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We present a shell-model calculation for the β decay of 14C to the 14N ground state, treating the relevant nuclear
states as two 0p holes in an 16O core. Employing the universal low-momentum nucleon-nucleon potential Vlow k

only, one finds that the Gamow-Teller matrix element is too large to describe the known (very long) lifetime
of 14C. As a novel approach to this problem, we invoke the chiral three-nucleon force (3NF) at leading order
and derive from it a density-dependent in-medium NN interaction. By including this effective in-medium NN

interaction, the Gamow-Teller matrix element vanishes for a nuclear density close to that of saturated nuclear
matter, ρ0 = 0.16 fm−3. The genuine short-range part of the three-nucleon interaction plays a particularly
important role in this context, since the medium modifications to the pion propagator and pion-nucleon vertex
(owing to the long-range 3NF) tend to cancel out in the relevant observable. We discuss also uncertainties related
to the off-shell extrapolation of the in-medium NN interaction. Using the off-shell behavior of Vlow k as a guide,
we find that these uncertainties are rather small.
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I. INTRODUCTION

The anomalously long β decay lifetime of 14C, which
makes possible the radiocarbon dating method, has long been
a challenge to nuclear structure theory. The transition from the
Jπ

i = 0+, Ti = 1 ground state of 14C to the Jπ
f = 1+, Tf = 0

ground state of 14N is of the allowed Gamow-Teller type, yet
the known lifetime of ∼5730 ± 30 years is nearly six orders
of magnitude longer than would be expected from typical
allowed transitions in p-shell nuclei [1,2]. The associated
Gamow-Teller (GT) transition matrix element for the 14C
decay must therefore be accidently small, on the order of
2 × 10−3, which makes this transition a sensitive test for both
nuclear interaction models and nuclear many-body methods.

The earliest studies to give insight into this problem were
based on phenomenological models of the residual nuclear
interaction. If only central and spin-orbit forces are included,
it can be shown [3] that it is impossible to achieve a vanishing
GT matrix element when the model space is restricted to 0p−2

configurations consisting of two 0p holes in an 16O core. Later,
Jancovici and Talmi [4] discovered that this problem can be
overcome with the addition of a tensor force component in the
residual interaction. When realistic nuclear forces based on
meson exchange were developed in the 1960s and applied to
nuclear many-body problems through the G-matrix formalism,
Zamick [5] found the decay rate to be very sensitive to the
0p1/2-0p3/2 splitting, with overall unsatisfactory results when
the experimental value of 6.3 MeV is used. A more recent
calculation [6] of the 14C β decay has been performed in
a large-basis no-core shell-model study performed with the
Argonne V8′ interaction [7]. Although it was shown that the
inclusion of additional configurations up to 6h̄ω lead to a
suppression of the GT matrix element, the results were not yet
converged at this order.

Very recently, it has been suggested [8] that the 14C β decay
transition matrix element should be particularly sensitive to
the density dependence of the nuclear interaction. The study
in Ref. [8] used a medium-dependent one-boson-exchange

nuclear interaction modeled with Brown-Rho scaling [9,10],
in which the masses of the bosons (except the pion) decrease
in a nuclear medium owing to either normal hadronic many-
body effects or the partial restoration of chiral symmetry
at finite density. In the present work, we examine the role
of density-dependent corrections to the nuclear interaction
from the leading-order chiral three-nucleon force (3NF) at
one-loop order. For the density-independent two-body part
of the interaction we use the low-momentum interaction
Vlow k derived from the Idaho next-to-next-to-next-to-leading-
order (N3LO) chiral potential [11,12] for cutoffs between
�low k = 2.1 and 2.3 fm−1. For densities in the neighborhood
of saturated nuclear matter (ρ0 = 0.16 fm−3), we find a
large suppression of the GT matrix element that is almost
entirely due to the short-range component of the chiral 3NF.
There are three contributions arising from the long-range
two-pion exchange component of the chiral 3NF, but the
largest two terms approximately cancel. Moreover, we find that
the density-dependent corrections resulting from the medium-
range 3NF are naturally small. We also calculate the Gamow-
Teller strengths from the ground state of 14N to the excited
states of 14C and find that they are in satisfactory agreement
with recent experimental data [13], although generally they
are much less sensitive to the density dependence of the
nuclear interaction than the ground state to ground state
transition.

The present paper is organized as follows. In Sec. II we
develop a model for the density-dependent nucleon-nucleon
(NN ) interaction in medium. For the density-independent part,
we use model space/renormalization group techniques to con-
struct a low-momentum two-body nuclear interaction based
on the N3LO chiral NN potential. We then present analytic
expressions for the six unique density-dependent contributions
to the in-medium NN interaction derived from the leading-
order chiral 3NF at one-loop order. As suggested in Ref. [14],
the two low-energy constants, cD and cE , of the medium- and
short-range chiral 3NF are chosen to reproduce the binding
energies of light nuclei for a given low-momentum scale �low k .

0556-2813/2009/79(5)/054331(12) 054331-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.054331


J. W. HOLT, N. KAISER, AND W. WEISE PHYSICAL REVIEW C 79, 054331 (2009)

In Sec. III we present the results of our shell-model calculation,
and in Sec. IV we give a brief summary and outlook.

II. IN-MEDIUM NUCLEAR INTERACTION

A. Free-space low-momentum nucleon-nucleon interaction

For many years there has been much effort devoted to the
construction of realistic models of the nuclear interaction;
these are important not only for understanding the properties
of normal nuclei but also for constraining the structure of dense
stellar objects such as neutron stars. The underlying assump-
tion of these models is that the nuclear force arises primarily
from the exchange of various mesons, though the choice of
which mesons to include and how to account for the strong
short-distance repulsion in the NN interaction are largely
model dependent. Nevertheless, various models containing
between 30 to 40 free parameters (typically meson masses,
coupling constants, and form factor cutoffs) are able to repro-
duce all of the experimental pp and pn scattering phase shifts
below a laboratory energy of 350 MeV, as well as the properties
of the deuteron, with a χ2 per degree of freedom of about 1.

Recently, a program has been developed [15,16] to under-
stand the scale dependence of the NN interaction from the
point of view of effective field theory and the renormalization
group. Since the short-distance behavior of the NN interaction
is not constrained experimentally, renomalization group tech-
niques have been used in Refs. [15,16] to evolve these (bare)
NN interactions down to the scale at which our experimental
information stops, that is, around a center-of-mass momentum
p � �low k � 2.1 fm−1. These low-momentum interactions,
Vlow k , are phase-shift equivalent to the underlying bare
interaction up to a predefined cutoff scale �low k . As the
decimation scale is reduced to �low k � 2.1 fm−1 � 400 MeV,
all of these low-momentum interactions flow to a nearly
universal interaction. The method for constructing such an
interaction is explained in the following.

One begins with the half-on-shell T -matrix1 for free space
scattering,

T (p′, p) = VNN (p′, p)

+ 2

π
P

∫ ∞

0

VNN (p′, q)T (q, p)

p2 − q2
q2dq, (1)

from which one defines a low-momentum half-on-shell T -
matrix by

Tlow k(p′, p) = Vlow k(p′, p)

+ 2

π
P

∫ �low k

0

Vlow k(p′, q)Tlow k(q, p)

p2 − q2
q2dq,

(2)

where P denotes the principal value and the cutoff �low k is
a priori arbitrary. To preserve phase shifts, where tan δ(p) =
−pT (p, p), one requires that these two T -matrices be equal

1This real-valued quantity T (p′, p) is often referred to as the
K-matrix.

for relative momenta less than the cutoff �low k ,

Tlow k(p′, p) = T (p′, p), for p′, p < �low k, (3)

a condition that defines the low-momentum potential Vlow k . It
can be shown [15] that a solution to these equations is given
by the Kuo-Lee-Ratcliff folded diagram effective interaction
[17,18]. There are several schemes [19,20] available for
accurately computing Vlow k , and each scheme preserves the
deuteron properties. Under this (scale) decimation procedure,
all high-precision NN potentials flow, as �low k → 2.1 fm−1,
to a nearly unique low-momentum potential Vlow k . In this
study we consistently employ the N3LO chiral NN potential
in deriving Vlow k .

Given this model of the nuclear interaction in free space,
the question remains how to extend the description to a nuclear
medium with densities close to that of saturated nuclear matter.
It is well known that such two-body interactions alone are
unable to reproduce simultaneously the known saturation en-
ergy and density of symmetric nuclear matter. The traditional
approach is to include a three-nucleon force, but for many of
the traditional NN interaction models it is difficult to system-
atically construct a 3NF that is consistent with the underlying
two-body interaction. However, by exploiting the separation of
scales in the framework of chiral effective field theory, a sys-
tematic and consistent construction of two-, three-, and four-
nucleon forces has become possible (for a recent review, see
Ref. [21]). The key element there is a power-counting scheme,
which orders the contributions in powers of small external
momenta over the chiral-symmetry-breaking scale. Long-
range effects from multipion exchanges between nucleons are
treated explicitly (and calculated within chiral perturbation
theory), whereas the short-distance dynamics is encoded in
nucleon contact terms. When applied to two- and few-nucleon
problems, these chiral potentials are regulated by exponential
functions [12,21] with cutoffs ranging from 500 to 700 MeV
to eliminate (unphysical) high-momentum components.

The construction of decimated low-momentum three-body
forces consistent with the two-body decimation for Vlow k is
currently a challenge. A common practice is to adjust the
parameters of the chiral 3NF so that the binding energies of 3H,
3He, and 4He are reproduced. Such a calculation was carried
out in Ref. [14] using the Argonne v18 [22] low-momentum
interaction, where in Table I we restate the values of the low-
energy constants cD and cE determined in Ref. [14] as a func-
tion of �low k . For a cutoff scale of �low k = 2.3 fm−1, Vlow k

is only weakly model dependent. Therefore, we expect the
values of cD and cE derived for the Argonne v18 potential
at �low k = 2.3 fm−1 to be applicable for the low-momentum
N3LO chiral potential employed in the present paper.

B. In-medium nucleon-nucleon interaction

In this section we derive from the leading-order chiral
three-nucleon interaction an effective density-dependent in-
medium NN interaction. As shown in Ref. [23] the chiral
three-nucleon interaction plays an essential role in obtaining
the saturation of nuclear matter when using the universal low-
momentum NN potential Vlow k in Hartree-Fock calculations.
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TABLE I. The values of the low-energy
constants cD and cE of the chiral three-nucleon
interaction fit [14] to the binding energies of
A = 3, 4 nuclei for different values of the
momentum cutoff �low k . The interaction Vlow k

is derived from the Argonne v18 potential.

�low k (fm−1) cD cE

2.1 −2.062 −0.625
2.3 −2.785 −0.822

The parameters of its two-pion exchange component, c1 =
−0.81 GeV−1, c3 = −3.2 GeV−1, c4 = 5.4 GeV−1, are well
determined from fits to low-energy NN phase shifts and
mixing angles [12]. If one restricts the two large coefficients
c3,4 to their (dominant) �(1232)-resonance contributions, the
celebrated three-nucleon force of Fujita and Miyazawa [24] is
actually recovered. The coupling parameters associated with
the one-pion exchange component (cD) and the short-range
contact term (cE) of the chiral three-nucleon interaction have
also been adjusted in Refs. [14,25] to binding energies of three-
and four-nucleon systems (3H, 3He, and 4He).

We are considering the (on-shell) scattering of two nu-
cleons in the nuclear medium in the center-of-mass frame,
N1( �p ) + N2(− �p ) → N1( �p + �q ) + N2(− �p − �q ); that is, the
total momentum of the two-nucleon system is zero in the
nuclear matter rest frame before and after the scattering.
The magnitude of the in- and out-going nucleon momenta
is p = | �p | = | �p + �q |, and q = |�q | gives the magnitude of
the momentum transfer. Having discussed the kinematics, we
reproduce first (for the purpose of comparison) the expression
for the (bare) one-pion exchange:

V
(1π)
NN = −g2

AMN

16πf 2
π

�τ1 · �τ2
�σ1 · �q �σ2 · �q
m2

π + q2
. (4)

Here, gA = 1.27 denotes the nucleon axial-vector coupling
constant, fπ = 92.4 MeV is the weak pion decay constant,
and mπ = 135 MeV is the (neutral) pion mass. Furthermore,
�σ1,2 and �τ1,2 are the usual spin and isospin operators of the two
nucleons. Note that we have included an additional factor of
MN/4π in VNN to be consistent with the conventions chosen
for Vlow k .

We start with those contributions to the in-medium NN

interaction V med
NN that are generated by the two-pion exchange

component of the chiral three-nucleon force. The three
different topologies for (nonvanishing) one-loop diagrams
are shown in Fig. 1. The short double line on a nucleon
propagator symbolizes the filled Fermi sea of nucleons [i.e.,
the medium insertion −2πδ(l0) θ (kf − |�l |) in the in-medium
nucleon propagator]. In effect, the medium insertion sums
up hole propagation and the absence of particle propagation
below the Fermi surface |�l | < kf . The left diagram in
Fig. 1 represents a one-pion exchange with a Pauli-blocked in-
medium pion self-energy and the corresponding contribution
to V med

NN reads

V
med,1
NN = g2

AMNρ

8πf 4
π

�τ1 · �τ2
�σ1 · �q �σ2 · �q(
m2

π + q2
)2

(
2c1m

2
π + c3q

2). (5)

(1) (2) (3)

FIG. 1. In-medium NN interaction generated by the two-pion
exchange component (∼c1,3,4) of the chiral three-nucleon interaction.
The short double line symbolizes the filled Fermi sea of nucleons [i.e.,
the medium insertion −2πδ(l0)θ (kf − |�l |) in the in-medium nucleon
propagator]. Reflected diagrams are not shown.

The Fermi momentum kf is related to the nucleon density
in the usual way, ρ = 2k3

f /3π2. Since c1,3 < 0, this term
corresponds to an enhancement of the bare one-pion exchange.
It can be interpreted in terms of the reduced (spatial) pion
decay constant, f ∗2

π,s = f 2
π + 2c3ρ, in the nuclear medium

that replaces f 2
π in the denominator of Eq. (5). The second

diagram in Fig. 1 includes vertex corrections to the one-pion
exchange caused by Pauli blocking in the nuclear medium. The
corresponding contribution to the in-medium NN interaction
has the form

V
med,2
NN = g2

AMN

32π3f 4
π

�τ1 · �τ2
�σ1 · �q �σ2 · �q
m2

π + q2

×
{
−4c1m

2
π [�0(p) + �1(p)] − (c3 + c4)

× [q2(�0(p) + 2�1(p) + �3(p)) + 4�2(p)]

+ 4c4

[
2k3

f

3
− m2

π�0(p)

]}
. (6)

Here, we have introduced the functions �j (p) that result from
Fermi sphere integrals over a (static) pion propagator [m2

π +
(�l + �p)2]−1:

�0(p) = kf − mπ

[
arctan

kf + p

mπ

+ arctan
kf − p

mπ

]

+ m2
π + k2

f − p2

4p
ln

m2
π + (kf + p)2

m2
π + (kf − p)2

, (7)

�1(p) = kf

4p2

(
m2

π + k2
f + p2

) − �0(p)

− 1

16p3

[
m2

π + (kf + p)2]

× [
m2

π + (kf − p)2
]

ln
m2

π + (kf + p)2

m2
π + (kf − p)2

, (8)

�2(p) = k3
f

9
+ 1

6

(
k2
f − m2

π − p2
)
�0(p)

+ 1

6

(
m2

π + k2
f − p2

)
�1(p), (9)

�3(p) = k3
f

3p2
− m2

π + k2
f +p2

2p2
�0(p) − m2

π + k2
f + 3p2

2p2
�1(p).

(10)
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By analyzing the momentum- and density-dependent factor
in Eq. (6) relative to V

(1π)
NN , one finds that this contribution

corresponds to a reduction of the one-pion exchange in
the nuclear medium. Approximately, this feature can be
interpreted in terms of a reduced nucleon axial-vector constant
g∗

A(kf ).
The right diagram in Fig. 1 represents Pauli-blocking effects

on chiral two-pion exchange. Evaluating it together with the
reflected diagram one finds the following contribution to the
in-medium NN -interaction:

V
med,3
NN = g2

AMN

64π3f 4
π

{−12c1m
2
π

[
2�0(p) − (

2m2
π + q2)G0(p,q)

]

− c3
[
8k3

f − 12
(
2m2

π + q2
)
�0(p)

− 6q2�1(p) + 3
(
2m2

π + q2
)2

G0(p,q)
]

+ 4c4 �τ1 · �τ2(�σ1 · �σ2q
2 − �σ1 · �q �σ2 · �q )G2(p,q)

− (3c3 + c4 �τ1 · �τ2) i(�σ1 + �σ2) · (�q × �p)

× [
2�0(p) + 2�1(p) − (

2m2
π + q2

)
(G0(p,q)

+ 2G1(p,q))
] − 12c1m

2
π i(�σ1 + �σ2)(�q × �p)

× [G0(p,q) + 2G1(p,q)]

+ 4c4 �τ1 · �τ2 �σ1 · (�q × �p ) �σ2 · (�q × �p )

× [G0(p,q) + 4G1(p,q) + 4G3(p,q)]
}
. (11)

One observes that in comparison to the analogous two-pion
exchange interaction in vacuum (see Sec. 4.2 in Ref. [26]) the
Pauli blocking in the nuclear medium has generated additional
spin-orbit terms, i(�σ1 + �σ2) · (�q × �p ), and quadratic spin-orbit
terms, �σ1 · (�q × �p ) �σ2 · (�q × �p ), written in the last three
lines of Eq. (11). The density-dependent spin-orbit terms
(scaling with c3,4) in the in-medium NN interaction V

med,3
NN

demonstrate clearly and explicitly the mechanism of three-
body induced spin-orbit forces proposed long ago by Fujita
and Miyazawa [24].

The functions Gj (p,q) appearing in Eq. (11) result from
Fermi sphere integrals over the product of two different pion
propagators. Performing the angular integrations analytically
one arrives at

G0,∗,∗∗(p,q) = 2

q

∫ kf

0
dl

{l,l3,l5}√
A(p) + q2l2

ln
ql +

√
A(p) + q2l2

√
A(p)

,

(12)

with the abbreviation A(p) = [m2
π + (l + p)2][m2

π + (l −
p)2]. The other functions with j = 1, 2, 3 are obtained by
solving a system of linear equations:

G1(p,q) = �0(p) − (
m2

π + p2
)
G0(p,q) − G∗(p,q)

4p2 − q2
, (13)

G1∗(p,q) = [
3�2(p) + p2�3(p) − (

m2
π + p2

)
G∗(p,q)

−G∗∗(p,q)
]
(4p2 − q2)−1, (14)

G2(p,q) = (
m2

π + p2
)
G1(p,q) + G∗(p,q) + G1∗(p,q),

(15)

G3(p,q) =
[

1

2
�1(p) − 2

(
m2

π + p2
)
G1(p,q)

− 2G1∗(p,q) − G∗(p,q)

]
(4p2 − q2)−1. (16)

In this chain of equations the functions indexed with an asterisk
play only an auxiliary role for the construction of G1,2,3(p,q).
We note that all functions Gj (p,q) are nonsingular at q = 2p

(corresponding to scattering in the backward direction).
Next, we come to the one-pion exchange component of the

chiral three-nucleon interaction proportional to the parameter
cD/�χ , where cD � −2 for a scale of �χ = 0.7 GeV [14].
The filled black square in the first and second diagrams of
Fig. 2 symbolizes the corresponding two-nucleon one-pion
contact interaction. By closing a nucleon line at the contact
vertex, one obtains a vertex correction (linear in the density ρ)
to the one-pion exchange:

V
med,4
NN = −gAMNcDρ

32πf 4
π �χ

�τ1 · �τ2
�σ1 · �q �σ2 · �q
m2

π + q2
. (17)

Since cD is negative, this term reduces again the bare one-
pion exchange, roughly by about 16% at normal nuclear
matter density ρ0 = 0.16 fm−3. The second diagram in
Fig. 2 includes Pauli-blocked (pionic) vertex corrections to the
short-range NN interaction. The corresponding contribution
to the density-dependent in-medium NN interaction reads

V
med,5
NN = gAMNcD

64π3f 4
π �χ

�τ1 · �τ2

{
2�σ1 · �σ2 �2(p)

+
[
�σ1 · �σ2

(
2p2 − q2

2

)
+ �σ1 · �q �σ2 · �q

(
1 − 2p2

q2

)

− 2

q2
�σ1 · (�q × �p ) �σ2 · (�q × �p )

]

× [�0(p) + 2�1(p) + �3(p)]

}
, (18)

where we have used an identity for �σ1 · �p �σ2 · �p + �σ1 · ( �p +
�q )�σ2 · ( �p + �q ) = [. . .]. The ellipses stands for the combina-
tion of spin operators written in the square bracket of Eq. (18).

Finally, there is the short-range component of the chiral
three-nucleon interaction, represented by a three-nucleon
contact vertex proportional to cE/�χ . By closing one nucleon
line (see the right diagram in Fig. 2) one obtains the following

(4) (5) (6)

FIG. 2. In-medium NN interaction generated by the one-pion
exchange (∼cD) and short-range component (∼cE) of the chiral three-
nucleon interaction.
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contribution to the in-medium NN interaction:

V
med,6
NN = −3MNcEρ

8πf 4
π �χ

, (19)

which simply grows linearly in density ρ = 2k3
f /3π2 and is

independent of spin, isospin, and nucleon momenta.2

For implementation of the in-medium NN interaction into
nuclear structure calculations, the matrix elements of V med

NN

in the LSJ basis are needed. These are obtained by setting
�τ1 · �τ2 = 4T − 3, with T = 0, 1 the total isospin, and q =
p
√

2(1 − z) and performing a projection
∫ 1
−1 dzPL(z) . . . with

Legendre polynomials (for details see Sec. 3 in Ref. [26]). The
resulting diagonal spin-singlet (S = 0, L = J ) and diagonal
spin-triplet (S = 1, L = J − 1, J, J + 1) matrix elements as
well as the off-diagonal mixing matrix elements (S = 1, L =
J − 1, L′ = J + 1) are then functions of the momentum p

and kf (or equivalently the nucleon density ρ). Note that the
off-diagonal mixing matrix elements arise exclusively from
the tensor operator �σ1 · �q �σ2 · �q and the quadratic spin-orbit
operator �σ1 · (�q × �p) �σ2 · (�q × �p).

The restriction to on-shell amplitudes greatly simplifies
the calculation of the medium-dependent corrections to the
nuclear interaction. However, in calculating the shell-model
matrix elements one must know the components of the
interactions also off shell. That is, one needs to consider
N1( �p) + N2(− �p) → N1( �p + �q) + N2(− �p − �q), where p =
| �p| and p′ = | �p + �q| 	= p. Rather than calculate the full
off-shell in-medium NN interaction, which would give rise
to new spin-dependent operators beyond those present in free-
space two-nucleon scattering, we look at two prescriptions for
extending the on-shell amplitudes off shell. First, we consider
the symmetric extrapolation obtained by replacing p2 in our
on-shell expressions with 1

2 (p2 + p′2). Second, we consider
the asymmetric extrapolation obtained by simply introducing
no explicit dependence on p′2. As we discuss later, the largest
off-shell dependence comes from V

med,2
NN . In Fig. 3 we compare

the two off-shell extrapolations for V
med,2
NN at ρ0 = 0.16 fm−3

in the 1S0 partial wave to the off-shell dependence of the
one-pion-exchange (OPE) low-momentum interaction, where
�low k = 2.1 fm−1. We have fixed the value of p = 0.04 fm−1,
and for ease of comparison among the three sets of off-diagonal
matrix elements, we have changed the overall sign of the OPE
interaction, shifted all three to the origin, and scaled the two
medium-dependent interactions so that they coincide with the
low-momentum OPE at p′ = 1.6 fm−1. We find that there is
excellent agreement between the symmetric off-shell extrapo-
lation and the low-momentum OPE for momenta up to nearly
p′ = 1.75 fm−1. Therefore, throughout the remainder of this
study we employ only the symmetric off-shell extrapolation.3

This completes our construction of the density-dependent

2To facilitate the computation of symmetry factors and spin and
isospin traces, we have modeled (for that purpose) the three-nucleon
contact interaction by heavy isoscalar boson exchanges.

3To be consistent with the calculation of A = 3, 4 systems in
Ref. [14], we have included a regulator function of the form
exp[−(p/�low k)4 − (p′/�low k)4].

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
p’ [fm

-1
]

-0.4

-0.3

-0.2

-0.1

0

V
(p

,p
’ 

) 
 [

fm
]

V
low-k

(OPE)

V
 med,2

 (symmetric)

V
 med,2

 (asymmetric)

1
S

0

p = 0.04 fm
-1

FIG. 3. Two different off-shell extrapolations for the density-
dependent V

med,2
NN at ρ = ρ0 compared to the off-shell dependence

of the low-momentum one-pion exchange in the 1S0 partial wave.
Matrix elements are shifted and scaled for comparison purposes (see
text for details).

in-medium NN interaction arising from the leading-order
chiral three-nucleon force.

III. SHELL-MODEL CALCULATION

A. Formalism

Nowadays there are several computationally intense
ab initio approaches to solve the nuclear many-body problem
for finite nuclei. These include Green function Monte Carlo
techniques [27], the no-core shell model [28], and coupled
cluster methods [29,30]. However, A = 14 nuclei are currently
still too complicated for any of these methods to treat exactly.
Therefore, in this study we employ the standard shell model,
which restricts the allowable configurations to 0h̄ω but in-
cludes the mixing of more complicated configurations through
perturbation theory. Indeed, the shell model is expected to
provide a good description of light nuclei close to a doubly-
magic nucleus (e.g., 16O in the present study).

We describe the states of 14C and 14N as consisting of
two 0p holes in a closed 16O core. The harmonic oscillator
parameter is chosen to be h̄ω = 14 MeV, which yields good
agreement with the experimental charge distribution of 16O.
The second parameter in the model is the energy splitting
between the two 0p orbitals, ε = e(p1/2) − e(p3/2) = 6.3
MeV, which is most accurately obtained from the experimental
excitation energy of the first 3/2− state of 15N located 6.3 MeV
above the 1/2− ground state.4

4Alternatively, one could calculate microscopically the p-orbit
single-particle splitting in perturbation theory. In fact, we have
performed second-order calculations of this splitting and find that
the density-dependent NN interaction improves the agreement with
experiment, though even at nuclear matter saturation density the value
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FIG. 4. Diagrams contributing
to the effective interaction Veff in
our present calculation. Wavy lines
represent the density-dependent in-
medium nuclear interaction calcu-
lated in Sec. II.

To obtain the ground-state energies and wave functions we
construct the shell-model effective interaction following the
formalism explained in Ref. [18]. The full nuclear many-body
problem

H�n = En�n, (20)

which presently cannot be solved for mass number A = 14, is
replaced with a model space problem

Heffχm = Emχm. (21)

In this equation

H = H0 + V and Heff = H0 + Veff, (22)

where H0 is equal to the sum of the kinetic energy and single-
particle harmonic oscillator potential, En = En(A = 14) −
E0(A = 16, core), and V denotes the input NN interaction
(in this case, provided by the density-dependent potential
Vlow k + V med

NN ). The effective interaction Veff is obtained
from the folded-diagram formalism detailed in Ref. [31].
In the present study, the Q̂-box [31] is calculated by using
hole-hole irreducible diagrams of first and second order in
Vlow k + V med

NN as shown in Fig. 4. To distinguish these many-
body particle-hole diagrams from the pion-exchange diagrams
contributing to the in-medium NN interaction calculated in
Sec. II, we symbolize the input interaction with a wavy line.
In previous work [31], the strong short-distance repulsion
in the NN S-wave interaction was mitigated by construct-
ing the G-matrix, thereby yielding an effective interaction
suitable for perturbation theory techniques. Our present use
of low-momentum interactions achieves the same purpose
and obviates the construction of the G-matrix. In previous
studies [23,32,33] it was found that in general low-momentum
interactions are suitable for perturbative calculations. In all of
these references satisfactory converged results were obtained
by including terms only up to second order in Vlow k . Moreover,
low-momentum interactions are energy independent and do
not suffer from possible double counting problems that can
arise with G-matrix interactions.

is too small (ε = 3.6 MeV). To limit theoretical uncertainties, in all
calculations we use the experimental single-particle splitting.

We denote the single-hole states by

|1〉 = ∣∣0s−1
1/2

〉
, |2〉 = ∣∣0p−1

3/2

〉
, |3〉 = ∣∣0p−1

1/2

〉
, (23)

and the two-hole states coupled to good angular momentum
J , isospin T , and parity π are denoted by |αβ; JπT 〉, where
α, β = 2 or 3. The matrices to diagonalize are⎡

⎢⎢⎣
...

· · · 〈αβ; 1+0|Veff|γ δ; 1+0〉 · · ·
...

⎤
⎥⎥⎦ +

⎡
⎣ 0 0 0

0 −ε 0
0 0 −2ε

⎤
⎦ , (24)

for the Jπ = 1+, T = 0 states, and a similar 2 × 2 matrix for
the Jπ = 0+, T = 1 states. The ground states for 14C and 14N
are, respectively, written as5

ψi = a|22; 0+1〉 + b|33; 0+1〉,
(25)

ψf = x|22; 1+0〉 + y|23; 1+0〉 + z|33; 1+0〉,
and the reduced Gamow-Teller matrix element MGT is evalu-
ated to be

MGT =
∑

k

〈ψf ||σ (k)τ+(k)||ψi〉

= 1√
6

(−2
√

5ax + 2
√

2ay + 4by + 2bz). (26)

The half-life T1/2 is inversely proportional to the square of the
Gamow-Teller matrix element, and for 14C decay one has

T1/2 = 1

f (Z,E0)

2π3h̄7ln2

m5
ec

4G2
V

1

g∗
A

2|MGT|2 , (27)

where E0 = 156 keV is the maximum kinetic energy of the
emitted electron, f (Z,E0) is the Fermi integral over phase
space, GV = GF cos θc is the weak vector coupling constant,
and g∗

A is the in-medium axial vector coupling constant.
Although the small end-point energy E0 of the 14C β decay
suppresses the transition by a factor of several hundred, this

5We note that the jj -coupling scheme employed in the present paper
differs from the previous density-dependent study [8] in which the
two-particle states were LS-coupled.
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is not nearly sufficient to account for the observed lifetime.
To obtain the anomalously long half-life of T1/2 � 5730
years, the GT matrix element must be anomalously small,
MGT � 2 × 10−3.

B. Results

As a preliminary step, we first calculate the 14C and 14N
wave functions, as well as the Gamow-Teller transition matrix
element, using the bare Vlow k derived from the Idaho N3LO
potential at a cutoff scale �low k = 2.1 fm−1. We find

|Jπ = 0+, T = 1〉1 = 0.395|22; 0+, 1〉 + 0.919|33; 0+, 1〉,
|Jπ = 0+, T = 1〉2 = 0.919|22; 0+, 1〉 − 0.395|33; 0+, 1〉,

(28)

for the two 0+ states of 14C with energy splitting �E(0+) =
12.9 MeV. For the two lowest 1+ states of 14N we find

|Jπ = 1+, T = 0〉1 = 0.137|22; 0+, 1〉 − 0.676|33; 0+, 1〉
+ 0.725|33; 0+, 1〉,

|Jπ = 1+, T = 0〉2 = 0.360|22; 0+, 1〉 − 0.670|33; 0+, 1〉
− 0.649|33; 0+, 1〉, (29)

where the first excited state lies �E(1+) = 2.77 MeV above
the ground state. The second excited Jπ = 1+, T = 0 state
lies nearly 16 MeV higher in energy than the ground state
and will therefore be neglected throughout. With these wave
functions, the ground state to ground state Gamow-Teller
transition matrix element is found to be

MGT = −0.88, (30)

which is much too large to describe the known lifetime
of 14C.

We now discuss the role of the six density-dependent
components V med

NN derived in Sec. II that arise from the
lowest order chiral 3NF. Indeed, since A = 14 nuclei lie just
below a double shell closure, we expect the average density
experienced by a valence p-shell nucleon to be close to that
of saturated nuclear matter. To begin we consider only the
matrix elements of these interactions within the 0p−2 model
space. These are shown in Tables II and III for each of the
six V

med,i
NN at the two densities ρ = ρ0/10 and ρ = ρ0. The

matrix elements connecting states outside the model space
contribute at second order in the diagrammatic expansion
of the effective shell-model interaction, Veff , and will be
included later. In general, the largest matrix elements are those
arising from V

med,1
NN and V

med,2
NN , which are, respectively, the

in-medium pion self-energy and vertex correction resulting
from the long-range chiral 3NF. However, we find that to
a good approximation they cancel. The same is true for
V

med,4
NN and V

med,5
NN , which are relatively small to begin with.

Therefore, we would expect V
med,3
NN and V

med,6
NN to be the most

important density-dependent corrections to the in-medium
NN interaction for the observables considered here.

These observations are made more concrete in the follow-
ing. As a measure of the strength of the various components
contributing to the density-dependent part of the NN interac-

TABLE II. Matrix elements (in units of MeV) between 0p−2

states coupled to (J π , T ) = (0+, 1) for the six density-dependent
contributions to the in-medium NN interaction at the two densities
ρ0/10 and ρ0.

J π = 0+, T = 1(ρ = ρ0/10)

〈22|V med
NN |22〉 〈22|V med

NN |33〉 〈33|V med
NN |33〉

1 0.277 0.053 0.240
2 −0.292 −0.071 −0.242
3 0.043 −0.048 0.077
4 −0.054 −0.011 −0.047
5 0.041 0.027 0.022
6 0.171 0.121 0.085

J π = 0+, T = 1(ρ = ρ0)

〈22|V med
NN |22〉 〈22|V med

NN |33〉 〈33|V med
NN |33〉

1 2.766 0.525 2.395
2 −3.367 −0.714 −2.863
3 1.231 0.004 1.228
4 −0.545 −0.107 −0.469
5 0.458 0.316 0.235
6 1.707 1.207 0.853

tion, we define the quantity

Ri(Jπ, T , ρ) =
∑
αβγ δ

1

n

∣∣∣∣∣
〈αβJπT |V med,i

NN |γ δJ πT 〉
〈αβJπT |Vlow k|γ δJ πT 〉

∣∣∣∣∣ , (31)

where ρ is the nuclear density. The sum over α, β, γ, and δ

runs over all possible configurations with the allowed spin,
isospin, and parity, and n is the number of such configurations
(e.g., n = 3 for the Jπ = 0+, T = 1 states). We derive Vlow k

from the chiral N3LO NN interaction and choose �low k =
2.1 fm−1. A value of Ri close to 1 indicates that the relevant
matrix elements for a particular medium correction are on
average equal in magnitude to the matrix elements of Vlow k

in the given spin-isospin state. We show on the left side of
Figs. 5 and 6 the value of R for each of the six density-
dependent components of the in-medium nuclear interaction
for densities between ρ = 0 and ρ = ρ0. The plots on the
right-hand side of the two figures include also the ratio
R for V med,1 + V med,2 and V med,4 + V med,5. We see that
V

med,1
NN + V

med,2
NN as well as V

med,4
NN + V

med,5
NN largely cancel, so

that the most important contributions from the chiral 3NF are
the Pauli-blocked two-pion exchange and the three-nucleon
contact interaction proportional to cE .

Before discussing the results of the full calculation shown at
the end of this section, we first obtain a physical understanding
of the role played by the two dominant components, V med,3

and V med,6, from lowest order perturbation theory. Here the
density-dependent components induce small changes in the
ground-state wave functions by mixing in the first excited
states. This is justified on the basis that the relevant matrix
elements of the density-dependent interactions are small
compared to the lowest order matrix elements from Vlow k ,
as seen in Figs. 5 and 6. We include explicitly the higher
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TABLE III. Matrix elements (in units of MeV) between 0p−2 states coupled to (J π , T ) = (1+, 0) for the six
density-dependent contributions to the in-medium NN interaction at the two densities ρ0/10 and ρ0.

J π = 1+, T = 0(ρ = ρ0/10)

〈22|V med
NN |22〉 〈23|V med

NN |22〉 〈23|V med
NN |23〉 〈23|V med

NN |33〉 〈22|V med
NN |33〉 〈33|V med

NN |33〉
1 0.299 −0.051 0.128 0.143 −0.121 0.240
2 −0.257 0.091 −0.147 −0.101 0.151 −0.242
3 0.056 0.028 −0.019 −0.015 −0.100 0.182
4 −0.054 0.012 −0.027 −0.023 0.025 −0.047
5 0.034 −0.026 0.012 0.021 −0.040 0.034
6 0.103 −0.107 0.171 −0.002 −0.055 0.089

J π = 1+, T = 0(ρ = ρ0)

〈22|V med
NN |22〉 〈23|V med

NN |22〉 〈23|V med
NN |23〉 〈23|V med

NN |33〉 〈22|V med
NN |33〉 〈33|V med

NN |33〉
1 2.994 −0.505 1.282 1.427 −1.209 2.395
2 −3.193 0.865 −1.718 −1.291 1.589 −2.863
3 0.634 −0.464 0.524 −0.035 −0.927 1.255
4 −0.542 0.123 −0.273 −0.230 0.247 −0.469
5 0.322 −0.286 0.319 0.100 −0.276 0.303
6 1.027 −1.074 1.714 −0.016 −0.550 0.885

order many-body diagrams shown in Fig. 4 at the end of this
section.

Given the ground-state wave functions obtained from Vlow k

alone, as shown in Eqs. (28) and (29), we see that in Eq. (26)
the first three terms contributing to the GT matrix element
enter with the same sign. It is only the last contribution (bz)
that reduces the strength of the transition matrix element. To
suppress the GT transition, the density-dependent corrections
must therefore shift strength to the |33〉 components of the
wave functions. A straightforward calculation using the matrix
elements shown in Tables II and III for ρ = ρ0 gives

ψ
(1)
0 (0+, 1) = ψ

(0)
0 (0+, 1) − 0.0003ψ

(0)
1 (0+, 1),

(32)
ψ

(1)
0 (1+, 0) = ψ

(0)
0 (1+, 0) + 0.002ψ

(0)
1 (1+, 0)

for the un-normalized perturbed wave functions arising from
V

med,3
NN and

ψ
(1)
0 (0+, 1) = ψ

(0)
0 (0+, 1) − 0.088ψ

(0)
1 (0+, 1),

(33)
ψ

(1)
0 (1+, 0) = ψ

(0)
0 (1+, 0) − 0.313ψ

(0)
1 (1+, 0)

for those arising from V
med,6
NN . This leading perturbative

calculation shows the following features. First, the effects from
V

med,6
NN dominate those from V

med,3
NN , and second, one expects

a reduction in the GT transition strength, since the effect of
V

med,6
NN is to increase the strength of the |33〉 components of

both ground-state wave functions.
We now consider the results of the full calculation,

including all density-dependent contributions to second order
in the shell-model effective interaction shown in Fig. 4. In
Table IV we show the results of our calculations for the
expansion coefficients of the ground-state wave functions of
14C and 14N, as well as the reduced GT matrix element,
as a function of the nuclear density up to ρ = 1.25ρ0. We
see that the main effect of including the density-dependent
modifications of the NN interaction is to strongly suppress
the GT transition, as we expected from our previous pertur-
bative analysis. However, in this calculation with theoretical
errors neglected, it appears that only at densities above
that of saturated nuclear matter would the suppression be
strong enough to reproduce the experimentally observed
half-life.
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FIG. 5. The average strength of the
three 〈αβ; 0+1|V med,i

NN |γ δ; 0+1〉 matrix el-
ements for the six density-dependent
contributions to the in-medium NN in-
teraction relative to Vlow k . The low-
momentum interaction is constructed
from the Idaho N3LO potential for
�low k = 2.1 fm−1.
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NN |γ δ; 1+0〉 matrix ele-
ments for the six density-dependent con-
tributions to the in-medium NN interac-
tion relative to Vlow k . The low-momentum
interaction is constructed from the Idaho
N3LO potential for �low k = 2.1 fm−1.

The Gamow-Teller transition strength, B(GT), is related to
the reduced GT transition matrix element by

B(GT) = (g∗
A)2 1

2Ji + 1
|MGT|2 � |MGT|2, (34)

where Ji = 0 and we have used the approximation that the
in-medium axial vector coupling constant6 g∗

A � 1. In general,
the effective Gamow-Teller operator has additional terms in a
nuclear medium [34,35]:

�OGT,eff = gLA
�L + g∗

A �σ + gPA [Y2, �σ ], (35)

where �L is the orbital angular momentum operator and Y2

denotes the rank-2 spherical harmonic Y2,m. However, it is
well known from theoretical calculations [36] of the effective
GT operator in medium, as well as β-decay calculations
[37] performed with phenomenological shell-model effective
interactions, that gLA and gPA are almost negligible and that
in light nuclei g∗

A is smaller by 15%–20% from its free space
value of gA = 1.27 (measured in neutron β decay). In general,
one must calculate both the effective interaction Veff and the
effective Gamow-Teller operator �OGT,eff . In our calculations
we assume a 20% reduction of gA in medium and therefore set
g∗

A = 1.0.
In Fig. 7 we separate the effects of the six different

components of V med
NN on the GT strength. When including

only the sum of V
med,1
NN , V

med,2
NN , V

med,4
NN , and V

med,5
NN together

with the low-momentum interaction Vlow k , there is very little
density dependence in the calculated GT strength. These
four density-dependent components are exactly the terms that
are expected to approximately cancel at leading order in
the effective shell-model interaction. Including the additional
V

med,3
NN , we find that there is a mild increase in the GT

strength. This is in accordance with our predictions based
on the first-order perturbative calculation of the 14C and 14N
ground-state wave functions shown in Eq. (32). However,
given the very small mixing of the excited state wave functions
at first order, the second-order diagrams contributing to
the shell-model effective interaction are equally important.
Finally, by including V

med,6
NN in addition to all other terms, we

6At the microscopic level the reduced in-medium g∗
A arises, in the

same way as the in-medium NN interaction V med
NN , through Pauli-

blocked nucleon loops.

find that the GT strength is strongly suppressed. From Eq. (33)
our interpretation is that the three-nucleon contact interaction
strongly shifts strength to the |33〉 components of both the 14C
and 14N ground-state wave functions, thereby leading to the
observed suppression.

In Sec. II we suggested that the symmetric off-shell
extrapolation of the density-dependent interaction is preferable
to the asymmetric extrapolation, given the former’s close
agreement with the off-shell behavior of the OPE Vlow k . In
Fig. 8 we study the effect of this choice on the Gamow-Teller
strength. Regardless of the off-shell extrapolation method, we
find a clear suppression of the B(GT) value for densities
close to that of nuclear matter. Indeed, the most important
component of the density-dependent NN interaction, V

med,6
NN ,

is a contact interaction and is therefore independent of the off-
shell extrapolation used. We conclude that the error associated
with the off-shell prescription is rather small, given that even
the extreme asymmetric extrapolation is rather close to the
results from the symmetric extrapolation.

Given the strong dependence of the 14C β decay transition
rate on the nuclear density, it is important to study how other
Gamow-Teller strengths are affected by the inclusion of V med

NN .
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All terms

FIG. 7. (Color online) The effects of the various density-
dependent contributions to the in-medium NN interaction on the
ground state to ground state B(GT) value. The legend denotes which
of the V

med,i
NN are included together with Vlow k .
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TABLE IV. The coefficients of the jj -coupled wave functions
defined in Eq. (25) and the associated reduced GT matrix element as
a function of the nuclear density ρ.

ρ/ρ0 a b x y z MGT

0.00 0.40 0.92 0.14 −0.68 0.72 −0.877
0.25 0.37 0.93 0.13 −0.67 0.73 −0.833
0.50 0.34 0.94 0.11 −0.63 0.77 −0.684
0.75 0.30 0.95 0.09 −0.57 0.82 −0.488
1.00 0.25 0.97 0.07 −0.49 0.87 −0.267
1.25 0.19 0.98 0.05 −0.41 0.91 −0.045

Recently, GT strengths from the 14N ground state to excited
states of 14C have been determined from the experimental
charge exchange reaction 14N(d, 2He)14C [13]. In Fig. 9 we
plot our results for the calculated B(GT) values as a function
of the nuclear density ρ. From Fig. 9 one sees that the
medium effects improve the agreement between our theoretical
calculations and the experimental values for transitions from
0+ and 1+ states. The largest effect is clearly a suppression of
the ground state to ground state transition for densities at and
above that of nuclear matter. The other transition strengths are
much less sensitive to the density dependence of the nuclear
interaction.

Although we have chosen a low-momentum cutoff scale
of �low k = 2.1 fm−1 in these calculations, the value of
cE (and consequently the strength of the important V

med,6
NN

term) depends sensitively on �low k as seen in Table I. We
therefore calculate the β decay transition strength using also a
cutoff scale of �low k = 2.3 fm−1, which incorporates some
components of the bare NN interaction unconstrained by
elastic NN scattering data but which provides an estimate
for the error associated with the chosen momentum cutoff.
The results for densities up to 1.25ρ0 are shown in Fig. 10
together with the calculations using �low k = 2.1 fm−1. We
suggest that this constitutes the most important source of error
in our calculation. Moreover, we have studied the dependence
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FIG. 8. (Color online) Dependence of the ground state to ground
state B(GT) value on the off-shell extrapolation of the density-
dependent V med

NN interaction. Both the symmetric and asymmetric
off-shell extrapolations are shown.
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FIG. 9. (Color online) The B(GT) values for transitions from the
low-lying states of 14C to the ground state of 14N as a function of
the nuclear density. The experimental values are from Ref. [13]. Note
that there are three experimental low-lying 2+ states compared to two
theoretical 2+ states in the 0p−2 configuration.

of the GT matrix element MGT on the underlying bare NN

interaction used in the derivation of Vlow k . Using the Argonne
v18 bare potential, we find that changes in MGT are less than
10%. Additional errors include the following: deviations of
the effective axial coupling constant g∗

A from 1.0, the choice
of the off-shell extrapolation for the in-medium NN scattering
amplitudes, and, finally, errors associated with our use of the
shell model at second order in perturbation theory. In earlier
sections of the paper we have estimated errors associated with
the first two approximations, but the last of the three is difficult
to quantify. Nevertheless, we expect such errors to be minor,
given that previous shell-model calculations (see Ref. [38]
and references therein) using Vlow k up to second order in
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FIG. 10. (Color online) The uncertainty in the calculated value of
B(GT) obtained by varying the low-momentum cutoff �low k between
2.1 and 2.3 fm−1. The shaded region corresponds to nuclear densities
close to that experienced by valence 0p-shell nucleons in 14C.
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FIG. 11. (Color online) Twice the charge distribution of 14N taken
from Refs. [39,40] together with the square of the radial 0p-shell wave
functions.

perturbation theory have been able to describe very well the
properties of nuclei with a small number of valence nucleons
above a closed shell.

Because the theoretical value of B(GT) is particularly
sensitive to the nuclear density, let us estimate the range over
which we expect our calculations to be valid. In Fig. 11 we
plot twice the charge distribution of 14N obtained from the fit
of the electron scattering experiments [39,40] to the harmonic
oscillator density distribution

n(r) ∝
(

1 + b
r2

d2

)
e−r2/d2

, (36)

where for 14N, b = 1.291 and d = 1.740 fm. We compare this
density distribution to the square of the 0p-shell radial wave
function used in our calculation. This wave function peaks

at a nuclear density of approximately ρ = 0.85ρ0. We have
therefore shaded the region of Fig. 10 corresponding to this
density ±∼10%.

IV. SUMMARY AND OUTLOOK

We have studied the effects of the leading-order chiral
three-nucleon force on the β decay lifetime of 14C, and
more generally on the Gamow-Teller transition strengths from
the ground state of 14N to the low-lying states of 14C. Our
results indicate that the density-dependent in-medium NN

interaction V med
NN derived from the chiral three-nucleon force

has a strong effect on the ground state to ground state transition.
In contrast, the GT strengths from the ground state of 14N to the
excited states of 14C exhibit only a small density dependence.
These results are consistent with the calculations presented in
Ref. [8]. We find that the GT strength is particularly sensitive
to the genuine short-range component of the chiral 3NF (which
is almost completely responsible for driving the suppression)
as well as the low-momentum decimation scale �low k . In
general, by fitting the binding energies of A = 3, 4 nuclei,
one can derive a constraint curve relating the parameters cD

and cE [41]. Additional information is then required to fix the
point on this curve. Recently, it was found in Ref. [42] that
the triton GT transition strength is quite sensitive to cD . Given
the sensitivity of the 14C lifetime on the parameter cE , we
suggest that this decay can serve as a useful constraint on the
two low-energy constants cD and cE once ab initio many-body
calculations enable study of this problem more accurately.
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