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Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions
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We investigate the multiplicity fluctuations observed in high-energy nuclear collisions attributing them to
intrinsic fluctuations of temperature of the hadronizing system formed in such processes. To account for
these fluctuations, we replace the usual Boltzmann-Gibbs (BG) statistics by the nonextensive Tsallis statistics
characterized by the nonextensivity parameter q, with |q − 1| being a direct measure of fluctuation. In the limit
of vanishing fluctuations, q → 1 and Tsallis statistics converge to the usual BG. We evaluate the nonextensivity
parameter q and its dependence on the hadronizing system size from the experimentally observed collision
centrality dependence of the mean multiplicity 〈N〉 and its variance Var(N ). We attribute the observed system
size dependence of q to the finiteness of the hadronizing source, with q = 1 corresponding to an infinite,
thermalized source with a fixed temperature, and with q > 1 (which is observed) corresponding to a finite source
in which both the temperature and energy fluctuate.
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I. INTRODUCTION

With the large number of particles produced in heavy ion
collisions at the CERN Super Proton Synchrotron (SPS) and
BNL Relativistic Heavy Ion Collider (RHIC), it is possible
to study fluctuations in different physical observables on the
event-by-event basis [1]. These fluctuations are potentially a
very important source of information on the thermodynamic
properties of strongly interacting systems formed in such
collisions, such as its specific heat [2] (connected with fluc-
tuations observed in particle multiplicities [3,4], in transverse
momenta [5], and in other global observables), its chemical
potential, or matter compressibility [6].

Fluctuations of multiplicity observed in heavy ion collisions
exhibit spectacular and unexpected features as functions
of the number of participants. Recent results on centrality
dependence in Pb + Pb collisions at 158A GeV obtained
by NA49 [3] and WA98 [4] experiments indicate that the
scaled variance of the multiplicity distribution, Var(N )/〈N〉,
increases when proceeding from the central toward peripheral
collisions, i.e., when the number of participants decreases.
Such behavior is confirmed by a comprehensive survey of
multiplicity fluctuations of charged hadrons provided by the
PHENIX experiment [7].

During the last decade, the statistical models of strong
interactions were constantly used as an important tool for
studying the fluctuation pattern observed in high-energy
nuclear collisions experiments, which are quantified by the
scaled variance mentioned above (see, for example, Refs.
[8–10] and references therein). However, to minimize the
effect of the possible participant number fluctuations, the
analysis of particle number fluctuations has been restricted
to the most central A + A collisions only.
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However, up to now, none of the models aimed at describing
all the essential features of multiparticle production processes
(such as multiplicities and distributions of particles in phase
space and their composition) describe also the dependence
of Var(N )/〈N〉 on NP , the number of nucleons from the
projectile nucleus participating in the collision (i.e., the
projectile participant), observed experimentally [3]. They lead
to multiplicity distributions of the (approximately) Poissonian
form, independent of centrality, which highly underestimate
the observed multiplicity fluctuations in noncentral collisions
and thus are unable to reproduce, even qualitatively, the
observed centrality dependence of the scaled variance. This
remark applies not only to the Monte Carlo models such as
HIJING [11], HSD [12], or UrQMD [13], which are based
on string excitation and decay, but also to any statistical
model that does not assume correlations among secondary
particles (cf. discussion in Sec. III C). On the other hand,
these results can be described by some specialized models
addressing fluctuations directly, such as the percolation model
[14], the model assuming interparticle correlations caused by
the combination of strong and electromagnetic interactions
[15], or the transparency, mixing, and reflection model [16].
Fluctuations in these models reflect some dynamical features
of the production process (specific for the model considered).

In this paper, we address the problem of multiplicity
fluctuations without resorting to any specific dynamical picture
but, instead, by attributing them to some nonstatistical, intrin-
sic fluctuations existing in a hadronizing system produced
in high-energy heavy ion collisions. To account for such
fluctuations, we use a special version of statistical model based
on nonextensive Tsallis statistics [17] in which fluctuations
of the temperature are known to be directly connected with
the nonextensivity parameter q [18,19], namely, q = 1 +
Var(1/T )/〈1/T 〉2. In what follows, they are assumed to be
the true (if not the only) origin of the fluctuations observed
in the experimental data. The resulting distributions are
then power-like, exp(−E/T ) =⇒ expq(−E/T ) = [1 − (1 −
q)E/T ]1/(1−q), and in the limit of q → 1 they go smoothly to

0556-2813/2009/79(5)/054903(10) 054903-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.054903
mailto:wilk@fuw.edu.pl
mailto:wlod@pu.kielce.pl


GRZEGORZ WILK AND ZBIGNIEW WŁODARCZYK PHYSICAL REVIEW C 79, 054903 (2009)

the usual Boltzmann distributions (in what follows, we address
only the q � 1 case).1 It is important to our further discussion
that such nonexponential distributions of energy result in
non-Poissonian multiplicity distributions of the produced
secondaries [24].

However, to incorporate the new features of data reported
in Ref. [25], we have to extend the notion of fluctuating
temperature, replacing it by some q-dependent effective
temperature, Teff , which accounts not only for the intrinsic
fluctuations in the hadronizing source (as in Ref. [18]) but
also for effects of the possible energy transfer taking place
between the hadronizing source and its surroundings [26].
This will be done in Sec. II. Section III contains our results: the
universal participant dependence (i.e., scaling in the variable
f = NP /A) is presented in Sec. III A; its explanation by the
observation that in reality the hadronizing source is always
of finite size is presented in Sec. III B; and the system size
dependence of multiplicity and multiplicity fluctuations is
presented in Sec. III C. Section IV summarizes our work. Some
details are given in Appendixes A and B.

II. EFFECTIVE TEMPERATURE

In the proposed approach, we replace the standard
Boltzmann-Gibbs exponential distribution,

g(E) = C exp (−E/T ), (1)

with the Tsallis distribution (q-exponential) defined as

hq(E) = Cq

[
1 − (1 − q)

E

Teff

] 1
1−q

, (2)

where

q = 1 + Var(T )

〈T 〉2
, (3)

and

Teff = T0 + (q − 1)
1

Dcpρ
φ, (4)

with cp, ρ, and D being, respectively, the specific heat under
constant pressure, density, and the strength of the temperature
fluctuations (cf. Appendix A for details). Effective temperature
Teff occurs when we experience both the fluctuations of the
temperature T (around the value T0) and some energy transfer
taking place between the source and the surroundings given
by φ.2 Notice that in Eq. (4), energy transfer affects Teff only
in the presence of fluctuations, i.e., for q �= 1. The predicted

1In a sense, our work is a continuation of many previous works
[20–23] showing that to adequately describe experimental data on
energy and transverse momenta distributions, the usual statistical
approach based on Boltzmann distributions should be modified and
replaced by a generalized nonextensive formalism based on Tsallis
statistics [17].

2Actually, in the work [26] accounting for the effect of viscosity, the
source term in Eq. (4) takes the form φ = ηf (u), where η denotes the
coefficient of viscosity and function f (u) contains terms dependent
on the velocity u in the form of ∂ui/∂xk + ∂uk/∂xi (as in Ref. [27]).

FIG. 1. (Color online) Dependence of the effective temperature
Teff (in GeV) on the parameter q for the production in different
reactions of (a) negative pions and (b) antiprotons; all data points are
from Ref. [25]. The solid lines show linear fits to the obtained results:
(a) Teff = 0.22 − 1.25(q − 1); (b) Teff = 0.36 − 3.4(q − 1).

q dependence of Teff is indeed observed experimentally, cf.
Fig. 1. Namely, in Ref. [25] the transverse momentum spectra
of pions and antiprotons produced in the interactions of
p + p, d + Au and Au + Au at

√
sNN = 200 GeV at RHIC

experiments [28] were analyzed using a nonextensive approach
in which the slope of the pT distribution determines the
effective temperature Teff . Its shape gives the parameter of
nonextensivity q.3 They evaluated, among other things, the
nonextensivity parameter q and the effective temperature Teff

for a different number of participants NP . From their results,
we can deduce the dependence of Teff on the parameter q,

Therefore the effective temperature there was given by Teff = T0 +
(q − 1)ηf (u)/(Dcpρ).

3Note that in Ref. [25] the pT spectra were analyzed in terms
of the so-called escort probability distributions [29], i.e., hQ(E) =
CQ [1 − (1 − Q)E/�]Q/(1−Q). However, this distribution function is,
in fact, formally identical with hq (E) = Cq [1 − (1 − q)E/λ]1/(1−q),
which we are using in this work, provided that we identify: q =
1(Q − 1)/Q, λ = �/Q and Cq = CQ = (2 − q)/λ = 1/�. The
mean value is now 〈E〉 = λ/(3 − 2q) = �/(2 − Q) and is defined
for q ∈ (0, 1.5) [to be compared with the previous Q ∈ (1/2, 2)].
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which is shown in Fig. 1. Notice that in all cases, we find
that φ < 0 and that Teff seems to depend linearly on (q − 1).
Negative values of φ mean that the energy is transferred from
the interaction region to the surroundings (i.e., to the spectators
of noninteracting nucleons).4

III. DIFFERENT FACETS OF MULTIPLICITY
FLUCTUATIONS

A. Universal participant dependence

We start a discussion of multiplicity fluctuations by rec-
ollecting the result of Ref. [24] saying that if N particles
are distributed in energy according to the N -particle Tsallis
distribution described by the nonextensive parameter q, then
their multiplicity distribution has to be of the negative-
binomial type with k−1 = q − 1 (see Appendix B for details).
It means therefore that we can expect that

Var(N)
〈N〉 − 1

〈N〉 = q − 1 (5)

(and, what is important, that q − 1 determined this way does
not depend on the acceptance of the detector).5 On the other
hand, if U is the accessible energy and gTeff is the mean energy
per particle detected in the acceptance region [with g being a
parameter and Teff effective temperature defined in Eq. (4)],
then

〈N〉 = 〈U 〉
gTeff

. (6)

Using Eq. (4), one can shown that

〈N〉 − n0NP

〈N〉 = c(q − 1), (7)

where n0 is the multiplicity in the single nucleon-nucleon col-
lision measured in the region of acceptance; it is defined by the
constraint that 〈U 〉 = n0gT0NP , whereas c = −φ/

(
DcpρT0

)
is a constant (notice that because φ < 0 in the cases of interest
here, cf. Fig. 1, c is positive). Comparing now Eqs. (5) and (7),
one can expect that

Var(N )

〈N〉 = 1 + c (〈N〉 − n0NP ) . (8)

Notice that Eqs. (7) and (8) do not depend on parameter g

anymore; its role in the present work is to fit, if necessary, 〈N〉
in Eq. (6) to experimental data only.

4Recently, Tsallis statistics was implemented in the so-called
blast-wave model and applied to the transverse momentum spectra
measured at RHIC [30]. As a result, the dependence of temperature
and collective flow velocity on the (q − 1) parameter has been
advocated. Similar dependence was also found in a recent analysis of
the nonthermal equilibrium in heavy ion collisions performed using
Tsallis distributions [31].

5This is because the mean accepted multiplicity for acceptance p is
〈N〉 = p〈Np=1〉 and the scaled variance for the accepted particles is
Var(N )/〈N〉 = (1 − p) + p Var

(
Np=1

)
/〈Np=1〉; therefore one gets

from Eq. (5) that the nonextensivity parameter obtained this way
does not depend on acceptance, i.e., q = qp=1.

FIG. 2. (Color online) (a) Comparison of Var(N )/〈N〉 versus NP

(squares) with 1 + c(〈N〉 − n0NP ) versus NP (circles) for n0 = 0.642
and c = 4.1. Data are for negatively charged particles from Pb + Pb
collisions as collected by NA49 experiment [3]. (b) The same, but
translated to dependence of q − 1 vs NP . Squares were obtained
from the Var(N )/〈N〉 vs NP dependence; circles from the 〈N〉 vs NP

dependence. The values of n0 and c are the same as before. The solid
line shows the dependence in Eq. (16) for the nuclear mass number
A = 207 and parameter a = 0.98.

This means that when using the notion of Teff , one should
observe that Var(N )/〈N〉 and 〈N〉 are mutually connected.
Figure 2 shows that this is indeed the case.6 If Teff depends
on q (i.e., for c �= 0), then the dependence Var(N )/〈N〉 on the
number of participants NP is connected to the dependence
of 〈N〉 on NP . Notice that if 〈N〉 is linear in NP , then
Var(N )/〈N〉 is constant. In particular, for 〈N〉 = n0NP we
have Var(N )/〈N〉 = 1. Therefore the experimental fact that
Var(N )/〈N〉 decreases with increasing NP indicates nonlinear
dependence of 〈N〉 on the number of participants NP .

6In Fig. 2, the fitted value of n0 = 0.642 is only a little greater
than the multiplicity observed in p + p collisions when calculated
using the acceptance of the NA49 experiment. Notice also that the
value of c = 4.1 obtained here for Pb + Pb collisions is not far from
the value 1.25/0.22 = 5.7 obtained for data from RHIC (i.e., for
Au + Au collisions but at much higher energy), which we obtained in
Fig. 1.
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It should be stressed that data taken by the NA49 experiment
[3] show that Var(N )/〈N〉 changes rather strongly with NP .
For peripheral collisions (i.e., for small NP ) one observes
marked deviation of Var(N )/〈N〉 from unity. At the same
time deviation of 〈N〉 from linearity in NP is very weak. Our
result based on the concept of effective temperature, Teff , and
showing that Var(N )/〈N〉 and 〈N〉 are connected is therefore
by no means trivial.

We close this section by reminding the reader that all
previous attempts in this field addressed only the behavior of
Var(N )/〈N〉 versus NP , leaving aside the possible nonlinear
dependence of 〈N〉 on NP . Figure 2 shows that introducing Teff

results in a kind of scaling, namely, the same value of q − 1
describes dependencies of both variance and mean multiplicity
on NP , following Eq. (8), which–we repeat–has its origin in
the q dependence of Teff .7

B. Finite hadronizing source size and temperature fluctuations

We shall now derive the q − 1 dependence on NP seen in
Fig. 2. Let us first observe that [2,32]

q − 1 = Var(T )

〈T 〉2
= 1

CV

, (9)

i.e., the parameter q can be regarded as connected (via
fluctuations of temperature) to the heat capacity under constant
volume CV . For a system with finite size remaining in contact
with a heat bath, one has, following Lindhard’s approach [33],
that

Var(U ) + C2
V Var(T ) = 〈T 〉2CV . (10)

This is a kind of uncertainty relation (in the sense that it
expresses the truth that in the case of conjugate variables one
standard deviation in some measurement can only become
small at the expense of the increase of some other standard
deviation [34]). Relation (10) is supposed to be valid all
the way from the canonical ensemble, where Var(T ) = 0
and Var(U ) = 〈T 〉2CV , to the microcanonical ensemble, for
which Var(T ) = 〈T 〉2/CV and Var(U ) = 0. Equation (10)
expresses the complementarity between both the temperature
and energy and the canonical and microcanonical description
of the system.8

7One should keep in mind that both the q and Teff evaluated
from transverse characteristics of the reaction can differ from those
obtained from its longitudinal characteristics. This means that these
parameters in multiplicity distributions P (N ) (which are sensitive
to p =

√
p2

L + p2
T ) can differ substantially from those obtained by

analyzing transverse momentum distribution. Actually, in Ref. [22]
we advocate that |1 − qT | � |1 − qL|. Assuming now that Var(T ) =
Var(TT ) + Var(TL), we obtain that q〈T 〉2 = qL〈TL〉2 + qT 〈TT 〉2 +
〈T 〉2 − 〈TL〉2 − 〈TT 〉2, which for 〈TL〉 > 〈TT 〉, as observed in
Ref. [21], leads to q 	 qL.

8In the same way as the (improper) eigenstates of position and
momentum appear as extreme cases in the quantum mechanical
uncertainty relations. It is worth knowing that in Ref. [35] the limiting
cases of Tsallis statistics was investigated in which q was interpreted
as a measure of thermal bath heat capacity: q = 1, i.e., the canonical

To obtain realistic (intermediate) distributions, start from a
system at a fixed temperature T . The standard deviation of its
energy is

Var(U ) = 〈T 〉2 ∂〈U 〉
∂T

= 〈T 〉2CV . (11)

Inverting the canonical distribution gT (U ), one can obtain

gU (T ) = −T 2 ∂

∂T

∫ U

0
gT (U ′) dU ′ (12)

and interpret it as a probability distribution of the temperature
in the system [see Eq. (A10)]. The standard deviation of this
distribution then yields9

Var(T ) = 〈T 〉2

CV

. (13)

Because for a canonically distributed system the energy
variance is Var(U ) = 〈T 〉2CV and for an isolated system
Var(U ) = 0, the variance (expressing energy fluctuations in
the system) for the intermediate case can be assumed to be
equal to

Var(U ) = 〈T 〉2CV ξ, ξ ∈ (0, 1), (14)

where the parameter ξ depends on the size of the hadronizing
source. Inserting this into Eq. (10), one gets that q depends on
ξ in the following way:

q − 1 = Var(T )

〈T 〉2
= 1 − ξ

CV

. (15)

Assuming now that the size of the thermal system produced
in heavy ion collisions is proportional to the number of
participating nucleons NP , i.e., that ξ 	 f = NP /A, and
taking into account that CV

∼= aNP , we obtain that

q − 1 = 1

aNP

(1 − f ). (16)

This is the relation that nicely fits the data, see Fig. 2.

case, would correspond to an infinite bath (thermalized and with fixed
temperature), whereas q = −∞, i.e., microcanonical case, would
correspond to a bath with null heat capacity (isolated and with fixed
energy). All intermediate cases would then correspond to the finite
heat capacity (both temperature and energy fluctuate).

9In our formalism presented here, we have [Eq. (B3)]
that gT,N (U ) = [β/	(N )](βU )N−1 exp(−βU ) with fluctuations
given by Var(U )/〈U〉2 = 1/N . One can now invert distribu-
tion gT,N (U ) proceeding in analogous way as used in Ap-
pendix B to obtain multiplicity distributions gT,U (N ) and ob-
tain distribution of temperature, gU,N (T ) = ∂

∂β

∫ U

0 gT,N (U ′)dU ′ =
[U/	(N )](βU )N−1 exp(−βU ) with fluctuations Var(T )/〈T 〉2 	
Var(β)/〈β〉2 = 1/N . The fluctuations of temperature obtained this
way have gamma distribution analogous to distribution (A10).
Because CV ∝ N one obtains Eqs. (11) and (13). This illustrates
that we can deduce fluctuations (i.e., the corresponding probability
distributions) of any quantity out of (T , U, N ) provided only that the
other two are constant. The implication of this fact will be discussed
elsewhere.
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To recapitulate: we know that if U = const and T =
const, then the multiplicity distribution P (N ) is Poissonian (cf.
Appendix B1) and we also know how fluctuations of T change
P (N ) from the Poissonian form to the negative-binomial
distribution (NBD) one (see Appendix B2). We want now to
see how big are fluctuations of T in our hadronizing systems
formed in a collision process. It turns out that for N = const,
we have either Eq. (11) or Eq. (13) depending on whether T =
const or U = const. We claim then that we can assume validity
of Eq. (10) not only in the above limiting cases but also in the
general case when both the energy U and the temperature T

fluctuate at the same time; i.e., if fluctuations of the energy U

are given by Eq. (14), then fluctuations of the temperature T are
given by Eq. (15). Finally, knowing how big the fluctuations
of T are, we can deduce the fluctuations of the multiplicity N .
This will be performed in what follows.

C. System size dependence of mean multiplicity and
multiplicity fluctuations

We shall now discuss the system size dependence of
the mean multiplicity and multiplicity fluctuations. In our
approach, the system size enters through CV and ξ . We shall
keep ξ = NP /A and connect CV with the measured quantities
considering two natural assumptions: either

CV = aNP (17)

or

CV = a′〈N〉. (18)

When used together with Eqs. (7) and (15), the second
possibility leads to the very simple scaling relation

〈N〉 − NP

A
〈N〉|NP =A = c

a′

(
1 − NP

A

)
, (19)

whereas the first one results in a slightly more involved
formula,(

〈N〉 − NP

A
〈N〉|NP =A

)
NP

〈N〉 = c

a

(
1 − NP

A

)
. (20)

In both cases, 〈N〉|NP =A = n0A is multiplicity extrapolated
to NP = A. As seen in Fig. 3, where comparison with
experimental data [3] is presented, one observes different
dependencies for the Pb + Pb collision and lighter nuclei for
which in semicentral collisions such an effect is practically not
observed. In addition, for peripheral collisions (NP < 0.15A)
one observes the deviation from the expected dependence of
Eq. (19). Notice that deviation from the linear fit for Pb + Pb
collisions concerns only the five most peripheral points, and the
observed discrepancy means that the measured experimentally
mean multiplicity is less than one particle higher than the ex-
pected value. The agreement with prediction given by Eq. (20)
seems to be better, what means that the assumption CV = aNP

is more realistic. In what concerns multiplicity fluctuations,
assumption (18) results [when combining Eqs. (16) and (5)]
in the simple scaling relation

Var(N )

〈N〉 = 1 + 〈N〉(q − 1) = 1 + 1

a′

(
1 − NP

A

)
, (21)

FIG. 3. (Color online) Mean multiplicities compared with pre-
dictions given by (a) Eq. (20) and (b) Eq. (19). We adopt n0 =
0.559, 0.575, 0.657, and 0.642 for, respectively, p + p, C + C,
Si + Si, and Pb + Pb collisions. Linear fit show the predictions of
Eq. (19) with parameter c/a′ = 2.75 and Eq. (20) with parameter
c/a = 1.8. Only statistical errors are indicated.

i.e., in the multiplicity fluctuations dependent on the fraction
of nucleons participating in the collision f = NP /A. Such
scaling was found recently by the NA49 Collaboration [3]
when comparing collisions of C + C, Si + Si and Pb + Pb, see
Fig. 4. If, instead, we use Eq. (17), then, taking into account
the dependence of 〈N〉 on NP given by Eq. (7), one obtains
that, more exactly,

Var(N )

〈N〉 = 1 + 〈N〉(q − 1) = 1 + n0
(
1 − NP

A

)
a − c

A

(
A
NP

− 1
) . (22)

We observe thus a weak dependence on the mass number
A of colliding nuclei. For a small number of participants,
NP � A, we observe an additional increase of relative
variance, Var(N )/〈N〉, in comparison with prediction (21).
Notice that for φ > 0, one expects just the opposite trend, i.e.,
the nonmonotonic behavior of Var(N )/〈N〉 with increasing
number of participants NP . The question about the sign of the
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FIG. 4. (Color online) Scaled variance of the multiplicity distribu-
tion of negatively charged particles produced in p + p, semicentral
C + C, semicentral Si + Si, and Pb + Pb collisions as a function
of the fraction of nucleons participating in the collision, NP /A.
The experimental data [3] are compared with prediction (23) with
parameters ω0 = 0.79 and a′ = 1.0 (solid line) and with prediction
(22) with parameters ω0 = 0.87 and a = 0.83 (dashed line); the other
parameters are the same as in Fig. 2 with n0 = 0.642 and c = 4.1 for
A = 207.

heat source term φ seems to still be open because of the lack
of data in the region of small number of participants.

For central collisions (i.e., for f = NP /A 	 1), multiplic-
ity distributions are sub-Poissonian and [Var(N )/〈N〉]|NP =A =
ω0 < 1. For example, within a statistical model with fixed
volume, ω0 varies in the range 0.5–1.0 [36]. In particular (see
Refs. [8,10] and references therein), we note the following:
(i) The global conservation laws imposed on each microscopic
state of the statistical system lead to suppression of the particle

number fluctuations. The final state scaled variance behavior in
the canonical ensemble is characterized by ω0

∼= 0.8, whereas
in the microcanonical ensemble, by ω0

∼= 0.3. (ii) In the
primordial values of the scaled variance (i.e., calculated before
decays of resonances), one can also observe the effect of
quantum statistics. It turns out that the proper inclusion of
Bose statistics leads to the additional enhancement of particle
number fluctuations of the order of ω0

∼= 1.05–1.06, which
is quite small at the chemical freeze-out. (iii) The particle
number fluctuations can be also enhanced by including explicit
production and decay of resonances (in either the grand
canonical or canonical ensemble). They lead to ω0

∼= 1.1. The
actual value of parameter ω0 depends on the energy of collision
and on the acceptance in which the multiplicity fluctuations
are observed, and it varies in the range 0.8–1.0 [37]. For
this reason, in Fig. 4 we compare experimental data with the
formula

Var(N )

〈N〉 = ω0 + 1

a′

(
1 − NP

A

)
. (23)

Finally, we note that the transverse momentum fluctuations
measured in nuclear collisions at 158A GeV [5] and quantified
by the measure10� (pT ) show a similar centrality dependence,
namely, as seen in Fig. 5,

� (pT ) = �NP =A + b

(
1 − NP

A

)
. (24)

This behavior of the transverse momentum fluctuations as a
function of collision centrality was related in a superposi-
tion model to the centrality dependence of the multiplicity
fluctuations [39] using the correlation of average transverse
momentum and multiplicity observed in collisions [5]. To
derive Eq. (24), notice that in general � is governed by the
multiplicity fluctuations in the following way [40]:

� (pT ) =
√√√√Var (pT ) + 2〈pT 〉2

Var(N )

〈N〉

[
1 − ρ

√
Var (pT )

〈pT 〉2

〈N〉
Var(N )

+ 1

]
−

√
Var (pT ), (25)

where ρ is the correlation coefficient between N and
∑N

i piT .
As in Ref. [39], we can see that multiplicity fluctuations deter-
mine the behavior of � (pT ). In the first-order approximation
and taking into account multiplicity fluctuations given by
Eq. (23), we can write the transverse momentum fluctuations
measure as

�(pT ) 	
√

Var(pT )

[
ω0(1 − ρ)

〈pT 〉2

Var(pT )
− 1

2
ρ

]

+ (1 − ρ)
√

Var(pT )
〈pT 〉2

Var(pT )

1

a′

(
1 − NP

A

)
, (26)

which has the form of Eq. (24) in what concerns dependence
on the variable NP /A. The slope parameter b corresponds
to the correlation coefficient ρ ∼ 0.99 (for the previously
estimated value of a′ and for the transverse momentum fluc-
tuations Var(pT )/〈pT 〉2 	 0.43, as observed experimentally
[41]). Once again we observe scaling behavior in the variable
f = NP /A.

10Measure � (pT ) has been introduced in Ref. [38] and is
defined as � = √〈Z2〉/〈N〉 −

√
〈z2〉, where z = pT − 〈pT 〉 and Z =∑N

i zi .
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FIG. 5. (Color online) Transverse momentum fluctuations of
negative particles defined by the measure � [38] as a function of
number of the fraction of nucleons participating in the collision,
NP /A, for each of the four collisions. The experimental data are
taken from Ref. [5] and compared with the prediction of Eq. (24) for
parameters �NP =A = 0.48 MeV and b = 4.8 MeV.

IV. SUMMARY

We have investigated some features of the multiplicity
fluctuations observed in recent high-energy nuclear collisions
by attributing them to the intrinsic, nonstatistical fluctuations
of the temperature of the hadronizing system produced in
such collisions. To this end, we used the Tsallis statistics
approach in which such fluctuations are accounted for by the
nonextensivity parameter q (more precisely by q − 1). When
fluctuations are vanishing q → 1, Tsallis statistics becomes
the usual Boltzmann-Gibbs one, and the power-like Tsallis
q exponents become the usual exponential distributions.
We were considering a generalized q-exponential ensemble
describing the system of NP participating nucleons (assumed
to be proportional to the size of the hadronizing system). It
was found that in this case one can associate the nonextensivity
parameter q with the number of participants NP [see Eq. (16)].
It was found that data require a generalization of the usual
notion of fluctuating temperature by adding the effects of
the energy transfer between the hadronizing source and the
surroundings composed of nucleons not participating directly
in the reaction. This resulted in the introduction of a q-
dependent effective temperature Teff . We have also allowed for
fluctuations of the full accessible energy U (see Sec. III A);
without these fluctuations, Var(N )/〈N〉 would be simply
constant, independent of NP /A.

The simplest possible explanation of the observed effect
was the q − 1 dependence on the number of participants
NP provided by Eq. (16). We assumed that the parameter
connected with the size of the collision region, ξ , is approxi-
mately given by ξ = NP /A. Modifications of this assumption
are possible and lead to better agreement with experimental
data. Among others, the presence of nonlinear terms in the
ξ variable in Eq. (15) would approve consistency with data
[or, for example, assuming that ξ = ζ (NP /A) with ζ (NP /A)
more complicated than used here, where ζ (NP /A) = NP /A].

Nevertheless, we restricted our discussion to the simplest pos-
sible approximation to demonstrate the connection between
temperature fluctuations and observables from relativistic ion
collisions in a more transparent way.

Let us close with some remarks concerning the limitations
of our analysis. First, let us first recall that the multiplicity
fluctuations considered in this study were observed for a fixed
number of projectile participants. Although in the collisions
of identical nuclei, the average number of participants from
the projectile equals approximately that from the target, the
actual number of target participants fluctuates, whereas the
number of projectile participants is kept fixed. However, one
should notice that the multiplicity fluctuations were measured
in the forward hemisphere (1.1 < yc.m. < 2.6) in which the
influence from the target participants is marginal. The models
which produce, independently of centrality, approximately
Poissonian multiplicity distributions highly underestimate the
observed multiplicity fluctuations in noncentral collisions.
They are unable to reproduce, even qualitatively, the centrality
dependence of the scaled variance (see,for example, Ref. [3]
and references therein). The highest scaled variance is obtained
from the hadron-string dynamics [12] and ultrarelativistic
molecular dynamics [13]. However, both approaches (in their
standard versions) show a flat scaled variance, ω 	 1.2, and
exhibit almost no dependence on Np [42]. Finally, note that
in comparison with experimental data (which have finite
acceptance, equal to p = 0.16 in the case of NA49 data
[3]), we have used multiplicity N given by this acceptance.
Also, all parameters used to describe these data (such as
n0, a

′, ω0,�Np=A, and b) are acceptance dependent. However,
the nonextensivity parameter q and its dependence on Np

obtained from comparison with experimental data do not
depend on experimental acceptance (cf. footnote(5)).
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APPENDIX A: TEMPERATURE FLUCTUATIONS

We collect here the main points concerning the idea of
temperature fluctuations [18,26]. Suppose that we have a
nonhomogeneous thermodynamic system in different regions
of which there are different temperatures T , which fluctuate
around some mean temperature T0. As a result of these
fluctuations, the actual temperature T equals

T = T0 − ξ (t)T , (A1)

where ξ (t) describes the actual (not specified) stochastic
process causing these fluctuations.

There must take place an exchange of energy (heat)
between the regions mentioned above, in particular between
any selected region and the rest of the system. This exchange
eventually leads to equilibration of the temperature of the
whole system. The corresponding process of heat conductance
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is described by [27]

cpρ
∂T

∂t
− γ (T ′ − T ) = φ, (A2)

where cp, ρ, and γ are, respectively, the specific heat under
constant pressure, the density, and the coefficient of external
conductance. The heat source term φ determines the amount
of energy transfer per unit time and unit volume. Using Eqs.
(A1) and (A2), one gets the following Langevin equation for
the temperature T :

∂T

∂t
+

[
1

τ
+ ξ (t)

]
T = 1

τ

[
T0 + τ

cpρ
φ

]
, (A3)

with coefficient τ = cpρ/γ . As stated before, ξ (t) describes
stochastic changes of temperature in time. Let us assume that
these changes are such that their mean value is zero, i.e.,

〈ξ (t)〉 = 0, (A4)

whereas, for sufficiently fast changes, its correlator is equal to

〈ξ (y)ξ (t + �t)〉 = 2Dδ(�t). (A5)

The constants τ and D define, respectively, the characteristic
mean time for the temperature changes and their variance:

〈T (t)〉 = T0 + T (t = 0) exp

(
− t

τ

)
, (A6)

〈T 2(t = ∞)〉 = 1

2
Dτ. (A7)

Thermodynamic equilibrium in such a situation means that for
t � τ, the influence of the initial condition T (t = 0) vanishes
and the mean-squared T has a value corresponding to the state
of equilibrium.

Equation (A3) leads to the corresponding Fokker-Planck
equation

df (T )

dt
= − ∂

∂T
K1f (T ) + 1

2

∂2

∂T 2
K2f (T ), (A8)

where the intensity coefficients are

K1(T ) = 1

τ

(
T0 + τ

cpρ
φ

)
+

(
D − 2

1

τ

)
T ,

K2(T ) = 2DT 2. (A9)

Its solution is a gamma distribution in 1/T = β:

f (T ) = µ

	(α)

(µ

T

)α−1
exp

(
−µ

T

)
, (A10)

where

α = 1

τD
, µ = 1

τD

(
T0 + τ

cpρ
φ

)
. (A11)

The mean value and the relative variance of β are, respec-
tively,11

〈β〉 =
(

T0 − τ

cpρ
φ

)−1

, (A12)

11Notice that the relative variances of temperature T and its inverse

β are roughly the same, 〈β2〉−〈β〉2

〈β〉2 	 〈T 2〉−〈T 〉2

〈T 〉2 .

〈β2〉 − 〈β〉2

〈β〉2
= 1

α
= τD. (A13)

Temperature fluctuations in the form presented here when
applied to the exponential Boltzmann-Gibbs formula, Eq. (1),
lead to hq(E) = ∫ ∞

0 exp(−E/T )f (T ) d(1/T ), i.e., to a Tsallis
distribution, Eq. (2), with the nonextensivity parameter q equal
to [18]

q = 1 + 1

α
= 1 + τD, (A14)

and with the effective temperature

Teff = T0 + τ

cpρ
φ = T0 + (q − 1)

1

Dcpρ
φ. (A15)

In the case of no energy transfer, i.e., when φ = 0, one
is left only with fluctuations, and then Teff = T0, as in
Ref. [18]. Recently, temperature fluctuations due to the volume
fluctuations in statistical models were discussed as well and
introduced in the modeling of relativistic particle collision
processes [43].

APPENDIX B: MULTIPLICITY DISTRIBUTIONS IN
BOLTZMANN AND TSALLIS ENSEMBLES

We shall now recapitulate some basic ideas concerning
multiplicity distributions that result from Boltzmann and
Tsallis ensembles [24].

1. Poisson multiplicity distribution

This distribution arises in situations where, in some process,
one has N independently produced secondaries with energies
{E1,...,N } distributed according to a Boltzmann distribution

g(Ei) = 1

λ
exp

(
−Ei

λ

)
, where λ = 〈E〉. (B1)

The corresponding joint probability distribution is given by

g({E1,...,N }) = 1

λN
exp

(
−1

λ

N∑
i=1

Ei

)
. (B2)

For independent energies {E1,...,N }, the sum E = ∑N
i=1 Ei is

distributed according to a gamma distribution

gN (E) = 1

λ(N − 1)!

(
E

λ

)N−1

exp

(
−E

λ

)
, (B3)

the cumulative distribution function of which is

GN (E) = 1 −
N−1∑
i=1

1

(i − 1)!

(
E

λ

)i−1

exp

(
−E

λ

)
. (B4)

Equation (B3) follows immediately either by using character-
istic functions or by sequentially performing integration of the
joint distribution (B2) and noticing that

gN (E) = gN−1(E)
E

N − 1
. (B5)
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For energies such that

N∑
i=0

Ei � E �
N+1∑
i=0

Ei, (B6)

the corresponding multiplicity distribution has a Poissonian
form (with 〈N〉 = E

λ
)

P (N ) = GN+1(E) − GN (E) = 〈N〉N
N !

exp(−〈N〉). (B7)

Therefore, whenever N variables {E1,...,N,N+1} follow an
exponential distribution (B1) and satisfy condition (B6), then
the corresponding multiplicity N has a Poissonian distribution
(B7).

2. Negative-binomial multiplicity distribution

This distribution arises when in some process N indepen-
dent particles with energies {E1,...,N } are distributed according
to a Tsallis distribution,

h({E1,...,N }) = CN

[
1 − (1 − q)

∑N
i=1 Ei

λ

] 1
1−q

+1−N

. (B8)

It means that there are some intrinsic (so far unspecified
but summarily characterized by the parameter q) fluctuations
present in the system under consideration. In this case,
we do not know the characteristic function for the Tsallis
distribution. However, because we are dealing here only
with variables {E1,...,N } occurring in the form of the sum,
E = ∑N

i=1 Ei , one can still sequentially perform integrations
of the joint probability distribution (B8) arriving at the formula
corresponding to Eq. (B3):

hN (E) = hN−1(E)
E

N − 1
= EN−1

(N − 1)!λN

×
N∏

i=1

[(i − 2)q − (i − 3)]

[
1 − (1 − q)

E

λ

] 1
1−q

+1−N

,

(B9)

with the cumulative distribution function given by

HN (E) = 1 −
N−1∑
j=1

H̃j (E), (B10)

where

H̃j (E) = Ej−1

(j − 1)!λj
(B11)

×
j∏

i=1

[(i − 2)q − (i − 3)]

[
1 − (1 − q)

E

λ

] 1
1−q

+1−j

.

As before, for energies E satisfying the condition given
by Eq. (B6), the corresponding multiplicity distribution
is equal to the well-known negative-binomial distribution
(NBD):

P (N ) = HN+1(E) − HN (E) (B12)

= (q − 1)N

N !

q − 1

2 − q

	
(
N + 1 + 2−q

q−1

)
	

(
2−q

q−1

)

×
(

E

λ

)N [
1 − (1 − q)

E

λ

]−N+ 1
1−q

= 	(N + k)

	(N + 1)	(k)

(
〈N〉
k

)N

(
1 + 〈N〉

k

)N+k
, (B13)

where

k = 1

q − 1
, 〈N〉 = E

λ
,

Var(N ) = E

λ

[
1 − (1 − q)

E

λ

]
= 〈N〉 + (q − 1)〈N〉2. (B14)

In the cases considered here, q ∈ (1, 2). In the limiting cases
of q → 1, one has k → ∞, and P (N ) becomes a Poisson
distribution; whereas for q → 2, one has k → 1, and P (N )
becomes the so-called geometrical distribution.
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