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We study, within a semiclassical coupled-channels approach, the possible effects of anharmonicities and non
linearities on the excitation of the so-called pygmy resonances in several Sn isotopes and using two different
Skyrme interactions. In the energy region of the pygmy resonances, there are a few low-lying multiphonon states.
The question is whether they may contribute to the observed peak. Calculations show that the inelastic cross
sections in the relevant energy region have an increase that varies from 3% to 21% depending on the isotope and
on the kind of Skyrme force used. At the same time, we have studied the nature of the pygmy resonance state by
means of a new criterion to establish whether this state can be considered as a collective one.
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I. INTRODUCTION

In recent years, some evidence of new phenomena as-
sociated with increasing the neutron excess in nuclei has
been accumulated [1]. In particular, approaching the neutron
dripline, a neutron skin develops, i.e., a concentration of
neutron density partly decoupled from the core nucleons.
Oscillations of the skin neutrons against the core give rise
to a low energy isovector mode: the pygmy dipole resonance
(PDR). Dipole strength at low energies has been widely studied
within several microscopic models, among which we quote
the Hartree-Fock plus random-phase approximation (RPA)
with Skyrme interactions, the relativistic RPA (RRPA) and
the relativistic Hartree-Bogoliubov (RHB) plus the relativistic
quasiparticle RPA (RQRPA). For a recent and up-to-date
bibliography, see Ref. [1]. Whether or not such strength
corresponds to a collective mode is still under discussion. In
particular, when the spreading effects arising from the coupling
of single nucleon states to the collective low-lying excitation
are included within the QRPA plus phonon coupling model
(QPM), the peaks associated with the PDR in several nuclei,
both light [2] and heavy or medium-heavy [3,4], contain just a
few neutron particle-hole configurations. These results are at
variance with the findings of the RRPA plus phonon coupling
model [5].

From the experimental side, evidence for Coulomb excita-
tion of PDR in heavy ion collisions at high energies on 132Sn
has been reported [6,7] quite recently. In the same energy
region, dipole states whose main components are two-phonon
configurations are present [8] and effects coming from their
possible mixing with the PDR can be envisaged. A similar
question has been addressed in Refs. [4,9], in which the
structure of the low-lying energy part of the dipole strength
distribution was analyzed in these terms.

Thus it seems to us appropriate to study the excitation of the
PDR in the framework of the semiclassical coupled-channel

approach already used for the calculation of the multiple
excitation of giant resonances in heavy ion collisions [10–12].
Within such an approach, anharmonicities and nonlinearities
are treated in a completely microscopic description based on
the HF plus RPA with Skyrme interaction, and they have been
found to be responsible for an appreciable increase of the
inelastic scattering cross sections. In particular, in Ref. [10]
it was found that a kind of cooperative effect leads to a very
strong enhancement of the Coulomb excitation cross section of
a low-lying state in 208Pb, whose main component is built with
the low-lying 2+ and 3− states coupled to a total Jπ = 1−. For
the tin isotopes that we are going to study, these states lie in the
region of the pygmy resonances, and the question is whether
they may contribute to the observed peak.

The paper in organized as follows. In Sec. II, we present
the HF+RPA strength distributions for some closed shell Sn
isotopes. In particular, an analysis about the properties of
PDR is carried out by means of a novel criterion aimed at
studying the features and the collectivity degree of the PDR. In
Sec. III, the framework within which our calculations are done
is briefly described (the details can be found in our previous
work), while in Sec. IV, the results about inelastic cross section
calculations are presented and discussed. Finally, in Sec. V,
the main conclusions are drawn.

II. RPA RESULTS

In this section, we present the RPA strength distributions
for the closed shell Sn isotopes 100Sn, 120Sn, and 132Sn. We
compare the results obtained with two Skyrme interactions,
namely, the SGII [13] and the SLY4 [14]. We have chosen these
particular Skyrme interactions, among the many known in the
literature, in order to compare the results obtained with an
interaction whose parameters have been fixed, paying a special
attention to nuclei with a neutron excess (SLY4), and those
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FIG. 1. (Color online) Proton (solid) and neutron (dashed) den-
sities for three isotopes of Sn calculated with both SGII and SLY4
interactions.

coming out with an interaction widely used, also by us, and
adjusted also on the properties of excited states (SGII). They
are both representative of acceptable Skyrme interactions.

First, we solve the Hartree-Fock equations and express
the single-particle wave functions as superpositions of 16
harmonic oscillator ones. In Fig. 1, we show the proton and
neutron densities for the three isotopes 100Sn, 120Sn, and 132Sn
and for the two considered interactions. They are multiplied
by r2 to make more evident the presence of the neutron
skin. The results do not depend appreciably on the used
interaction.

For the most neutron rich isotope, we see that the neutron
density extends to larger radial values with respect to the
proton density, while the opposite happens for 100Sn. This
is quantified in the difference between the neutron and proton
rms radii (see Table I). The values obtained with the SLY4,
very similar to those calculated in Ref. [4], are slightly larger
than the ones with the SGII. This is because the formation
of the skin is related to the value of the nuclear symmetry
energy [7,15,16], which is 32 MeV [14] and 26.8 MeV [13] for
the SLY4 and SGII, respectively. A clear connection of the low
energy B(E1) strength and the thickness of the neutron skin
has been shown and its effect on the transition densities amply
discussed in Refs. [4,5,17,18]. Below we will present, for
132Sn, a comparison between the transition density associated
with the low-lying dipole state and that of the giant dipole
resonance (GDR). As we will see, this comparison clearly
indicates the different nature of the oscillations from which

TABLE I. Difference δr (in fm) between
the neutron and proton rms radii.

SGII SLY4

100Sn −0.086 −0.100
120Sn 0.119 0.142
132Sn 0.198 0.221

FIG. 2. (Color online) Isoscalar strength distributions for
monopole states for tin isotopes calculated with the SGII and SLY4
interactions. The solid curves represent dB(E0)/dE in units of
(e2 fm4 MeV−1) as obtained by adopting a smoothing procedure
described in the text.

the two peaks originate and the fact that, indeed, the low-lying
one can be identified with the pygmy dipole resonance (PDR).
An exhaustive discussion of the evolution of the PDR and its
identification can be found in Ref. [4], where the results for
several Z = 50 isotopes and N = 82 isotones, within QRPA,
are presented and analyzed. Other systematic studies on Sn
isotopes have been reported also in Refs. [19,20].

In Figs. 2–5, we show a compendium of the RPA strength
distributions for all the considered isotopes and the two Skyrme
forces, for the natural parity multipolarities from Jπ = 0+ to
Jπ = 3−. The bars correspond to the RPA calculations, while
the continuous lines are generated by a smoothing procedure
using a Lorentzian with a 1 MeV width. The continuous lines
are drawn only to easily see where the major strength is
located. The monopole states are not excited by the Coulomb
interaction. As shown in Ref. [21], their presence is important
in generating anharmonicities. Their strength distribution does
not vary significantly going from one isotope to the other. In

FIG. 3. (Color online) Same as Fig. 2, but for isovector strength
distributions for dipole states. The solid curves are dB(E1)/dE in
units of (e2 fm2 MeV−1).
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FIG. 4. (Color online) Same as Fig. 2, but for isoscalar strength
distributions for quadrupole states. The solid curves are dB(E2)/dE

in units of (e2 fm4 MeV−1).

Fig. 3, we see that, moving toward larger neutron excess, some
dipole strength develops at low energies. This result is quite the
same for the two interactions, the only difference being that the
low-lying dipole strength is more fragmented with the SLY4
force. How much this strength can be interpreted as related to
a pygmy resonance requires an analysis similar to that done
in Refs. [4,5,17] and it will be presented below. A moderate
increase of the low-lying quadrupole and octupole strengths
with the neutron excess is also visible in Figs. 4 and 5. The
very low-lying 3− state in 120Sn is related to the fact that the
h11/2 single-neutron state is very close to the last neutron-hole
states.

We have analyzed the isospin character of the considered
multipole states. While the dipole ones are almost purely
isovector, states of higher multipolarities show a rather strong
isospin mixing, especially for the isotopes with a thicker
neutron skin. This effect is not new and has been extensively

FIG. 5. (Color online) Same as Fig. 2, but for isoscalar strength
distributions for octupole states. The solid curves are dB(E3)/dE in
units of (e2 fm6 MeV−1).

TABLE II. Photoabsorption cross sections for the 132Sn
isotope calculated with the SGII and SLY4 interactions. In the
third row we report the experimental values from Ref. [6]. The
theoretical values of the cross section for the 1−

ll (GDR) were
obtained by summing all the states below (above) 11 MeV.

1−
ll GDR

E
∫

σγ E
∫

σγ

(MeV) (mb MeV) (MeV) (mb MeV)

SGII 9.3 37 13.92 2487
SLY4 9.6 47 13.81 2102
Exp. 9.8(7) 75(57) 16.1(7) 2330(590)

discussed in the literature [4,17]. Such behavior is similar for
the two used interactions.

The problem related to possible mixing of physical states
with the spurious (isoscalar dipole) one associated with the
center-of-mass motion deserves some discussion. It is very
well known [22] that if one makes completely consistent
HF+RPA calculations, this state becomes a solution of RPA
equations at zero energy, exhausting 100% of the energy
weighted sum rule (EWSR). In our calculations, however,
the spin-orbit term of the Skyrme interaction is neglected
in RPA. This inconsistency is partially the origin of the
fact that our lowest dipole state in 132Sn with the SGII
interaction, for example, is at 2.3 MeV. In the literature, a
prescription suggested to cure this result is to multiply the
T = 0 component of the residual interaction in the Jπ = 1−
channel by a factor such that the lowest dipole state is brought
to zero energy [23]. We have done a few calculations by
following such prescription and found that, with a factor of
1.1, the energy goes down to 90 keV. On the contrary, the other
dipole states, including the low-lying ones, are very marginally
affected by this rescaling of the interaction. We can therefore
conclude that the T = 0 content in the latter states is small,
and consequently, the mixing with the spurious state is small.

We have calculated the photoabsorption cross sections for
the 132Sn isotope in the two energy regions of interest: E <

11 MeV and E > 11 MeV. The results are shown in Table II
together with the experimental values taken from Ref. [6]. The
theoretical values have been obtained, for the two considered
interactions, by using the expression [24]∫

dEσγ = 16π3

9h̄c

∑
i

EiB(E1, 0+ → 1−
i ), (1)

where the sum is over the states belonging to the relevant
intervals and the B(E1)’s include the effective charges N

A
e and

−Z
A
e for protons and neutrons, respectively [25]. (Note that in

Fig. 3 we plot the isovector reduced transition probabilities.)
The agreement with the experimental data is good within the
error bars, except for the position of the GDR peak, which is
lower by ∼2 MeV.

III. NATURE OF DIPOLE LOW-LYING STATES

As already mentioned, one important question is how
collective are the dipole states observed at low energies, which

054615-3
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TABLE III. Particle-hole configurations that give the major contribution for two RPA dipole low-lying states
for the nucleus 132Sn and for the SGII and SLY4 interactions. For each p-h configuration, their energy, the
contribution to the norm of the state Aph, and the partial contribution to the reduced transition amplitude bph (in
e fm units) are reported. The superscripts π, ν refer to the proton and neutron states, respectively.

SGII (E = 9.34 MeV) SLY4 (E = 9.27 MeV)

p-h conf. E (MeV) Aph bph(E1) p-h conf. E (MeV) Aph bph(E1)

(2p3/2, 2d5/2)π 9.62 1.8% −0.42 (1f5/2, 1g7/2)π 11.47 1.0% 0.42
(1g9/2, 1h11/2)π 9.33 2.3% 0.88 (2p3/2, 2d5/2)π 9.86 5.3% −0.72
(1g7/2, 2f7/2)ν 9.12 4.5% 0.06 (2p1/2, 3s1/2)π 10.50 1.9% −0.16
(2d5/2, 2f7/2)ν 8.85 3.6% −0.83 (1g9/2, 1h11/2)π 9.37 7.8% 1.63
(2d3/2, 3p1/2)ν 9.04 14.9% −0.65 (1g7/2, 2f7/2)ν 8.88 2.2% 0.05
(2d3/2, 2f5/2)ν 9.07 24.0% 1.79 (2d3/2, 3p1/2)ν 9.34 67.6% 1.25
(3s1/2, 3p3/2)ν 9.09 43.9% 1.47 (3s1/2, 3p3/2)ν 10.07 4.1% 0.41
(3s1/2, 3p1/2)ν 9.67 1.0% −0.17 (3s1/2, 3p1/2)ν 10.61 1.2% 0.15
(1h11/2, 1i13/2)ν 9.21 1.7% −0.88 (1h11/2, 1i13/2)ν 10.01 4.9% −1.47

may be associated with the existence of a pygmy resonance.
For very light nuclei (halo nuclei), the soft modes are not
collective states, but rather they are generated by the radial
extension of the very weakly bound single-particle neutron
states [26]. One measure of the collectivity is the number
of particle-hole components [2,5] entering in the RPA wave
function with an appreciable weight. In our RPA calculations,
we can analyze the nature of these low-lying states in more
detail. As in Ref. [5], for a state ν the contribution of a
particle-hole configuration can be calculated by defining the
quantity

Aph = ∣∣Xν
ph

∣∣2 − ∣∣Y ν
ph

∣∣2
(2)

in terms of the X and Y RPA amplitudes, with the normaliza-
tion condition ∑

ph

Aph = 1. (3)

Then, one can see what the contribution is, in percentage,
of a p-h configuration to the formation of the state ν. In
Table III, we show such components for one low-lying dipole
state (for the two considered interactions), together with their
contribution to the norm of the states. Only the configurations
contributing more than 1% are shown. Note that the major
contribution comes from the neutron skin. Indeed, the neutron
p-h configurations contribute 93% to the formation of the state
in the SGII interaction, and 80% for the state obtained with
the SLY4 interaction. For the SGII case, our result is very
similar to the one obtained in Refs. [5,27], where a relativistic
RPA was used for the study of the pygmy resonance. In fact,
also in our case, several p-h configurations contribute with
an appreciable weight. Conversely, in the SLY4 case, only one
neutron component is dominating. This is similar to the results
of Ref. [2].

The fundamental concept that underlies collectivity is
coherence. The reduced transition probability from the ground
state to the excited state ν can be written as

B(Eλ) =
∣∣∣∣∣∣
∑

ph

bph(Eλ)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑

ph

(
Xν

ph − Y ν
ph

)
T λ

ph

∣∣∣∣∣∣
2

, (4)

where T λ
ph are the 2λ multipole transition amplitudes associated

with the elementary p-h configurations. In Table III, we show
the partial contributions bph for the considered states. The
previous analysis, based only on the magnitude of Aph, can be
misleading because it does not take into account the amplitude
T λ

ph nor the relative signs of the separate contributions. On
the contrary, coherence plays a fundamental role in building
a significant value for B(Eλ). Indeed, in Table III we see
that by looking only at Aph, the SGII low-lying dipole state
seems to satisfy the collective conditions. The values of bph

seem to confirm this conclusion: the p-h configurations with
a higher percentage also have big bph values. Conversely,
Aph values for the SLY4 state show a concentration of the
strength essentially on one elementary configuration, washing
out the hypothesis of collectivity. However, if we look also
at the bph values, we note that configurations with a small
percentage may give big contributions to the reduced transition
probability. With both interactions, one gets contributions from
several configurations. It is to be noted, however, that quite
strong cancellations lead finally to a not very large B(E1).
This is clearly seen in Fig. 6, where the partial contributions
bph vs the order number of the p-h configurations used in
the RPA calculations for the two Skyrme interactions are
plotted. The bars correspond to the individual bph values,
while the continuous thin line is the cumulative sum of
the contributions. The dotted lines divide the protons from
the neutron configurations. The order goes from the most
bound configurations to the higher ones. The figures on the
left column are for the low-lying dipole states whose main
characteristics are reported in Table III while the ones on
the right column are the GDR states obtained with the two
Skyrme interaction as indicated in the figure. In particular
they correspond to the states at E = 13.4 and E = 14.4 MeV.
From the figure, we can clearly see how the B(E1) of the
GDR states are built up by the small contributions of many
p-h configurations which add coherently. For the low-lying
states, we have a different behavior: several p-h configurations
participate in the formation of the B(E1), but some of them
have opposite sign, giving rise to a final value that is small
though, as we will see below, strong enough to get excited by
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FIG. 6. (Color online) Partial contributions bph of the reduced
transition probability vs the order number of the p-h configurations
used in the RPA calculations for the two Skyrme interactions. The
dotted lines divide the protons from the neutron configurations. The
order goes from the most to the less bound ones. The bars corresponds
to the individual bph contributions; the continuous thin line is the
cumulative sum of the contributions. The left column figures are for
the two low-lying dipole states of Table III; the right column ones are
for the GDR states.

the Coulomb interaction. From our novel analysis, it emerges
that although the low-lying states cannot be considered as
collective as the GDR states, they also cannot be described as
a single p-h configuration.

The same conclusion can be reached by looking at Fig. 7,
where the RPA strength distributions as well as the unperturbed
ones are reported for the 132Sn isotope for the two interactions
employed here. The bars are the RPA results, while the curves
are obtained by the smoothing procedure described before. The
dashed (black) lines represent the strength distributions for

FIG. 7. (Color online) Strength distributions for dipole states for
132Sn calculated with the SGII and SLY4 interactions. The bars show
the RPA strength distributions. The curves represent dB(E1)/dE

in units of (e2 fm2 MeV−1) as obtained by adopting a smoothing
procedure (see text). The dashed (black) and solid (red) lines represent
the unperturbed p-h configurations and RPA smoothed strength
distribution, respectively.

FIG. 8. (Color online) Transition densities for the low-lying
dipole state (upper) and for the GDR (lower) for the 132Sn isotope
calculated with the SLY4 interaction. We show the proton, neutron,
isoscalar, and isovector parts (as indicated in the legend).

the unperturbed p-h configurations, while the solid (red) one
corresponds to the RPA ones. When the residual interaction
is switched on, the major part of the strength moves to higher
energy, as it should be for an isovector state. The low-lying
dipole states remain in their energy positions or move slightly
to lower energy. The final RPA B(E1) values [Eq. (4)] are
strongly reduced for the low-lying dipole states. Moreover,
we remark that, as a consequence of the residual interaction,
we observe in the low energy part of the strength distribution
the appearance of some “structures” that are not present in the
unperturbed case. They are related to the cooperative, although
not coherent as discussed above, effect of several particle-hole
excitations.

That the nature of the two dipole states discussed above is
qualitatively different is illustrated in Fig. 8, where the proton,
neutron, isoscalar, and isovector transition densities for the
two states, calculated with the SLY4 interaction, are reported.
The behavior for the low-lying state is similar to what has
been found by several authors [3–5,17]. In the surface region,
the proton and neutron densities are not out of phase, and the
isoscalar transition density dominates over the isovector one;
in the external region, only the neutrons give a contribution
to both isoscalar and isovector transition densities which have
the same magnitude. For the GDR case, we find the expected
radial dependence for a collective isovector state: the proton
and neutron transition densities oscillate out of phase; the
isovector part is much larger than the isoscalar one for all
distances beyond the radius of the nucleus. In addition, the
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isoscalar transition density shows some oscillations, which
leads to a zero value for the corresponding B(E1).

In recent literature, there is a debate on the location of the
PDR with respect to the neutron separation threshold. Many
experiments have been done to measure the E1 strength (i)
below the threshold with (γ,γ ′) studies [8,18,28,29] for some
N = 82 isotones as well as for some Sn isotopes, (ii) just above
the threshold with heavy ion collisions at the GSI [6,7] for Sn
isotopes, and (iii) in both regions with (γ,xn) studies [30]
for 92,98,100Mo isotopes. In both energy regions, there has
been found clear evidence of B(E1) strength with a small
percentage (about 1%) of the E1 isovector EWSR. From
the theoretical point of view, we would like to mention self-
consistent RHB+RQRPA calculations of the peak excitation
energy of the PDR as well as the one-neutron separation energy
for a series of Sn isotopes [31]. The calculated one-neutron
separation energy reproduce the experimental available data.
The result show that for A � 122, the pygmy resonance is
located above the neutron emission threshold; for smaller
values of A, it is found below.

Nevertheless, whatever is the location of the low-lying
dipole state, we want to stress once again that the only way
to establish its nature, namely, that it is a different mode with
respect to the GDR one, is to look at the transition densities.
For example, in 132Sn with the SGII interaction, the dipole
strength distribution exhibits two small peaks below the GDR
(see Fig. 3), at 9.34 and 11.36 MeV, both above the neutron
threshold energy that we find equal to 8.56 MeV. However,
their nature is completely different, as evidenced by looking
at the transition densities in Fig. 9. In the lower part, we show
the proton, neutron, isoscalar, and isovector transition densities
for the dipole state at E = 11.36 MeV. Their pattern resembles
very much the one of the GDR: protons and neutrons start to
oscillate out of phase. Conversely, the behavior of the state at
E = 9.34 MeV is that of a “true” PDR state, i.e., similar to
the one shown in the upper part of Fig. 8, although they have
different strengths (note the different scale). So, although the
strengths of the two states are very similar and their energies
are close, they are two different nuclear modes as manifested
in their different transition density behaviors.

IV. COULOMB EXCITATION CROSS SECTIONS

Before starting the discussion about the calculations for the
inelastic excitation cross section, we describe, very shortly, the
framework within which these calculations have been done.
The model has been developed for the study of multiple giant
resonance excitations, and all the details can be found in Refs.
[10–12].

The standard approach for studying multiple excitation of
vibrational collective states implies the use of an internal
harmonic Hamiltonian and an external excitation field, which
is linear in the phonon creation and annihilation operators.
Differences between theoretical standard calculations and
experimental results have induced us to include corrections
to the harmonic approximations, such as anharmonicities in
the internal Hamiltonian and nonlinearities in the external
field [10–12].

FIG. 9. (Color online) Transition densities for the low-lying
dipole state (upper) and for the dipole state at E = 11.36 MeV (lower)
for the 132Sn isotope calculated with the SGII interaction. We show
the proton, neutron, isoscalar, and isovector parts (as indicated in the
legend).

Studies of excitation processes of heavy nuclei have been
achieved by using semiclassical methods techniques. These
methods are based on the assumption that nuclei move on
classical trajectories, while the internal degrees of freedom
are treated quantum mechanically. These assumptions usually
are well justified for grazing collisions (see Ref. [32]) and have
also been applied to relativistic Coulomb excitations [33].

In these semiclassical models, the excitation of one of the
partners of the collision is due to the mean field of the other.
The excitation operator is of one-body type, and in standard
models it is assumed to be linear in the phonon operator Q as
a consequence of the fact that only p-h terms are taken into
account. By using the boson mapping of Ref. [34] up to second
order, and taking also the p-p and h-h contributions, we obtain
a nonlinear excitation field

W = W 00 +
∑

ν

W 10
ν Q†

ν + h.c. +
∑
νν ′

W 11
νν ′Q

†
νQν ′

+
∑
νν ′

W 20
νν ′Q

†
νQ

†
ν ′ + h.c., (5)

which depends on time through the relative distance between
the two nuclei. The first term in this equation represents the
interaction of the two colliding nuclei in their ground state.
The W 10 part connects states differing by one phonon, the W 11

term couples excited states with the same number of phonons,
while W 20 allows transitions between states differing by two
phonons.
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As stated above, the other missing ingredient is the
anharmonicity in the internal Hamiltonian. Then, by adding
to the RPA Hamiltonian the pppp, hhhh, ppph, and hhhp
terms, which cannot be neglected in general, and by applying
the boson mapping quoted above to the complete fermionic
Hamiltonian, we construct a boson Hamiltonian

H = H11 + H22 + H21 + h.c., (6)

where H11 has a purely harmonic spectrum built with the
RPA (multi)phonons, H22 mixes states with the same number
(�2) of phonons, and H21 + h.c. mixes states whose phonon
numbers differ by one.

From the results of the self-consistent HF+RPA calcula-
tions, we select a reduced set of states that constitute our
one-phonon basis by choosing states with angular momenta
less or equal to 3 and with an appreciable percentage of EWSR.
Then we construct all possible two- and three-phonon states
out of them, and by diagonalizing the residual interaction in
the space of one-, two-, and three-phonon states, we obtain the
eigenstates of the Hamiltonian which are mixed states

|�α〉 =
∑

ν

cα
ν |ν〉 +

∑
ν1ν2

dα
ν1ν2

|ν1ν2〉 +
∑

ν1ν2ν3

eα
ν1ν2ν3

|ν1ν2ν3〉,

(7)

whose corresponding eigenvalues are not harmonic. By ex-
pressing the state of the system in the presence of the excitation
operator as a superposition of |�α〉, the solution of the time-
dependent Schrödinger equation is cast into a set of coupled
differential equations for the amplitudes which are integrated
along the classical relative motion trajectories. For each |�α〉,
the associated cross section is obtained by integrating the
excitation probability over the whole impact parameter range
modulated by the transmission coefficient [11].

V. RESULTS AND DISCUSSION

To perform the calculations, we need to reduce the number
of channels. Indeed, as can be seen from Figs. 2–5, several
states for each multipolarity are present, some of them being
much more collective than the others, which produces a
spreading of the strength. Following the same prescription
used previously [10], we put together the states in a given,
small energy interval in such a way as to construct a single
“doorway” state at an energy equal to the average value
obtained by weighting the energy of the single states by their
B(Eλ) and whose components are obtained with the constraint
that it exhausts the fraction of EWSR given by the sum of
the EWSR of the considered states. The so-obtained states
are reported, for 132Sn, in Table IV for the two interactions.
We construct all possible two- and three-phonon states out of
these basis states, to build up the space where the bosonic
Hamiltonian is diagonalized. If we consider that we have an
equation for each angular momentum and its projection, we
can easily realize that the number of time-dependent coupled
equations to solve amounts to several thousands. To make
feasible the cross section calculation, we took into account
only the natural parity states with an excitation energy below
30 MeV. Furthermore, for each state, we considered in the

TABLE IV. RPA one-phonon basis for the nucleus 132Sn and for
both SGII and SLY4 interactions. For each state, the spin, parity,
energy, and percentage of the EWSR (isovector for the GDR and the
IVGQR, and isoscalar for all the other states) are reported.

State J π SGII SLY4

Eharm EWSR Eharm EWSR
(MeV) (%) (MeV) (%)

0+
ll 0+ 11.73 2 11.36 2

GMR 0+ 16.32 85 16.87 86
1−

ll 1− 9.30 1.1 9.60 1.4
GDR 1− 13.92 56 13.81 55
1−

hl 1− 18.34 25 17.75 15

2+
ll 2+ 5.03 11 5.35 11

ISGQR 2+ 13.50 77 14.11 70
IVGQR 2+ 24.76 28 24.03 36
3−

ll 3− 5.93 27 6.48 26
HEOR 3− 24.44 32 25.81 30

calculations only the components whose amplitude is larger
than 0.03. This still guarantees a very good normalization and
reduces appreciably the computation time.

In Fig. 10, we present the cross section for the Coulomb
excitation of 132Sn in the collision with 208Pb at 500 MeV/A
incident energy. In the left part, we show the results for which
the spectrum and multiphonon states (the channels) are those
obtained with the SGII force. Of course, the cross section for
exciting the GDR is dominating. Its intensity is a kind of gauge
for the cross sections to the other states. The cross section to
states up to 23 MeV excitation energies are reported; however,

FIG. 10. (Color online) Relativistic Coulomb inelastic cross
section for 132Sn+208Pb at 500 MeV/A. The dashed black lines are
the cross section obtained in the harmonic and linear approximation.
The solid red lines correspond to the anharmonic and nonlinear case.
The bars are the cross section for every single |�α〉 state. The curves
represent dσ/dE in units of (mb MeV−1) and they are generated by
a smoothing procedure using Lorentzian with a 2 MeV width for the
states whose energy is below 10 MeV and with a 3 MeV width for
the ones with higher energy. These calculations were done with the
SGII and SLY4 interactions.
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TABLE V. Same as Table IV, but for the nucleus 120Sn.

State J π SGII SLY4

Eharm EWSR Eharm EWSR
(MeV) (%) (MeV) (%)

GMR 0+ 16.43 85 16.75 85
1−

ll 1− 9.21 1.8 9.63 2.4
GDR 1− 13.90 50 14.07 53
1−

hl 1− 16.97 22 17.29 21

2+
ll 2+ 5.68 8 5.73 7

ISGQR 2+ 13.20 80 13.72 77
IVGQR 2+ 24.57 37 24.65 44
3−

1ll 3− 2.33 12 3.15 12
3−

2ll 3− 5.96 17 6.37 17
HEOR 3− 24.63 40 25.94 36

all channels up to 30 MeV were included in the calculations.
Two series of results are shown, corresponding to two different
levels of approximation. The dashed (black) lines represent
the cross section obtained by considering the states in the
harmonic limit and taking only the linear term of the external
field. We see that, in this limit, only six states are excited when
only the linear term of the field, W10, is acting. They are pure
one-phonon states. It is worth noting that the cross section
associated with the pygmy resonance, at 9.30 MeV excitation
energy, is appreciable, being about 7% of the GDR. Let us now
turn our attention to the continuous (red) lines corresponding
to the case when anharmonicities and nonlinearities are not
neglected. First, we notice that the GDR cross section is almost
unaffected, passing from the 412 mb value of the harmonic and
linear limit to 416 mb in the complete calculation, while for
the PDR one gets 28 and 31 mb, respectively; and for the
high-lying dipole state, the cross sections is reduced from 88
to 72 mb. We see also that the introduction of anharmonicity
lowers the positions of the PDR and the low-lying 2+ by
600 keV. Several more states are now excited, most of them
are not visible in the figure because their individual cross
section is below 1 mb. Among the visible ones, we mention in
particular the state at 11.3 MeV, which in the harmonic limit is a
pure [3−

ll ⊗ 3−
ll ], J = 2 component, two-phonon configuration

at 11.9 MeV. When the anharmonicities are switched on, it
is pushed down and acquires a one-phonon GQR component,
which is the second strongest one. Therefore the linear term
of the field can excite it through such component. In addition,
there is a contribution also from the other terms of the external
field. In Fig. 11, a blow-up of the PDR region gives a better
view of the effects we are talking about.

Similar analysis has been done for the same Sn isotope by
using the SLY4 interaction, and the results are shown in the
right side of Fig. 10. In the harmonic and linear limit, the main
difference from the SGII results is that the value of the GDR
cross section is quite smaller, 335 mb, while that of the PDR is
almost unchanged, 30 mb, so that the ratio PDR/GDR is now
9%. For the 1−

hl peak, we obtain a quite strong reduction to
49 mb. When anharmonicities and nonlinearities are included,
several more peaks appear to be appreciably populated through
the same mechanism discussed above. However, by inspection

FIG. 11. (Color online) Blow-up of Fig. 10 in the PDR energy
region.

of the figures, it is evident that the anharmonic effects are
stronger in the SGII case. A more quantitative comparison
can be done by looking at Table VI, which reports the cross
sections summed over the energy intervals indicated in the first
column. In particular, in the low energy interval (0–12 MeV),
we have a 14% increase for the SGII case, while with the
SLY4 force the increase amounts to 11%. The peak at higher
energy remains almost unchanged with a small reduction for
the SLY4 calculations.

A similar analysis has been carried out for the system
120Sn+208Pb at 500 MeV/A (see Fig. 12). The overall behavior
is very much the same as for 132Sn. Again, the dashed (black)
lines refer to the harmonic and linear case and they correspond
to the excitation of the one-phonon basis states, while the
continuous lines are the results of the calculations when
anharmonicity and nonlinearities are taken into account. As
in the previous case, the calculations done with the SGII
interaction show a stronger anharmonicity, as can be seen in
Fig. 12. The summed inelastic cross sections are shown in
Table VII. Apart from the difference in the absolute values,

FIG. 12. (Color online) Same as Fig. 10, but for the system
120Sn+208Pb.
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TABLE VI. Summed inelastic cross sections for the system
132Sn+208Pb at 500 MeV/A (for both SGII and SLY4 interactions)
over the intervals shown in column one. Values for the harmonic
and linear case (H-L) should be compared with those obtained in
the anharmonic and nonlinear calculations (AH-NL).

	E SGII SLY4
(MeV)

H-L (mb) AH-NL H-L (mb) AH-NL

0–12 48.3 55.0 50.2 55.8
12–20 543.9 547.0 429.8 426.6

there is a stronger increase (21%) for the SGII interaction than
for the SLY4 case (only 3%). This is essentially due to the
strong excitation of the two-phonon state [2−

ll ⊗ 3−
1ll], J = 1

component, which, in the SGII case, acquires by itself a cross
section of 14 mb. This different behavior is associated with
the fact that in the SGII case, when the anharmonicity is
switched on, this state is shifted down in energy by 1.4 MeV
(going from 8 to 6.6 MeV), and it is strongly coupled with
the 1−

ll state. Furthermore, in the 132Sn case, there are a lot
of multiphonon states, in the low-lying energy region, which
obtain a considerable excitation when the anharmonicity is
taken into account. Most of them are due to the presence of
the 3−

1ll which is strongly coupled to the other low-lying states.
The use of the SLY4 interaction does not favor this coupling,
so in the left part of Fig. 12 there is less contribution coming
from the low-lying states.

As a conclusion of this work, we can certainly state
that the inclusion of multiphonon states in the study of the
PDR produces important effects, in particular when the SGII
interaction is used. Indeed, we have found a considerable
increase of the inelastic cross section for reactions with tin
isotopes ASn+208Pb at 500 MeV/A. The increase is relatively
low with the SLY4 force with a remarkable difference as
far as the anharmonicity behavior is concerned. Such a
different response with respect to the anharmonicity is worth
investigating, and it will be the argument of a future paper.

VI. SUMMARY

In this work, we have extended the study of multiphonon
excitations in heavy ion collisions to the case of the pygmy
resonances. The motivation of this study relies on our findings
on multiphonon investigation at low energy excitation. Indeed,
we have found that a few low-lying multiphonon states are
excited in the collision process with a quite strong probability.
These states lay in the region of the pygmy resonances, and the

TABLE VII. Same as Table VI, but for the system 120Sn+208Pb.

	E SGII SLY4
(MeV)

H-L (mb) AH-NL H-L (mb) AH-NL

0–12 61.2 74.3 60.6 62.6
12–20 496.0 502.9 407.9 415.0

question is whether they may contribute to the observed peak.
Starting from a microscopic approach based on RPA, mixing
of two-phonon states among themselves and with one-phonon
states is considered within a boson expansion approach with
Pauli corrections. By diagonalizing a quartic microscopic
Hamiltonian in the space of one-, two-, and three-phonon
states, we generate mixed eigenstates with an anharmonic
spectrum. Nonlinear terms are also taken into account in the
external mean field of one of the nuclei which is responsible
for the excitation of the other partner of the reaction.

The pygmy resonance is much more evident in nuclei with
neutron skin, and it is thought to be generated by the oscillation
of the neutrons in excess with respect to the core. To the
discussion of whether this mode is a collective one, we have
contributed with a novel analysis based on the investigation of
the coherent construction of the reduced transition probability
which should unambiguously give an answer to this problem.
Our results show that although the degree of collectivity is not
as high as the one of the GDR, they cannot be considered as due
to one p-h configuration. Indeed, while it is very well known
that for the GDR many configurations contribute appreciably
and add up coherently, in the PDR case there are several
configurations contributing, but some of them cancel out so
that, finally, the reduced transition probability B(E1) is quite
smaller than what one should get without such cancellations
and of the same order of a single p-h configuration.

The inelastic cross sections are calculated by solving
semiclassical coupled-channel equations, the channels being
superpositions of one-, two-, and three-phonon states. The cal-
culations have been done for two different Skyrme interaction
(SGII and SLY4) and for the reactions 100,120,132Sn+208Pb at
500 MeV/A. We found an increase of the cross section in
the low-lying PDR energy region, which is mainly due to
the excitation of several states whose population is strongly
suppressed by selection rules when anharmonicities and
nonlinearities are neglected. The increase varies from 3%
up to 21% depending on the isotope considered and the
Skyrme force used. In general, the SLY4 interaction produces
a smaller anharmonicity, which is then reflected in a lower
increase of the cross section in the PDR region. In contrast,
the results obtained with the SGII show the importance
of anharmonicities and nonlinearities to the study of the
PDR.
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[2] G. Coló and P. F. Bortignon, Nucl. Phys. A696, 427
(2001).

[3] D. Sarchi, P. F. Bortignon, and G. Coló, Phys. Lett. B601, 27
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