
T . This tendency is prominent for

large drag force as expected. Also, the suppression at high pout
T

is larger for the charm if we adopt the same γ . This is because
the actual drag coefficient is γ T 2/MQ so that the quark with
smaller mass is affected more by the drag force.

3. Elliptic flow v
Q
2

In Fig. 7, we show the elliptic flow for the heavy quark
v

Q
2 (Q = c, b) at midrapidity at impact parameter 5.5 fm.

It is clear that the charm and bottom quarks with any drag
force at large pout

T are less thermalized and thus they do not
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FIG. 6. (Color online) R
Q

AA of (a)
charm quarks and (b) bottom quarks
with drag coefficients γ = 0.3, 1.0, 3.0,
and 30.0 at midrapidity (|yp| � 1.0).
For collision geometry, we choose the
impact parameter 5.5 fm in Au + Au
collisions. For freeze-out condition, the
f0 = 0.5 is adopted.
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FIG. 7. (Color online) v

Q

2 of (a)
charm quarks and (b) bottom quarks
with drag coefficients γ = 0.3, 1.0, 3.0,
and 30.0 in midrapidity (|yp| � 1.0).
The collision geometry and the freeze-
out condition are the same with those
in Fig. 6. In (a), the statistical errors for
γ = 3.0 and 30.0 are so large at pout

T >

6 GeV that we omit them.

produce much momentum anisotropy. Note that the dominant
contributions of heavy quarks with γ = 30.0 at large pout

T

may be those that start outside of the QGP fireball and with
large initial pin

T , therefore they have isotropic momentum
distribution because there is no medium effect [28]. However,
charm quarks with small pout

T are thermalized for large drag
force and develops v

Q
2 reflecting the flow of light particles. As

for bottom quarks, they only have small momentum anisotropy
with all drag forces but γ = 30.0 at small pout

T because they
are not enough thermalized.

B. Electron spectra

1. Nuclear modification factor RAA

Let us now examine the results of electrons and positrons
(we call them just electrons for short) that are the decay
products from D and/or B mesons. In Figs. 8(a), 8(b), and
8(c), we show RAA of electrons (a) from charm quarks, (b)
from bottom quarks, and (c) from charm + bottom quarks.
The dependence of RAA on the drag coefficient γ is understood

easily: Larger drag coefficient gives larger energy loss and RAA

is suppressed. There is, however, one qualitative difference
between R

Q
AA in Sec. IV A2 and RAA in the low-pT region:

R
Q
AA exceeds unity due to the shift of the high-momentum

quarks to low-momentum quarks, while RAA stays around
unity at low momentum. This is understood by recognizing
that the low-pT electrons come from a wide range of heavy
quarks with various freeze-out momenta, so low-momentum
electrons are not sensitive to the modification of the heavy
quark spectrum due to diffusion. However, the electrons
with high pT originate mainly from high-pT heavy quarks
and thus they are sensitive to the spectral change of heavy
quarks.

In Fig. 8(d), the number of electrons from bottom divided
by that from charm + bottom for Au + Au collision is shown
as a function of electron’s pT together with that for p + p

collision. In both p + p and A + A, more than 50% of
electrons come from the bottom for pT > 3 GeV. Furthermore,
the ratio increases as the drag force becomes stronger. The kink
structure of RAA at pT ∼ 1–2 GeV in Fig. 8(c) is understood by
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FIG. 8. (Color online) (a) RAA of
electrons from charm, (b) RAA of elec-
trons from bottom, (c) RAA of electrons
from both charm and bottom, and (d)
the ratio of electrons from the bottom
and the net electrons. All results are
in midrapidity (|yp| � 0.35). The drag
coefficient is taken to be γ = 0.3, 1.0,
and 3.0. The impact parameter is taken
to be 5.5 fm in Au + Au collisions.
For freeze-out condition, the f0 = 0.5
is adopted. In (d), the result of p + p

collision calculated in the leading-order
pQCD by PYTHIA is also plotted.
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FIG. 9. (Color online) Comparison of RAA in our hydro + heavy-quark model with the experimental data [4,5]. The Au + Au collision
with the impact parameter (a) 3.1 fm and (b) 5.5 fm, both in midrapidity, |yp| � 0.35. The drag coefficient is chosen to be γ = 0.3, 1.0, and
3.0 indicated by different colors. The freeze-out condition is taken to be f0 = 1.0, 0.5, and 0.0 which correspond to upper, middle, and lower
points, respectively, within the same color. As for error bars in experimental data, we only plot the statistical errors [4,5].

the fact that the dominant contribution to the electrons changes
rapidly from the charm to the bottom.

Finally we compare our numerical results with experimen-
tal data [4] in Fig. 9. Here we show two cases of impact
parameters 3.1 fm (0–10% centrality) and 5.5 fm (10–20%
centrality) at midrapidity. The systematic errors due to the
freeze-out condition of heavy quarks are represented by the
three plots with the same color. Recall that the comparison
of our results and experimental data is reliable only for pT >

3 GeV as discussed in Sec. III B1 and that bottom quarks are
the dominant source of electrons in this region.

Although definite conclusion cannot be made from the
present comparison, it is likely that the intermediate to large
value of the drag coefficient γ = 1.0–3.0 is favored especially
for small impact parameter. This number is rather close to
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FIG. 10. (Color online) Comparison of v2 in our hydro + heavy-
quark model with experimental data [4] in midrapidity (|yp| � 0.35).
Experimental data of v2 is obtained in minimum bias analysis,
whereas our theoretical values of v2 are evaluated at impact parameter
5.5 fm as a representative. The drag coefficient is chosen to be
γ = 0.3, 1.0, and 3.0 and the freeze-out condition is f0 = 0.5. As for
error bars in experimental data, we only plot the statistical errors [4].

the value γ = 2.1 ± 0.5 predicted from the AdS/CFT corre-
spondence [see Eq. (11)]. We should remark, however, that
the radiative energy loss [7,18] and the relativistic diffusion
via resonances combined with quark coalescence [17] would
be legitimate alternatives to describe the data, so further
systematic comparison of the data and theoretical calculations
is called for.

2. Elliptic flow v2

We show our theoretical v2 of electrons in Fig. 10 as a
function of pT together with the experimental data [4]. Our
v2 does not depend much on the strength of the drag force
for pT > 3 GeV and stays small. Due to the poor statistic of
both our simulation and the experimental data in the relevant
region, it is not clear whether theory and experiment are
consistent with each other. Although it is still preliminary,
recent PHENIX data show large v2 = 0.05–0.1 with small
errors for 3 < pT < 5 GeV at collisions with corresponding
centrality [29].

V. SUMMARY AND CONCLUDING REMARKS

In this article, we have examined the diffusion of
heavy quarks in the dynamical QGP fluid on the basis
of the relativistic Langevin equation combined with the
relativistic hydrodynamics. We establish a generalized
fluctuation-dissipation relation in Itô discretization scheme,
Eq. (7), which relates the diffusion constant D(p) and the drag
coefficient �(p) for the relativistic Brownian particle. Then
we parametrized the drag coefficient motivated by the formula
from the AdS/CFT correspondence for strongly coupled
plasma, � ≡ γ T 2/M , with the dimensionless coefficient γ

as a parameter. The space-time evolution of the QGP fluid
composed of light quarks and gluons is treated by the full
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(3+1)-dimensional relativistic hydrodynamics for the perfect
fluid.

By solving the Langevin equation for heavy quarks under
the influence of the QGP fluid, we obtain the space-time
history of the diffusion process of charm and bottom in the
realistic situation of the relativistic heavy-ion collisions. The
initial momentum distributions of charm/bottom are given
by the event generator PYTHIA. The hadronization and the
semileptonic decays of charm/bottom after they leave from
the QGP region are treated by independent fragmentation and
decay. Nuclear effects for initial charm/bottom distributions
and the quark recombination/coalescence in hadronization of
heavy quarks, which would be important for the low pT <

3 GeV region of the final electron spectrum, are neglected for
simplicity in this article.

Because we have the space-time history of the
charm/bottom during their diffusion, we have looked at
the average stay time of heavy quarks in QGP 〈tS〉,
the average temperature felt by heavy quarks in QGP
〈T̄ 〉, and the average momentum loss 〈�p〉 during the
diffusion. We have also looked at the nuclear modification
factor R

Q
AA and the elliptic flow v

Q
2 of heavy quarks as a

function of the transverse momentum of the heavy quarks at
their freeze-out pout

T . The results indicate that, for sufficiently
large values of pout

T > 3 GeV, there is a sizable suppression
of R

Q
AA for large drag coefficient, while one can see only a

significant effect in v
Q
2 only for pout

T < 3 GeV that is not the
region one can rely on our calculation.

We then compared our calculations of RAA and the elliptic
flow v2 for single electron with the RHIC data. First, the
momentum distribution of the electrons do not necessarily
reflect the shape of the momentum distribution of the heavy
quarks at their freeze-out due to decay kinematics. Also, the
net electrons with pT > 3 GeV are dominated by those from
bottom quarks. A rough comparison of RAA for pT > 3 GeV
suggests that the drag coefficient could be as large as γ =
1.0–3.0. However, we are unable to extract useful information
from v2 for pT > 3 GeV because of the lack of statistics in
both experiment and simulations. The value of γ = 1.0–3.0
is consistent with that predicted by the AdS/CFT approach
for strongly interacting plasma (γ = 2.1 ± 0.5), although we
could not exclude other descriptions of heavy quarks in QGP
such as radiative stopping [7,18] and the resonance scattering
model [17]. High-precision experimental data at RHIC and
LHC for electrons from charm and bottom identified separately
are highly desirable. Also the correlation of the transverse
momenta of a heavy quark and a heavy antiquark (and the
associated electron-positron or D-D̄ correlation [30,31]) could
be a good observable to make detailed comparison of the
theories and experiments.

Before closing, we remark on possible improvements of our
approach to treat the region pT < 3 GeV in a more reliable
way: (i) Initial heavy quark distributions beyond LO need to
be considered for better control of their absolute magnitude,
the pT shape, and the charm/bottom ratio, (ii) nuclear
effects on the initial charm/bottom distribution need to be
examined, and (iii) the hadronization of charm/bottom due
to quark recombination processes needs to be taken into
account.
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APPENDIX: RELATIVISTIC KRAMERS EQUATION

In this Appendix, we derive the partial differential equation
of P ( �p, �x, t) or the Kramers equation using the Itô (prepoint)
discretization scheme. We give here the general form of the
relativistic Langevin equation as

��x(t) = p(t̃)

E(p(t̃))
�t,

� �p(t) = −A(p(t̃)) �p(t̃)�t +
√

B(p(t̃))�η(t)�t,
(A1)

W [�η(t)]d3η(t) = C · exp
[
−�t

2
�η(t)2

]
d3η(t),

〈ηi(t)ηj (t ′)〉 = δij δtt ′

�t
,

where E(p) =
√

�p2 + M2 with M being the mass of the
Brownian particle. Here t̃ ≡ t corresponds to the Itô discretiza-
tion and t̃ ≡ t + �t corresponds to the Hanggi-Klimontovic
discretization [15]. Also A(p), B(p), and �η(t) in the Itô
discretization correspond to �(p),D(p), and �ξ (t)/(

√
D(p)�t)

in the text, respectively. Because the Langevin equation is
based on Markovian process, one needs information only at
time t ′ to know the probability at later time t :

P ( �p, �x, t | �p0, �x0, t0) (A2)

=
∫

d3p′d3x ′P ( �p, �x, t | �p′, �x ′, t ′)P ( �p′, �x ′, t ′| �p0, �x0, t0),

where P (X, t |X0, t0) (X = { �p, �x}) represents the conditional
distribution function with a fixed initial condition X0 at time t0.
To derive the partial differential equation, we have to calculate
P (X, t + �t |X′, t) from the Langevin equation. From the
definition of P (X, t + �t |X′, t),

P (X, t+�t |X′, t) ≡ 〈δ(X − X(t + �t))〉|t,X′

= 〈δ[X − X′ − �X(η(t), t)]〉

=
∞∑

m=0

〈[−�X(η(t), t)]m〉 1

m!
∂m
X δ(X − X′),

〈Y (η(t), t)〉 ≡
∫

d3η(t)W [η(t)]Y (η(t), t). (A3)

Here 〈· · · 〉|t,X′ in the first line of Eq. (A3) represents
the conditional probability with the fixed initial condition
X(t) = X′. Note that in the last line of Eq. (A3), the average
is expressed by the variables at time t . Inserting Eq. (A3) into
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Eq. (A2), we obtain

P (X, t + �t |X0, t0)

=
∫

dX′P (X, t + �t |X′, t)P (X′, t |X0, t0)

=
∫

dX′
[
δ(X − X′) +

∞∑
m=1

〈[−�X(η(t), t)]m〉

× 1

m!
∂m
X δ(X − X′)

]
· P (X′, t |X0, t0)

= P (X, t |X0, t0)

+
∞∑

m=1

1

m!
∂m
X [〈[−�X(η(t), t)]m〉P (X, t |X0, t0)]

= P (X, t |X0, t0) + �t∂tP (X, t |X0, t0). (A4)

In the Itô discretization scheme, the relevant average values
〈[�X(η(t), t)]m〉 are

〈��x(t)〉 = �p(t)

E(p(t))
�t,

〈� �p(t)〉 = −A(p(t)) �p(t)�t, (A5)

〈�pi(t)�pj (t)〉 = B(p(t))δij�t,

and the others are in higher order in �t .
From Eqs. (A4) and (A5), the resulting relativistic Kramers

equation reads(
∂

∂t
+ �p

E

∂

∂ �x
)

P ( �p, �x, t)

= ∂

∂ �p
(

A(p) �p + 1

2

∂

∂ �pB(p)

)
P ( �p, �x, t). (A6)
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