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Fluctuation and dissipation dynamics in fusion reactions from a stochastic mean-field approach
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By projecting the stochastic mean-field dynamics on a suitable collective path during the entrance channel of
heavy-ion collisions, expressions for transport coefficients associated with relative distance are extracted. These
transport coefficients, which have forms similar to those familiar from the nucleon exchange model, are evaluated
by carrying out time-dependent Hartree-Fock simulations. The calculations provide an accurate description of
the magnitude and form factor of transport coefficients associated with one-body dissipation and fluctuation
mechanisms.
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I. INTRODUCTION

The self-consistent mean-field theory, also known as time-
dependent Hartree-Fock (TDHF), by employing Skyrme-type
effective interactions, has been extensively applied to describe
nuclear collision dynamics at low bombarding energies below
10 MeV per nucleon [1–4]. In the mean-field theory, short-
range two-body correlations are neglected and nucleons move
in the self-consistent potential produced by all other nucleons.
This is a good approximation at low energies because Pauli
blocking is very effective for scattering into unoccupied states.
Consequently, in the mean-field theory, collective energy is
converted into intrinsic degrees of freedom via interaction of
nucleons with the self-consistent mean-field, so-called one-
body dissipation [5,6]. The one-body dissipation mechanism
plays a dominant role in low energy nuclear dynamics includ-
ing deep-inelastic heavy-ion collisions and heavy-ion fusion
reactions. One important limitation of the mean-field theory is
related to dynamical fluctuations of collective motion. In the
mean-field description, while single-particle motion is treated
in a quantal framework, collective motion is treated almost
in a classical approximation. Therefore, TDHF provides a
good description for average evolution; however, it severely
underestimates fluctuations of collective variables.

However, it is well known that no dissipation takes place
without fluctuations [7,8]. Much effort has been made to
improve the one-body transport description beyond the mean-
field. Most of these transport descriptions take into account
dissipation and fluctuation mechanisms due to two-body
collisions, which play an important role in nuclear dynamics
at intermediate energies [9–12]. Here, we deal with nuclear
dynamics at low energies at which one-body dissipation and
associated mean-field fluctuations play a dominant role in
dynamical evolution. One of the fundamental questions is
how to improve the mean-field theory by incorporating the
one-body fluctuation mechanism at a microscopic level? In a
recent work, based on an appealing idea of Dasso [13] and
Dasso and Donangelo [14], this question has been addressed.
A stochastic mean-field (SMF) approach has been proposed for
describing fluctuation dynamics [15,16]. For small amplitude
fluctuations, this model gives a result for the dispersion of
a one-body observable that is identical to the result obtained

through a variational approach [17]. It is also shown that, when
the SMF is projected on a collective variable, it gives rise
to a generalized Langevin equation [18], which incorporates
one-body dissipation and one-body fluctuation mechanisms in
accordance with the quantal dissipation-fluctuation relation.
These illustrations give strong support for the contention
that the SMF approach provides a consistent microscopic
description for the dynamics of density fluctuations in low
energy nuclear reactions. In this article, we present another
demonstration of the SMF approach.

In a recent work, by a suitable definition of collective
variables of relative motion, the nucleus-nucleus potential
energy and one-body friction coefficient as a function of
relative distance have been extracted from simulations of
microscopic TDHF [19] (see also Ref. [20]). Such a reduction
is not constrained by adiabatic or diabatic approximation;
therefore, it should provide an accurate description of con-
servative nucleus-nucleus potential energy and the magnitude
of the one-body dissipation mechanism [21]. It is of great
interest to deduce the magnitude of diffusion coefficients
associated with collective variables. However, this information
is not contained in the standard mean-field approximation. The
SMF approach provides a proper framework for extracting
dissipation and fluctuation properties of collective variables.
In this work, we carry out a similar macroscopic reduction
of the SMF approach on a collective path. In this manner,
we deduce not only nucleus-nucleus potential and one-body
friction coefficients, but also one-body diffusion coefficients
associated with collective variables.

In Sec. II, we give a brief description of the SMF approach.
In Sec. III, we present a suitable definition of collective
variables in heavy-ion collisions and the correlation function
of the Wigner distribution. In Sec. IV, we derive transport
coefficients associated with relative motion from the SMF
approach. In Sec. V, conclusions are given.

II. STOCHASTIC MEAN-FIELD APPROACH

In the standard TDHF, temporal evolution of the system
is described by a single Slater determinant constructed with
time-dependent single-particle wave functions, �jστ (r, t).
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The evolution of single-particle wave functions is determined
by TDHF equations with proper initial conditions,

ih̄
∂

∂t
�jστ (r, t) = h(ρ)�jστ (r, t), (1)

where h(ρ) denotes the self-consistent mean-field Hamiltonian
with the one-body density ρ. For clarity of notation spin-
isospin quantum numbers τ = (proton, neutron) and σ =
(spin-up, spin-down) are explicitly indicated in these expres-
sions. In many situations, it is more appropriate to express
the mean-field approximation in terms of the single-particle
density matrix,

ρ(r, r ′, t) =
∑
jστ

�∗
jστ (r, t)nστ

j �jστ (r ′, t), (2)

where nστ
j denotes occupation factors of single-particle states.

In the standard TDHF, occupation factors are one and zero for
the occupied and unoccupied states, respectively. If the initial
state is at a finite temperature, the average occupation factors
are determined by the Fermi-Dirac distribution.

TDHF provides a deterministic evolution of the single-
particle density matrix, starting from a well-defined initial
state and leading to a well-defined final state. To incorporate
fluctuation mechanism into dynamics, we give up standard
description in terms of a single Slater determinant and consider
a superposition of determinantal wave functions. As a result
of correlations, initial density cannot have a deterministic
shape, but it must exhibit quantal zero-point fluctuations, and
if the initial state is at a finite temperature, it also involves
thermal fluctuations. In the SMF approach the initial density
fluctuations are incorporated into the description in a stochastic
manner [15]. The initial density fluctuations are simulated by
representing the initial state in terms of a suitable ensemble.
In this manner, an ensemble of density matrices is generated,

ρλ(r, r ′, t) =
∑
ijστ

�∗
iσ τ (r, t ; λ)ρλ

ij (στ )�jστ (r ′, t ; λ). (3)

Here �jστ (r, t ; λ) is a complete set of single-particle basis,
λ denotes a member in the ensemble, and matrix elements
ρλ

ij (στ ) are time-independent random Gaussian numbers. The
Gaussian distribution of each matrix element is specified by a
mean value, ρλ

ij (στ ) = δijn
στ
j , and a variance,

δρλ
ij (στ )δρλ

j ′i ′(σ
′τ ′)

= 1
2δjj ′δii ′δττ ′δσσ ′

[
nστ

i

(
1 − nστ

j

) + nστ
j

(
1 − nστ

i

)]
, (4)

where nστ
j denotes the average occupation factor for given

values of spin-isospin quantum numbers σ , τ and δρλ
ij (στ ) =

ρλ
ij (στ ) − ρλ

ij (στ ). δττ ′ and δσσ ′ indicate that density matrix
elements are assumed to be uncorrelated in spin-isospin space.
A member of the ensemble is generated by evolving the single-
particle wave functions according to the self-consistent mean-
field of that member,

ih̄
∂

∂t
�jστ (r, t ; λ) = h(ρλ)�jστ (r, t ; λ), (5)

where h(ρλ) is the self-consistent mean-field Hamiltonian in
that event.

III. STOCHASTIC WIGNER DISTRIBUTION

To carry out projection of the SMF on a collective space,
to determine transport coefficients of collective variables,
and to establish a connection with the collective transport
models, it is very convenient to introduce the stochastic Wigner
distribution. The Wigner distribution for each event λ is defined
as a partial Fourier transform of density matrix as

f λ(r, p, t) =
∫

d3s exp

(
− i

h̄
p · s

) ∑
ijστ

�∗
jστ

(
r + s

2
, t ; λ

)

× ρλ
ji(στ )�iστ

(
r − s

2
, t ; λ

)
. (6)

In this work, we focus on head-on collisions of two heavy
ions and take the collision direction as the x axis. Following
Ref. [19], we define the center-of-mass coordinate Rλ

±, the total
momentum P λ

±, and the mass number Aλ
± of projectile-like (+)

and target-like (−) fragments by introducing the separation
plane. The separation plane can be conveniently defined as the
plane at the position where iso-contours of projectile-like and
target-like densities cross each other. We indicate the position
of the separation plane, i.e., the position of the window at
x = x0. Illustrations of density profiles and separation plane
locations are displayed at different times of the symmetric
reaction 40Ca + 40Ca in Fig. 1. For calculations in this figure
and the rest of the article, we use the three-dimensional TDHF
code developed by P. Bonche and co-workers with the SLy4d
Skyrme effective force [22]. For technical details, please see
Ref. [19].

It is convenient to express macroscopic variables in each
event in terms of the reduced Wigner distribution f λ(x, px, t)
according to

Rλ
± = 1

Aλ±

∫ ∫
dxdpx

2πh̄
θ (±(x − x0))xf λ(x, px, t), (7)

P λ
± =

∫ ∫
dxdpx

2πh̄
θ (±(x − x0))pxf

λ(x, px, t), (8)

-5

 0

 5

y 
[f

m
]

40Ca + 40Ca,  Ec.m. = 100 MeV

R = 10.0 fm R = 9.0 fm

-5

 0

 5

-10 -5  0  5 10

y 
[f

m
]

x [fm]

R = 8.0 fm

-10 -5  0  5 10

x [fm]

R = 7.0 fm

FIG. 1. Density profiles ρ(x, y, 0) obtained with TDHF for the
40Ca + 40Ca reaction at Ec.m. = 100 MeV at different R. The iso-
densities are plotted every 0.025 fm−3. In each case, the vertical line
indicates the separation plane.
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and

Aλ
± =

∫ ∫
dxdpx

2πh̄
θ (±(x − x0))f λ(x, px, t), (9)

where θ (x) = 1 for x � 0 and zero elsewhere. We note that
these definitions do not involve semiclassical approximations
and are fully equivalent to those given in Ref. [19]. The ratio
P λ

∓/Ṙλ
∓ = mλ

∓(R) determines the inertia of both sides of the
window and the relative momentum is defined as

P λ = mλ
−P λ

+ − mλ
+P λ

−
mλ− + mλ+

= µλ(R)Ṙλ, (10)

where µλ(R) = mλ
+mλ

−/(mλ
+ + mλ

−) and Ṙλ = Ṙλ
+ − Ṙλ

− are
the reduced mass and the relative velocity of projectile and
target sides, respectively. The reduced Wigner distribution
f λ(x, px, t) is obtained by integrating over the phase-space
variables y, z, py , and pz according to

f λ(x, px, t) =
∫ ∫ ∫ ∫

dydz
dpydpz

(2πh̄)2
f λ(r, p, t). (11)

To extract diffusion coefficients associated with collective
variables, we need different-time correlation function of the
reduced Wigner distribution on the window. Assuming that
the amplitude of density fluctuations is small, this correlation
function on the window is calculated using the semiclassical
approximation in Appendix to give

δf λ(x, px, t)δf λ(x, p′
x, t

′)|x=x0

= (2πh̄)
m

|px |δ(px − p′
x)δ(t − t ′)
+(x0, px, t), (12)

where the quantity 
±(x0, px, t) is defined as


±(x0, px, t) =
∑
στ

{
f στ

P (x0, px, t)
[
1 − f̄ στ

T (x0, px, t)
]

± f στ
T (x0, px, t)

[
1 − f̄ στ

P (x0, px, t)
]}

. (13)

In this expression, f στ
P (x, px, t) denotes, in the spin-isospin

channel (σ, τ ), the average value of the reduced Wigner
function associated with wave functions originating from the
projectile,

f στ
P (x, px, t) =

∫ ∫
dydz

∫
dsx exp

(
− i

h̄
pxsx

)

×
∑
i∈P

�∗
iσ τ

(
x + sx

2
, y, z, t

)
nστ

i

×�iστ

(
x − sx

2
, y, z, t

)
. (14)

The average quantity

f̄ στ
P (x0, px, t) = f στ

P (x0, px, t)

�(x0, t)
(15)

denotes the reduced Wigner distribution averaged over phase-
space on the window, i.e., on the plane dividing projectile-
like and target-like nuclei, where �(x0, t) is the phase-
space volume over the window. Quantities f στ

T (x0, px, t)
and f̄ στ

T (x0, px, t) are average values of the reduced Wigner
function associated with wave functions originating from the
target in the spin-isospin channel (σ, τ ), which are defined in
a similar manner.
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FIG. 2. (Color online) Neck radius determined for the 40Ca +
40Ca reaction at Ec.m. = 100 MeV by using Eq. (17) (solid line)
and by imposing the condition that the reduced Wigner function
f̄ στ

P/T (x, px, t) is close to 1.0 around the average momentum (solid
circles).

We approximate the phase-space volume over the window
as

�(x0, t) = πr2
neck(x0, t)

πp2
F

(2πh̄)2
, (16)

where pF stands for the Fermi momentum. In this expression
rneck(x0, t) denotes the equivalent sharp radius of the neck,
which is defined as

πr2
neck(x0, t) = 1

n0(x0, t)

∫ ∫
dydzn(x0, y, z, t), (17)

where n(x0, y, z, t) is the local nucleon density while n0(x0, t)
denotes the density at the center of the neck, i.e., n0(x0, t) ≡
n(x0, 0, 0, t). The evolution of rneck deduced from Eq. (17) is
shown by solid lines in Fig. 2 for the 40Ca + 40Ca reaction as
a function of relative distance.

While the neck radius has rather reasonable values at small
R, Eq. (17) leads to unrealistic large values for well-separated
nuclei. To overcome this difficulty, we use an alternative
approach by considering that f̄ στ

P/T (x0, px, t) should be close
to 1.0 around the average value of px . By imposing this
condition, we directly determine an approximate phase-space
volume from Eq. (15). Then, we deduce rneck at each relative
distance R by inverting Eq. (16). These are indicated by solid
circles in Fig. 2. We see that the second prescription not only
provides a reasonable behavior for rneck at large distances but
also matches rneck deduced by using Eq. (17) at small distances.
In the calculations we use the effective neck radius determined
by the second approach.

Examples of the reduced Wigner function are shown in
Fig. 3 for different relative distances. Not surprisingly, the
reduced Wigner function is sometimes above 1 or below 0.
This is indeed expected because the full quantum Wigner trans-
form is considered without making use of any semiclassical
approximation.

IV. MOMENTUM DIFFUSION COEFFICIENT

In a recent work [19], considering simple one-dimensional
macroscopic reduction of TDHF, average transport proper-
ties of relative motion in heavy-ion collisions have been
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FIG. 3. (Color online) Reduced Wigner function f̄ ↑n(x0, px)
averaged over phase space on the window (x = x0) for projectile-like
(dotted line) and target-like (solid line) nuclei for the 40Ca + 40Ca
reaction at Ec.m. = 100 MeV at different R. The Fermi momentum
pF is taken as 270 MeV/c.

investigated. The temporal evolution of the average value
of relative distance R(t) = Rλ(t) and the average value of
relative momentum P (t) = P λ(t) is calculated for the average
mean-field trajectory determined by the TDHF wave functions.
The relative motion of colliding ions was analyzed on the basis
of a simple classical equation of motion,

d

dt
P = − d

dR
U (R) − γ (R)Ṙ. (18)

Knowing the time evolution of R(t) and P (t), average col-
lective properties, namely, nucleus-nucleus potential energy
U (R) and form factor of one-body friction coefficient γ (R),
are determined by inverting Eq. (18). In this work, we consider
the same geometry of head-on collisions of heavy-ions and
extend the macroscopic reduction treatment by considering the
SMF approach. We analyze the relative motion by employing
a Langevin equation. The Langevin equation for the relative
motion has the form

d

dt
P λ = − d

dRλ
U (Rλ) − γ (Rλ)Ṙλ + ξλ

P (t), (19)

where ξλ
P (t) is a Gaussian random force acting on the relative

motion. Ignoring non-Markovian effects, the random force
reduces to white noise specified by a correlation function,

ξλ
P (t)ξλ

P (t ′) = 2δ(t − t ′)DPP (R). (20)

Here DPP (R) denotes the momentum diffusion coefficient,
which may depend on the mean value of the relative
distance R.

To extract the momentum diffusion coefficient, we calculate
the rate of change of the relative momentum employing the
SMF equations. The rate of change of the relative momentum
involves kinetic parts due to nucleon exchange between
projectile and target and also involves terms arising from
potential energy. In the previous investigation [21], it is
observed that during evolution from the entrance channel until
passing over the Coulomb barrier, the one-body dissipation

mechanism is strongly correlated with nucleon exchange
between projectile-like and target-like nuclei. This behavior is
similar to the phenomenological nucleon exchange model and
the window formula for energy dissipation [23,24]. Therefore,
in the equation for the rate of change of the relative momentum,
we consider only kinetic terms corresponding to momentum
flow across the window, which can be conveniently expressed
in terms of the reduced Wigner distribution as

d

dt
P λ = −

∫
dpx

2πh̄

p2
x

m
f λ(x, px, t)|x=x0 + potential terms.

(21)

Small fluctuations of the relative momentum are connected
to small amplitude fluctuations in the Wigner distribution.
Ignoring contributions arising from potential terms, we have,
for small fluctuations of the relative momentum,

d

dt
δP λ ≈ −

∫
dpx

2πh̄

p2
x

m
δf λ(x, px, t)|x=x0 = ξλ

P (t). (22)

The right-hand side in this expression acts as a random force
for generating fluctuations in the relative momentum. Because
δf λ(x, px, t) is a Gaussian random quantity, the random
force ξP (t) is also Gaussian random, which is specified by
a correlation function,

ξλ
P (t)ξλ

P (t ′) =
∫ ∫

dpx

2πh̄

dp′
x

2πh̄

p2
x

m

p′2
x

m

× δf λ(x, px, t)δf λ(x, p′
x, t

′)|x=x0 . (23)

Using the expression for the correlation function of the reduced
Wigner distribution in Eq. (12), according to Eq. (20), the
momentum diffusion coefficient is given by

DPP (t) =
∫

dpx

2πh̄

|px |
m

p2
x

2

+(x0, px, t). (24)

From the SMF approach, we cannot directly derive an
expression for the friction coefficient γ (R). The reason is
that we cannot associate the net momentum flow across the
window, which is given by the first term on the right-hand side
of Eq. (21), with dissipative force acting on the relative motion.
However, from the expression (24) for diffusion coefficient
and from the random walk mechanism of nucleon exchange
[23,24], we can infer an expression for the friction coefficient.
In the expression for the diffusion coefficient, the first and
second terms correspond to the nucleon flux from projectile to
target and from target to projectile, respectively. Each nucleon
transfer changes the relative momentum by the amount px

and increases the dispersion of the relative momentum by the
amount p2

x . Nucleon transfer in both direction increases the
dispersion of the relative momentum; therefore, the diffusion
coefficient is determined by the total nucleon flux, i.e., the sum
of flux from projectile to target and from target to projectile.
However, dissipation is determined by the net momentum flow
through the window. Hence, the resultant dissipative force can
be expressed as

F (t) =
∫

dpx

2πh̄

|px |
m

px

−(x0, px, t). (25)
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FIG. 4. (Color online) Reduced friction coefficient β(R) =
γ (R)/µ as a function of R for the 40Ca + 40Ca reaction at Ec.m. =
100 MeV (upper panel) and at Ec.m. = 150 MeV (lower panel). For
each energy, a zoom on the Coulomb barrier region is also shown in
the insert.

Then, it is possible to deduce from TDHF simulations
the momentum diffusion coefficient DPP (t) = DPP (R) and
the friction force F (t) as a function of relative distance.
We note that these transport coefficients correspond to the
phenomenological window formula arising from the nucleon
exchange mechanism [24], and they are determined in terms
of the average evolution specified by the TDHF.

Rather than calculating the dissipative force, it is more
instructive to calculate the friction coefficient γ (R). For this
purpose, we assume that the dissipative force is proportional
to the relative velocity, i.e., F (t) = −γ (R)Ṙ, and consider the
reduced friction coefficient β(R) = γ (R)/µ(R), where µ(R)
denotes inertia associated with relative motion. Solid lines
in Fig. 4 show the reduced friction coefficient as a function
of R for a head-on collision of 40Ca + 40Ca at two different
center-of-mass energies. For each energy, an enlarged plot
around the Coulomb barrier region is shown in the insert. In a
recent work [21], we extracted the reduced friction coefficient
associated with relative motion by employing a different
reduction procedure, so-called Dissipative-Dynamics TDHF
(DD-TDHF), which, in principle, incorporates dissipation due
to both window and wall mechanisms. Dashed lines in Fig. 4
show the results of this reduction procedure. Good agreement
is found between two different calculations above and close
to the Coulomb barrier (∼9.8 fm). Below the Coulomb
barrier, the DD-TDHF method is not reliable. However, the
method based on the SMF provides a proper description of
the one-body friction coefficient due to the nucleon exchange
mechanism for a wide range of relative distance.

Solid lines in Fig. 5 show the momentum diffusion
coefficient DPP , Eq. (24), as a function of R for a head-
on collision of 40Ca + 40Ca at two different center-of-mass
energies. Similarly to the reduced friction coefficient, the
magnitude of the momentum diffusion coefficient increases for

 0
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FIG. 5. (Color online) Diffusion coefficient DPP obtained by
SMF (solid lines) and by the Einstein relation D

eq
PP = γ (R)T (t)

(dashed lines) as a function of R for the 40Ca + 40Ca reaction at
Ec.m. = 100 MeV (upper panel) and at Ec.m. = 150 MeV (lower
panel).

decreasing relative distance. The increase of the magnitude of
transport coefficients, i.e., friction and diffusion coefficients,
for decreasing R is essentially due to the larger window
area and the larger number of nucleon exchange between
projectile-like and target-like nuclei. It is important to realize
that, even though the ordinary TDHF does not contain
information about density fluctuations, we can employ the
average information provided by the TDHF to calculate
diffusion coefficients associated with macroscopic variables.
In practical applications, the momentum diffusion coefficient
is usually taken as the thermal equilibrium value determined
by the Einstein relation in terms of the friction coefficient and
effective temperature as

D
eq
PP (R) = γ (R)T (t). (26)

In this expression, T (t) denotes the effective temperature
assuming local equilibrium. It can be determined in terms
of excitation energy denoted by E∗ by the relation T (t) =√

E∗(t)/a, where a denotes the level density parameter, taken
here as a = A/12. We can estimate the excitation energy in
terms of dissipated energy according to

E∗(t) =
∫ t

0
dt ′γ [R(t ′)][Ṙ(t ′)]2. (27)

Dashed lines in Fig. 5 show the diffusion coefficient D
eq
PP (R)

determined according to the Einstein relation. As seen from
the figure, the Einstein relation severely underestimates the
magnitude of the dynamical diffusion coefficient. The fact that
the Einstein relation severely underestimates the dynamical
diffusion coefficient associated with the relative motion has
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already been realized in the phenomenological description of
the nucleon exchange model in Ref. [24].

V. CONCLUSIONS

Recently proposed stochastic mean-field theory has incor-
porated both one-body dissipation and fluctuation mechanisms
in a manner consistent with the quantal fluctuation-dissipation
theorem of nonequilibrium statistical mechanics [15]. This
is illustrated for slow collective motion by projecting the
equation of motion of the SMF onto a collective space
in adiabatic limit. The projection gives rise to a general-
ized Langevin equation for collective variables, in which
mean-field dissipation and fluctuation mechanisms are con-
nected through the quantal fluctuation-dissipation relation.
Therefore, this approach provides a powerful tool for the
microscopic description of low energy nuclear processes in
which two-body dissipation and fluctuation mechanisms do
not play important roles. The low energy processes include
induced fission, heavy-ion fusion near barrier energies, and
spinodal decomposition during the expansion phase of hot
pieces of nuclear matter produced in heavy-ion collisions
[16,25].

In this work, we carry out a different projection of the
SMF approach on the relative motion in the fusion reaction by
following the DD-TDHF method introduced in Ref. [19] and
deduce one-body friction and one-body diffusion coefficients
associated with relative motion. It is remarkable that expres-
sions of transport coefficients for the relative motion (as well
as transport coefficients for other macroscopic variables that
are not mentioned in this work) have the same form as given
by the phenomenological nucleon exchange model [23,24].
The phenomenological nucleon exchange model involves
an important assumption, namely, when a nucleon passes
through the window it instantaneously equilibrates with the
new environment on the other side of the window. However,
transport coefficients deduced from the SMF approach do not
involve this assumption, and also they are not restricted by
adiabatic or diabatic approximation. Therefore, these transport
coefficients provide a microscopic basis for determining the
magnitude of the actual one-body dissipation and the corre-
sponding mean-field fluctuation mechanism. We also stress the
fact that, assuming the amplitude of the density fluctuations
is small, transport coefficients are calculated in terms of
the average evolution determined by TDHF simulations as
a function of relative distance. In the continuation of the
investigations, we plan to generalize the projection procedure
of the SMF approach for off-central collisions and also
deduce transport coefficients for nucleon diffusion in grazing
heavy-ion collisions.
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APPENDIX: CORRELATION FUNCTION OF WIGNER
DISTRIBUTION

Small amplitude fluctuations of the Wigner distribution can
be expressed as

δf λ(r, p, t) =
∫

d3s exp

(
− i

h̄
p · s

) ∑
ijστ

�∗
jστ

(
r + s

2
, t

)

× δρλ
ij (στ )�iστ

(
r − s

2
, t

)
, (A1)

where the single-particle wave functions are a complete set of
solutions of the ordinary TDHF. The initial values of stochastic
expansion coefficients δρλ

ij (στ ) are Gaussian random numbers
as specified by Eq. (4). In principle, these coefficients
evolve in time according to time-dependent RPA equations.
Here, we ignore this evolution and take them as Gaussian
random numbers as specified by the initial conditions. The
fluctuating part of the density matrix can be separated into
four groups, δρλ

PP , δρλ
T T , δρλ

PT , and δρλ
T P , which are associated

with wave functions originating from projectile and target
nuclei and the mixed terms. As a result, small amplitude
fluctuations of the Wigner distribution separate into four parts,
δf λ

PP (r, p, t), δf λ
T T (r, p, t), δf λ

PT (r, p, t), and δf λ
T P (r, p, t).

We calculate the equal time correlation function of the
Wigner distribution using a semiclassical approximation. First,
we consider the correlation function associated with wave
functions originating from the projectile. Using the Eq. (4)
for the variance of the matrix elements, we deduce

δf λ
PP (r, p, t)δf λ

PP (r ′, p′, t)

=
∫ ∫

d3sd3s ′ exp

(
− i

h̄
p · s

)
exp

(
− i

h̄
p′ · s′

)

×
∑

ijστ∈P

�∗
jστ

(
r + s

2
, t

)
�iστ

(
r − s

2
, t

)

×�∗
iσ τ

(
r ′ + s′

2
, t

)
�jστ

(
r ′ − s′

2
, t

)
nστ

j

(
1 − nστ

i

)
.

(A2)
In the term that is proportional to nστ

j , we use the closure
relations to find∑

i∈P

�∗
iσ τ

(
r ′ + s′

2
, t

)
�iστ

(
r − s

2
, t

)

= δ

(
r ′ − r + s′ + s

2

)
. (A3)

In this expression, summation runs over a complete set of
single-particle states, i.e., occupied and unoccupied states
originating from the projectile. The closure relation satisfied
by the complete set of states at the initial state remains valid
at later times. In the second step, we introduce the Wigner
distribution,

∑
j∈P

�∗
jστ

(
r + s

2
, t

)
nστ

j �jστ

(
r ′ − s′

2
, t

)

=
∫

d3Q

(2πh̄)3
exp

[
i

h̄

(
r − r ′ + s + s′

2

)
· Q

]

× f στ
P

(
r + r ′

2
+ s − s′

4
, Q, t

)
, (A4)
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where f στ
P (r, p, t) denotes the ensemble averaged Wigner

distribution associated with wave functions originating from
the projectile in the spin-isospin channel (σ, τ ). After making
transformations, s = +η + Y/2 and s′ = − η + Y/2, the
term that is proportional to the occupation factor nστ

j in the
right-hand side of Eq. (A2) becomes

∑
στ

∫ ∫ ∫
d3Yd3η exp

[
− i

h̄

(
Y · p + p′

2

)]

× exp

[
− i

h̄
η · ( p − p′)

]
d3Q

(2πh̄)3
exp

[
i

h̄
Y · Q

]

× f στ
P

(
r − Y

4
+ η

2
, Q, t

)
δ

(
r ′ − r + Y

2

)
. (A5)

Assuming that the Wigner distribution is a smooth function
of r, f στ

P (r − Y
4 + η

2 , Q, t) ≈ f στ
P (r, Q, t) and δ(r ′ − r +

Y
2 ) ≈ δ(r − r ′), we can carry out the integrations over η and Y
to obtain (2πh̄)3δ( p − p′) and (2πh̄)3δ( p − Q), respectively.
As a result, the term (A5) becomes

(A5) = (2πh̄)3δ( p − p′)δ(r − r ′)
∑
στ

f στ
P (r, p, t). (A6)

For the term proportional to nστ
i nστ

j in Eq. (A2), again we
introduce the Wigner distribution for the factor involving the
index j ,

∑
j∈P

�∗
jστ

(
r + s

2

)
nστ

j �jστ

(
r ′ − s′

2

)

=
∫

d3Q1

(2πh̄)3
exp

[
i

h̄

(
r − r ′ + s + s′

2

)
· Q1

]

× f στ
P

(
r + r ′

2
+ s − s′

4
, Q1, t

)
, (A7)

and for the one involving the index i,

∑
i∈P

�∗
iσ τ

(
r ′ + s′

2

)
nστ

i �iστ

(
r − s

2

)

=
∫

d3Q2

(2πh̄)3
exp

[
i

h̄

(
r ′ − r + s + s′

2

)
· Q2

]

× f στ
P

(
r + r ′

2
+ s′ − s

4
, Q2, t

)
. (A8)

Making the same transformations, s = +η + Y/2 and s′ =
−η + Y/2, the term that is proportional to nστ

i nστ
j in the right-

hand side of Eq. (A2) becomes

∑
στ

∫ ∫ ∫ ∫
d3Yd3η exp

[
− i

h̄

(
Y · p + p′

2

)]

× exp

[
− i

h̄
η · ( p − p′)

]
d3Q1

(2πh̄)3

d3Q2

(2πh̄)3

× exp

[
i

h̄

(
r − r ′ + Y

2

)
· Q1

]

× exp

[
i

h̄

(
r ′ − r + Y

2

)
· Q2

]

× f στ
P

(
r + r ′

2
+ η

2
, Q1, t

)

× f στ
P

(
r + r ′

2
− η

2
, Q2, t

)
. (A9)

We introduce another change of variables Q1 = Q + q/2 and
Q2 = Q − q/2, and again assume that the Wigner distribution
has a smooth function of r and ignore η dependence. Then, in-
tegrations over η, q and Y give (2πh̄)3δ( p − p′), (2πh̄)3δ(r −
r ′) with Q1 ≈ Q2 = Q and (2πh̄)3δ( p − Q), respectively. As
a result, the term (A9) becomes

(A9) = (2πh̄)3δ( p − p′)δ(r − r ′)

×
∑
στ

f στ
P (r, p, t)f στ

P (r, p, t). (A10)

Combining together, the equal time correlation function (A2)
of the Wigner distribution associated with wave functions
originating from projectile becomes

δf λ
PP (r, p, t)δf λ

PP (r ′, p′, t)

= (2πh̄)3δ( p − p′)δ(r − r ′)

×
∑
στ

f στ
P (r, p, t)

[
1 − f στ

P (r, p, t)
]
. (A11)

In a similar manner, we can calculate the correlation function
of the Wigner distribution associated with wave functions
originating from the target and from the mixed configuration,

δf λ
T T (r, p, t)δf λ

T T (r ′, p′, t)

= (2πh̄)3δ( p − p′)δ(r − r ′)

×
∑
στ

f στ
T (r, p, t)

[
1 − f στ

T (r, p, t)
]

(A12)

and

δf λ
PT (r, p, t)δf λ

PT (r ′, p′, t)

= (2πh̄)3δ( p − p′)δ(r − r ′)
+(r, p, t), (A13)

where


+(r, p, t) =
∑
στ

{
f στ

P (r, p, t)
[
1 − f στ

T (r, p, t)
]

+ f στ
T (r, p, t)

[
1 − f στ

P (r, p, t)
]}

. (A14)

The total correlation function of the Wigner distribution is
the sum of Eqs. (A11), (A12), and (A13). In the mean-field
description, the subspaces of wave functions originating from
projectile and target nuclei behave like pure states. There-
fore, contributions of correlations coming from direct terms
involving f στ

P (r, p, t)[1 − f στ
P (r, p, t)] and f στ

T (r, p, t)[1 −
f στ

T (r, p, t)] are expected to be small. Hence, we can approx-
imately express the total correlation function of the Wigner
distribution as

δf λ(r, p, t)δf λ(r ′, p′, t)
≈ (2πh̄)3δ( p − p′)δ(r − r ′)
+(r, p, t). (A15)

We also want to calculate different time correlation func-
tions of the Wigner distribution. Assuming that the correlation
function has a short correlation time, i.e., much shorter than
that of the mean-free path, different time correlation functions
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can be deduced by observing that, in short time intervals of
order of correlation time |t − t ′| � τcorr, the Wigner distribution
may be approximated as a free propagation, δf (r, p, t + τ ) ≈
δf (r − τ p/m, p, t). As a result, different time correlation
functions can be expressed as

δf λ(r, p, t)δf λ(r ′, p′, t ′)

= (2πh̄)3δ( p − p′)δ[r − r ′ − (t − t ′) p/m]
+(r, p, t).

(A16)

To deduce the correlation function on the window x = x ′ = x0,
we notice that

δ[r − r ′ − (t − t ′) p/m] → m

|px |δ(t − t ′)δ(y − y ′)δ(z − z′).

(A17)

In determining transport coefficients, we need to carry
out integration over window variables, y, z, py, pz, of the
product of Wigner distributions. Because construction of
three-dimensional Wigner functions in terms of TDHF wave
functions requires a large numerical effort, we introduce the
following approximation for the phase-space integration over
the window,∫∫

dydz
dpydpz

(2πh̄)2
f στ

P (r, p, t)f στ
T (r, p, t)

≈ 1

�(x, t)
f στ

P (x, px, t)f
στ
T (x, px, t). (A18)

Here �(x, t) denotes the phase-space volume on the window.
As a result, the correlation function on the window can be
expressed in terms of the reduced Wigner distributions along
the x axis given by Eq. (12).
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