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Excitation spectra usually reveal important features of the many-body systems. The vibrational excitations
can be studied through the well-known linear response theory. This theory is realized, in the nuclear case, by
means of the random-phase approximation (RPA); the generalization in the case in which one deals with open
shells, and the pairing force is active, is the quasiparticle RPA (QRPA). It is useful to have at one’s disposal
theorems that provide information on, e.g., the sum rules and mean excitation energies associated with given
external operators acting on the system. This article focuses on such theorems in the case of self-consistent QRPA
based on Hartree-Fock-Bogoliubov (HFB). In particular, the so-called dielectric theorem that provides the value
of the inverse-energy-weighted sum rule based on the simple knowledge of the ground state is demonstrated.
This theorem is applied to the case of constrained calculations of the average excitation energy of the monopole
resonance combined with the Thouless theorem. The pairing correlations are shown to have the effect of increasing
the polarizability m−1. The detailed analysis of the profile of the strength functions by mean of QRPA reveals
that the decrease of the average monopole excitation energies in some isotopes is associated with neutron states
that emerge at an energy that is lower than the main giant resonance peak.
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I. INTRODUCTION

In physics, one of the most general situations is that
concerning a system whose properties can be understood,
at least to some extent, by acting on it with an external
perturbation. In a formal language, this means that the
Hamiltonian Ĥ that characterizes the system is turned into
Ĥ + λQ̂. Q̂ is the perturbation and, as usual, a numerical
parameter λ is introduced to control its intensity or strength.
Perturbation theory can be applied if λ is not too large.

In this article we deal with many-body fermion systems.
In particular, we have in mind the atomic nucleus but most
of the arguments are rather general. The atomic nucleus can
be excited by an external perturbation Q̂ (e.g., in nuclear
reactions) induced by probes that interact through the strong,
electromagnetic, or weak forces. The general problem is that
of finding the mean excitation energy associated with a given
operator Q̂. In the case of a spherical system, the excited states
are identified by the angular momentum and parity quantum
numbers, Jπ . The operator Q̂ is characterized by a given
spatial angular momentum L and a given spin S (coupled
to total J ), as well as by a given isospin T . Linear response
theory should be the tool of choice to access the energies En

and wave functions |n〉 of the excited states; by means of these
quantities, one calculates the excitation probability amplitudes
〈n|Q̂|0〉, where |0〉 is the ground state, and the corresponding
probabilities. The so-called strength function is defined by

S(E) =
∑

n

δ(E − En)|〈n|Q̂|0〉|2, (1)
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where the transition amplitude 〈n|Q̂|0〉 can be expressed
as the space integral of the transition density ρ

q
tr (r, n) =

〈n| ∑NorZ
i δ(r − ri)|0〉 (q denotes neutrons or protons). Then,

one can write, respectively,

〈n|Q̂|0〉 =
∫

d3rQ(r)
[
δρn

tr (r, n) + δρ
p
tr (r, n)

]
, (2)

for an isoscalar operator, and

〈n|Q̂|0〉 =
∫

d3rQ(r)
[
δρn

tr (r, n) − δρ
p
tr (r, n)

]
(3)

for an isovector operator. For nuclear systems, the strength
function is often characterized by the appearance of large
peaks, absorbing a considerable fraction of the total strength.
These peaks are called “giant resonances” [1,2], in keeping
also with their line shape that is indeed resonance-like. If we
define the moments mk of the strength function as

mk =
∫

dEEkS(E), (4)

the mean energy can be defined as the centroid, m1/m0, but
this definition can be extended to a whole set of energy ratios√

mk

mk−2
and

mk

mk−1
, (5)

which satisfy inequalities like

. . . �
mk+2

mk+1
�

√
mk+2

mk

�
mk+1

mk

�
√

mk+1

mk−1
� . . . (6)

as it can be shown using Schwartz’s inequality [3].
Linear response theory means, in the present context,

the well-known random-phase approximation (RPA) theory
that is described in many textbooks [4,5]. If expressed on a
basis, the equations of this theory are written in matrix form
and their solutions are found by diagonalization. Nowadays
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RPA diagonalizations are in general quite feasible, although
the solution is obviously numerical and the results may not
always be fully transparent from a physical point of view.
Certainly a progress has been made compared with the time
in which the first review articles on sum rules [3,6] were
written, because at that time RPA calculations were still much
more demanding. However, much of the current activity in
nuclear structure theory focuses on the study of exotic nuclei,
that is, systems which have different neutron-proton ratios
as compared with usual ones. These exotic, neutron-rich or
proton-rich, nuclei lie close to the limits of nuclear stability.
They are characterized in general by open-shell configurations
and the occupied levels lie close to the continuum. For
open-shell systems, pairing is known to be important and the
independent particle picture is replaced by a quasiparticle one.
The linear response theory becomes the quasiparticle RPA
(QRPA). In this case, the model space is significantly larger
than in the case of RPA. Consequently, QRPA calculations
are still demanding nowadays, from the computational point
of view: except in the case of low multipoles [7] they often
require the use of supercomputers [8]. It should be added that
fully self-consistent QRPA calculations that include a proper
description of the nuclear continuum are still not available.

In this scenario, exact ways to access the sum rule values and
the energy centroids are quite relevant for open-shell nuclei.
Accordingly, the purpose of the present article is to show
explicitly the validity of theorems concerning sum rules when
pairing is active, that is, within the framework of the HFB plus
QRPA theory. To our knowledge, the Thouless theorem has
been demonstrated also in the case with pairing, in Ref. [9].
This theorem provides the value of the energy-weighted sum
rule (EWSR) m1. However, we are not aware of explicit proofs
of the so-called dielectric theorem in the case with pairing. This
theorem provides the value of the inverse energy-weighted sum
rule m−1. We will prove this theorem in the present work. In
this way, one can have access to the value of the constrained
energy E−1 ≡

√
m1
m−1

even in systems where pairing is active.
The outline of the article is the following. In Sec. II, we

remind the HFB and QRPA theories in the quasiparticle basis
shortly. In Sec. III, the dielectric theorem in the framework of
HFB plus QRPA is demonstrated. In Sec. IV, this theorem is
applied to constrained calculations of the monopole in Ca and
Ni isotopes. Finally, there is a short summary in Sec. V.

II. REMINDER OF HFB AND QRPA

Within the independent quasiparticle theory, the nuclear
ground state is described by the Hartree-Fock-Bogoliubov
(HFB) theory. This theory is based on a linear transformation,
namely the general Bogolyubov transformation, which brings
the single-particle operators a

†
l , al into quasiparticle operators

β
†
k , βk:

β
†
k =

∑
l

Ulka
†
l + Vlkal (7)

βk =
∑

l

V ∗
lka

†
l + U ∗

lkal . (8)

On the quasiparticle basis the Hamiltonian of the system,
which includes the kinetic energy plus a two-body (possibly
density-dependent) interaction,

H =
∑
l1l2

tl1l2a
†
l1
al2 + 1

4

∑
l1l2l3l4

V
(as)
l1l2l3l4

a
†
l1
a
†
l2
al4al3 , (9)

can be rewritten as

H = H 0 +
∑
k1k2

H 11
k1k2

β
†
k1

βk2

+ 1

2

∑
k1k2

(
H 20

k1k2
β
†
k1

β
†
k2

+ h.c.
) + Hint, (10)

where the last term includes all contributions from four
quasiparticle operators (in normal ordering). The ground state
of this Hamiltonian is the quasiparticle vacuum. This is
obtained by setting H 20 = 0; moreover, H 11 can be put in
diagonal form. The corresponding equations are the so-called
HFB (or Bogoliubov-De Gennes) equations. Their detailed
properties can be found, e.g., in Ref. [4]. Here we only briefly
recall that from the solution of the HFB equations one obtains
the quasiparticle energies Ek and the wave functions on the
(a†

l , al) basis, namely the U and V coefficients. In fact, the
HFB equations can be written(

h �

−�∗ −h∗

) (
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (11)

where h and � are the mean field and the pairing field whose
definition is found in Ref. [4]. The Hamiltonian (10) then
becomes

H = H 0 +
∑

k

Ekβ
†
kβk + Hint. (12)

If one wishes to describe the excited states corresponding
to nuclear oscillations, or phonons, one needs to go beyond the
static HFB theory. A given vibrational state |λ〉 is produced
by the action of a phonon creation operator on the vacuum.
This creation operator reads, on a basis made up with two-
quasiparticle states,

Ô
†
λ =

∑
k1>k2

X
(λ)
k1k2

β
†
k1

β
†
k2

− Y
(λ)
k1k2

βk2βk1 . (13)

The vacuum |0̃〉 is taken as the phonon vacuum, that is,
Ôλ|0̃〉 = 0 for each phonon λ. The time-dependent extension
of the HFB equations can be linearized on the given basis of
two-quasiparticle states, and a set of equations that provide the
energies and the wave functions of a phonon state |λ〉 and that
are named QRPA equations, is obtained [4]. These equations
are, in explicit form,(

A B

−B∗ −A∗

) (
X(λ)

Y (λ)

)
= Eλ

(
X(λ)

Y (λ)

)
. (14)

The matrices A and B are given by

Akk′,k′′k′′′ = 〈0|[βk′βk, [Ĥ , β
†
k′′β

†
k′′′ ]]|0〉

(15)

Bkk′,k′′k′′′ = −〈0|[βk′βk, [Ĥ , βk′′′βk′′]]|0〉.
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When the QRPA solutions are known, that is, when the
explicit diagonalization of the matrix shown in Eq. (14) is
achieved, one can study the transition amplitudes associated
with the operator Q̂. In the following, we assume that Q̂ is
an Hermitian operator and that its expectation value 〈0|Q̂|0〉
vanishes; this latter assumption does not imply obviously any
loss of generality, because we can always redefine Q̂ as Q̂ −
〈0|Q̂|0〉.

We write the operator Q̂ in the quasiparticle basis, namely

Q̂ =
∑
ll′

qll′a
†
l al′ =

∑
ll′

∑
kk′

qll′ [U
∗
lkUl′k′β

†
kβk′ + U ∗

lkV
∗
l′k′β

†
kβ

†
k′

+VlkUl′k′βkβk′ + VlkV
∗
l′k′βkβ

†
k′]. (16)

To calculate the matrix elements of Q̂ between an excited
QRPA state |λ〉 and the ground state |0̃〉, we rely on the fact that
the derivation of RPA and QRPA is based on the quasiboson
approximation. In the case of interest, that is, QRPA, the
relevant quasiboson operators are

�
†
k1k2

≡ β
†
k1

β
†
k2

�k1k2 ≡ βk2βk1 . (17)

We write

〈0̃|Q̂|λ〉 = 〈0̃|[Q̂, Ô
†
λ]|0̃〉, (18)

in such a way that, after expressing both Q̂ and Ô
†
λ in terms of

the boson operators (17), the commutator in the last equation
is calculated by using the basic boson commutation relations.
The result is

〈0̃|Q̂|λ〉 =
∑
ll′

∑
k>k′

qll′
[
X

(λ)
kk′(Ul′kVlk′ − Ul′k′Vlk)

+Y
(λ)
kk′ (U ∗

lkV
∗
l′k′ − U ∗

lk′V
∗
l′k)

]
. (19)

For the sake of convenience, in keeping with what follows and
with the results of Refs. [3,9], we prefer to recast this result in
the form

〈0̃|Q̂|λ〉 = (q̃Tq̃†)

(
X(λ)

Y (λ)

)
, (20)

where q̃ is a vector whose components are the matrix elements
q̃kk′ , with

q̃kk′ =
∑
ll′

qll′hll′,kk′ (21)

and

hll′,kk′ = Ul′kVlk′ − Ul′k′Vlk. (22)

III. THEOREMS ON THE MOMENTS OF THE
STRENGTH FUNCTION

In a recent work, E. Khan et al. [9] have shown the validity
of the Thouless theorem for the energy-weighted sum rule
(EWSR), in the case of self-consistent QRPA based on HFB.
This reads, if |0〉 is the HFB ground state,∑

λ

Eλ|〈λ|Q̂|0̃〉|2 = 1

2
〈0|[Q̂, [Ĥ , Q̂]]|0〉. (23)

The aim of this section is to demonstrate the validity of other
general theorems concerning the sum rules within the QRPA
frame.

In particular, we start by showing what follows.

A. Theorem 1

In the only hypothesis that Q̂ is a Hermitian one-body
operator, his k-th order moments are given by

mk(Q̂)QRPA = 1

2
(q̃T q̃†)

(
A B

−B∗ −A∗

)k (
q̃

−q̃∗

)
. (24)

Let us start from the general expression of the k-th order
moment of the operator Q̂ [cf. Eqs. (1) and (4)], namely

mk(Q̂) =
∑
λ>0

Ek
λ|〈λ|Q̂|0̃〉|2, (25)

where the summation includes only the positive QRPA
solutions. The QRPA equations (14) imply that(

X(λ)

Y (λ)

)
Ek

λ =
(

A B

−B∗ −A∗

)k (
X(λ)

Y (λ)

)
. (26)

One should remember that if 2N is the total number of QRPA
solutions, half of them are positive and the other half are
negative but equal to the previous ones in absolute value.
Consequently, by exploiting this symmetry,

2mk(Q̂) = 2
N∑

λ=1

Ek
λ|〈λ|Q̂|0̃〉|2 =

2N∑
λ=1

∣∣Ek
λ

∣∣|〈λ|Q̂|0̃〉|2

=
(

N∑
λ=1

−
2N∑

λ=N+1

)
(q̃T q̃†)

(
X(λ)

Y (λ)

)

× (X(λ)†Y (λ)†)

(
q̃

q̃∗

)
Ek

λ

=
(

N∑
λ=1

−
2N∑

λ=N+1

)
(q̃T q̃†)

(
A B

−B∗ −A∗

)k (
X(λ)

Y (λ)

)

× (X(λ)† − Y (λ)†)

(
q̃

−q̃∗

)
. (27)

If we now insert the closure relation associated with the QRPA
solutions [5],

(
N∑

λ=1

−
2N∑

λ=N+1

) (
X(λ)

Y (λ)

)
(X(λ)† − Y (λ)†) =

⎛
⎜⎜⎜⎝

1
1 0

. . .

0 1
1

⎞
⎟⎟⎟⎠ ,

(28)

then the thesis follows.
If H is even under time reversal, then A and B can be

taken as real, and X and Y are real as well. If Q is also even
under time reversal its matrix elements are real [10]. Then, it
is possible to show with simple algebra that the odd moments
of the operator Q̂(kodd ≡ 2n + 1) are given by

mkodd (QRPA) = q̃T(A − B)[(A + B)(A − B)]
k−1

2 q̃ (29)
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and, in particular, we can write

m−1(QRPA) = q̃T(A + B)−1q̃; (30)

for the moment of order −1. We note, passing by, that the even
moments of the operator Q̂(kodd ≡ 2n) are given by

mkeven (QRPA) = q̃T[(A − B)(A + B)]
k
2 q̃. (31)

We focus our attention on the m−1 moment, or “inverse
energy-weighted sum rule” (IEWSR). It is known that the
IEWSR can be also obtained from constrained Hartree-Fock
(CHF) calculations. In particular it has been proven [3] that the
results of CHF and the IEWSR from fully self-consistent RPA
are directly connected by the dielectric theorem. Our purpose
is to demonstrate explicitly that the dielectric theorem is true in
the case of QRPA as well. We will focus on the case of QRPA
on top of HFB. The simpler case of QRPA on top of HF-BCS
can be considered as a special limiting case: in principle it
would not need a separate proof, but this is anyway outlined in
the Appendix, for the reader’s convenience. The case of RPA
on top of HF (already demonstrated) is a further limiting case.

B. Theorem 2 (dielectric theorem in the HFB frame)

Let Q̂ be a Hermitian one-body operator. The IEWSR
computed in self-consistent QRPA can be obtained also from
constrained Hartree-Fock-Bogoliubov (CHFB) calculations,
performed with the Hamiltonian Ĥ + λQ̂, as

m−1(QRPA) = −1

2

[
∂

∂λ
〈φ(λ)|Q̂|φ(λ)〉

]
λ=0

(32)

m−1(QRPA) = 1

2

[
∂2

∂λ2
〈φ(λ)|Ĥ |φ(λ)〉

]
λ=0

, (33)

where λ is small enough to ensure the validity of perturbation
expansions at lowest order and φ(λ) is the solution of CHFB
with a given value of λ.

Let us start by analyzing the CHFB solution. This solution
|φ〉 can be written (aside from a normalization factor) using
the Thouless theorem [11] generalized in the HFB case (cf.
also Refs. [5,12]),

|φ〉 = |0〉 + 1

1! × 21

∑
µν

cµνβ
†
µβ†

ν |0〉

+ 1

2! × 22

∑
µν

∑
µ′ν ′

cµνcµ′ν ′β†
µβ†

νβ
†
µ′β

†
ν ′ |0〉

+ 1

3! × 23

∑
µν

∑
µ′ν ′

∑
µ′′ν ′′

cµνcµ′ν ′cµ′′ν ′′β†
µβ†

νβ
†
µ′β

†
ν ′β

†
µ′′β

†
ν ′′ |0〉

+ · · · , (34)

where |0〉 is the HFB ground state and the coefficients c are
a priori unknown and must be calculated by exploting the
minimum condition

δ(〈φ(λ)|Ĥ + λQ̂|φ(λ)〉) = 0. (35)

The Lagrange multiplier λ is associated with a given expec-
tation value δQ ≡ 〈φ|Q̂|φ〉. The notation δQ is consistent

with our previously established condition 〈0|Q̂|0〉 = 0. We
can write, up to second order in the coefficients c,

δQ = 1

2

∑
µν

(〈0|Q̂β†
µβ†

ν |0〉cµν + c∗
µν〈0|βνβµQ̂|0〉)

+ 1

4

∑
µν

∑
µ′ν ′

c∗
µν〈0|βνβµQ̂β

†
µ′β

†
ν ′ |0〉cµ′ν ′

+ 1

8

∑
µν

∑
µ′ν ′

(〈0|Q̂β†
µβ†

νβ
†
µ′β

†
ν ′ |0〉cµνcµ′ν ′

+ c∗
µνc

∗
µ′ν ′ 〈0|βν ′βµ′βνβµQ̂|0〉) + · · · (36)

By using Eq. (16) one finds that

〈0|Q̂β†
µβ†

ν |0〉 =
∑
ll′

qll′(VlνUl′µ − VlµUl′ν) = q̃µν (37)

and that

〈0|βνβµQ̂|0〉 =
∑
ll′

qll′(U
∗
lµV ∗

l′ν − U ∗
lνV

∗
l′µ) = q̃∗

µν. (38)

The detailed expression of 〈0|βνβµQ̂β
†
µ′β

†
ν ′ |0〉 can be written

but is not needed in what follows; so we simply use for
it the shorter notation q̃µν,µ′ν ′ . We finally use the fact that
〈0|Q̂β†

µβ†
νβ

†
µ′β

†
ν ′ |0〉 = 0 and 〈0|βνβµβν ′βµ′Q̂|0〉 = 0. In this

way, Eq. (36) can be written

δQ = 1

2

∑
µν

(q̃µνcµν + c∗
µνq̃

∗
µν)

+ 1

4

∑
µν

∑
µ′ν ′

c∗
µνq̃µν,µ′ν ′cµ′ν ′ + · · · (39)

We also need the calculation of the second-order variation δE

of the expectation value of the Hamiltonian, that is

δE =
∑
µν

∑
µ′ν ′

(
c̃∗
µνAµν,µ′ν ′ c̃µ′ν ′ + 1

2
c̃∗
µνc̃

∗
µ′ν ′Bµν,µ′ν ′

+ 1

2
B∗

µν,µ′ν ′ c̃µν c̃µ′ν ′

)
+ . . . . (40)

To obtain the previous expression, use has been made of the
definitions of the matrices A and B [see Eq. (15)]. Moreover,
the notation c̃µν ≡ 1

2cµν has been introduced. Finally, if we
replace the pair µν with α, we set Lα,α′ ≡ q̃α,α′ to avoid
confusion, and we consider the matrix elements of Q̂ as real
(consistently with the previous section), we then arrive at

δE + λδQ = λ
∑

α

(q̃αc̃α + c̃∗
αq̃α)

+
∑
αα′

(
λc̃∗

αLα,α′ c̃α′ + c̃∗
αAα,α′ c̃α′

+ 1

2
c̃∗
αc̃∗

α′Bα,α′ + 1

2
Bα,α′ c̃αc̃α′

)
+ · · · (41)

We wish now to show that the quantity just written, δE +
λδQ, has a minimum when

δQλ = −2λa − 3λ2b + O(λ3) (42)
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and

δEλ = λ2a + 2λ3b + O(λ4), (43)

with

a = q̃T(A + B)−1q̃
(44)

b = −q̃T(A + B)−1L(A + B)−1q̃.

Because the coefficients c̃ in Eq. (41) are in principle
complex, we set c̃α = xα + iyα and c̃∗

α = xα − iyα . After some
algebra, Eq. (41) becomes

δE + λδQ = 2λ
∑

α

xαq̃α +
∑
α,α′

[xα(Aαα′ + Bαα′)xα′

+ yα(Aαα′ − Bαα′ )yα′

+ λ(xαLαα′xα′ + yαLαα′yα′ )] + · · · , (45)

where use has been made of the fact that the matrices A,B,
and L are symmetric. Let us then impose that E + λQ has a
minimum, namely

∂(δE + λδQ)

∂x
= 2λq̃ + 2(A + B + λL)x = 0,

(46)
∂(δE + λδQ)

∂y
= 2(A − B + λL)y = 0.

We assume that both x and y can be expanded in a power series
of λ,

x =
∑

n

λnx(n) y =
∑

n

λny(n) (47)

and we insert these developments in the minimum conditions
(46). It is easy to verify that the vector y (i.e., the imaginary
part of c) is identically zero at any order in λ. For the real part of
c, that is x, we obtain that x(0) = 0, that x(1) = −(A + B)−1q̃,
and that the recursion relation

x(n+1) = −(A + B)−1Lx(n) (48)

holds ∀n > 0. If we derive the explicit expressions of x(n) from
Eq. (48) and we insert them into Eq. (45), we arrive at

δE = λ2q̃T(A + B)−1q̃ − 2λ3q̃T(A + B)−1L(A + B)−1q̃

+O(λ4), (49)

δQ = −2λq̃T(A + B)−1q̃ + 3λ2q̃T(A + B)−1L(A + B)−1q̃

+O(λ3). (50)

We write

a = q̃T(A + B)−1q̃ (51)

and

b = −q̃T(A + B)−1L(A + B)−1q̃, (52)

and this completes the proof of Eqs. (42) and (43).
One can, at this point, extract from Eqs. (42) and (43) the

result that

a = −1

2

[
∂

∂λ
〈φ(λ)|Q̂|φ(λ)〉

]
λ=0

= 1

2

[
∂2

∂λ2
〈φ(λ)|Ĥ |φ(λ)〉

]
λ=0

. (53)

Because, a given by Eq. (51), coincides with that of
m−1(QRPA) from Eq. (30), this is the proof of the dielectric
theorem in the HFB case as it has been stated by means of
Eqs. (32) and (33).

IV. APPLICATIONS TO THE ISOSCALAR GIANT
MONOPOLE RESONANCE

In the case of the isoscalar giant monopole resonance
(ISGMR), the operator Q̂ has the form

Q̂ =
A∑

i=1

r2
i . (54)

Then the EWSR and IEWSR are given, respectively, by

m1(Q̂) = 2h̄2

m
A〈r2〉HFB (55)

and

m−1(Q̂) = −1

2

[
∂

∂λ
〈r2〉HFB

]
λ=0

= 1

2

[
∂2

∂λ2
〈H 〉HFB

]
λ=0

.(56)

In the present numerical study, both the unconstrained and
constrained solutions of the HFB equations are obtained in the
coordinate representation by using a spherical box. We also
need a cutoff on the quasiparticle energy and this value is set
at 60 MeV; the value of the box radius is discussed below.
In the particle-hole channel, we use the SKM∗ Skyrme force
[13]. In the particle-particle channel, we use for simplicity
the zero-range volume pairing force that has the simple
form

vpair = V0δ(r1 − r2). (57)

In our calculations, the value of the parameter V0 is fixed at
−183.9 MeV fm3 by fitting the experimental data of the mean
neutron gap in 44Ca (� = 1.49 MeV).

The self-consistency of the QRPA calculations requires the
use in QRPA of a residual force derived from the HFB fields.
In the spherical QRPA solution, there exists the problem of a
spurious state in the monopole channel due to the particle
number symmetry broken by the HFB solution [4]. The
spurious state has a contribution to the moments of the strength
function, and it must be projected out from the real physical
states [7].

The accuracies of both the CHFB and the HFB-QRPA
calculations have been carefully tested in the case of the
Ca isotopes. There is no special difficulty in performing
CHFB and the results from this approach seem quite reliable.
However, as already pointed out in our previous work [7],
QRPA calculations are rather demanding when performed
using the canonical basis. In most of the cases the agreement
between m−1 from CHFB and QRPA is at the level of a
few percentages, which is deemed to be satisfactory. For
instance, in the case of 42Ca, the value of the m−1 from
CHFB is m−1 = 95.98 MeV−1 fm4 (this is obtained from
the first derivative of 〈r2〉HFB, whereas from the second
derivative of 〈H 〉HFB one finds 95.68 MeV−1 fm4; in the
following discussion we will as a rule present the values
obtained from the first derivative of 〈r2〉HFB only). Using

054329-5
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FIG. 1. Constrained monopole energies in the Ca isotope chain
obtained with the SKM∗ force. In the CHFB and QRPA calculations,
a volume pairing force is used. See the text for a detailed discusssion.

the value of m1 from the double commutator, one obtains
E−1 = 20.66 MeV. The QRPA exhausts almost all the EWSR
(99.93%), and it gives as results m−1 = 93.99 MeV−1 fm4,
and E−1 = 20.87 MeV. There are, however, a few cases where
QRPA results differ more than 5–6% from the CHFB ones.
This happens when pairing is strong or for large neutron
numbers. In this latter case, we must use a large box (neutrons
are weakly bound) so that very accurate QRPA calculations
become almost prohibitive in keeping with the size of the
basis.

As an additional test, we have verified that in the case
without pairing, for example in 40Ca, the CHF calculation
produces values for the IEWSR and the constrained energy,
m−1 = 90.0 MeV−1 fm4 and E−1 = 20.65 MeV, respectively,
that are in good agreement with Ref. [14]; the results from
the RPA calculation are m−1 = 88.76 MeV−1 fm4, E−1 =
20.53 MeV.

In Fig. 1, we display the constrained monopole energies
for the Ca isotopes as a function of the neutron number. From
40Ca to 70Ca, the radius of the box used in the constrained
calculations is 12.5 fm (with a mesh of 0.1 fm), whereas
from 72Ca to 76Ca a large box radius (40 fm) is needed for
convergence of the CHF and CHFB calculations. As we discuss
below, the drop of m−1 beyond 70Ca is not due to the change
in the procedure but to physical reasons (the polarizability
increases as weakly bound neutron orbitals are filled). We
could, in principle, have performed all calculations with a box
of 40 fm. Indeed, in the case e.g. of 68Ca we obtain values
of m−1 from CHFB, using either the large box of 40 fm or
the small box of 12.5 fm, which are equal to 471.98 and
467.67 MeV−1 fm4, respectively.

Along the Ca isotopic chain the constrained excitation
energies decrease always when the number of neutrons evolves
from the stable nuclei toward the neutron drip line. There are
five distinct regions along the chain as far as the comparison of
the results of CHFB and CHF calculations is concerned. In the
region from 40Ca to 48Ca, the excitation energies decrease
rather smoothly when increasing the number of neutrons,
because with pairing more states are occupied and give rise

FIG. 2. Same as described in the caption to Fig. 1 but for the
monopole IEWSR.

to low-energy excitations (or, in other words, increase the
polarizability of the system). In the region from 48Ca to 52Ca,
although the pairing correlations are not strong, the occupation
of the 2p3/2 orbit has a great contribution to decrease the
excitation energies. In the region from 52Ca to 60Ca, there is
a difference between the CHF and the CHFB calculations.
In the CHF calculation, the orbit 2p1/2 is empty while it is
partially occupied when including the effect of pairing. This
low l orbit gives a definite contribution to the polarizability of
the system, and decreases the excitation energies markedly. In
the region from 60Ca to 70Ca, the 2p1/2 orbit is fully occupied
in the CHF calculation. Therefore there is small difference
between the CHF and CHFB calculations. From 70Ca to the
neutron drip-line nuclei (76Ca), there is a strong decrease of
the excitation energies in the CHF and CHFB calculations.
This great reduction is due to the even longer tails of 3s1/2 and
2d5/2 orbits.

We have analyzed whether the changes in the constrained
monopole energies come mainly from changes in the values
of m1 or m−1. From Eq. (55), one can observe that the EWSR
is sensitive to the value of the mean square radius. As HFB
and HF calculations give almost the same mean square radii,
the differences in the constrained monopole energies come
from the IEWSR. Figure 2 gives constrained estimates of the
IEWSR for the Ca isotopes as a function of the neutron number:
the IEWSR shows a similar global tendency as the excitation
energies.

In the stable region along the calcium isotopes, we have
checked that the constrained HF-BCS calculations give very
similar values of the IEWSR as CHFB, while in the very
neutron-rich region this is not the case. For example, in
44Ca, the IEWSR from the CHFB and constrained BCS are
103.1 and 105.5 MeV−1 fm4, while in 66Ca, they are 402.6
and 466.9 MeV−1 fm4, respectively. The difference is mainly
attributed, in this case, to the long tails of some orbits like 1f5/2

that increases the polarizability m−1 in the case of constrained
HF-BCS. The CHFB calculation reduces this tail, due to the
self-consistency between the pairing channel and the mean
field. We believe this is an example that shows that constrained
HF-BCS is inappropriate for the very neutron-rich nuclei.

If there is a change in E−1, as it is for Ca isotopes above
70Ca, using the CHFB calculations we are not able to tell if this
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FIG. 3. Isoscalar 0+ strength functions for
40Ca, 42Ca, 70Ca, and 72Ca with the SKM∗ force
and the volume pairing force. The dashed line
in the panel of 42Ca is the result including the
contribution of the spurious state.

is due to a decrease of EISGMR or to the appearance of new,
low-lying modes. Therefore, we have made detailed QRPA
calculations for 70,72Ca (despite the previous warnings, these
can be nonetheless illustrative). Figure 3 shows the isoscalar
0+ strength functions for 40Ca, 42Ca, 70Ca, and 72Ca with the
SKM∗ force and the volume pairing force. There exists a usual
giant monopole mode around 19 MeV and a low-lying mode
around 12 MeV with similar strengths in 70Ca and 72Ca. But in
72Ca, there is another less collective peak at lower energy. This
new low-lying mode gives to the average excitation energies
the great drop that has been seen in Fig. 1. Figure 4 displays the

proton and neutron transition densities in 70,72Ca in the peaks
of the strength function that are visible in Fig. 3. Protons have
little contribution to the low-lying modes. Thus these low-lying
modes are kind of neutron modes, and they show structures
in the inner part of the nucleus with a peak at the surface.
The usual giant monopole mode has a rather clear isoscalar
character.

The spurious state gives a contribution to the moments
of the strength function if it is not carefully projected out.
This is quite clear if one looks at the panel of Fig. 3 that
refers to 42Ca. As the spurious strength function appears only

FIG. 4. Proton and neutron transition densi-
ties in 70,72Ca in the peaks of the strength function
in Fig. 3.
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FIG. 5. Excitation energies (upper) and the inverse energy-
weighted sum rule (lower) of the isoscalar giant monopole resonance
in the nickel isotopes with SKM∗ force. In CHFB calculations, the
pairing force used is volume pairing. The experimental data are
extracted from Refs. [15,16].

at low energy, its error on the EWSR is negligible, but that
on the IEWSR could be very large. For example, in the
case of 42Ca, if one projects out the spurious strength com-
pletely, the values of the EWSR, IEWSR, and the monopole
constrained energy are m1 = 4.1 × 104 MeV fm4,m−1 =
93.99 MeV−1 fm4, and E−1 = 20.87 MeV, while they are
m1 = 4.75 × 104 MeV fm4,m−1 = 821.11 MeV−1 fm4, and
E−1 = 7.61 MeV when including the contribution of the
spurious strength.

Figure 5 shows the constrained monopole energies (upper
panel), as well as the inverse energy-weighted sum rule
value (lower panel) for the Ni isotopes. Numerically, in the
region from 56Ni to 78Ni, the radius of the box is fixed at
15 fm and this ensures the convergence of the calculations,
while in the region from 80Ni to 84Ni, the box radius is
extended to 25 fm for convergence. In the constrained HFB
calculations, we use the same quasiparticle energy cutoff
and same Skyrme and pairing forces as already discussed
for the Ca isotopes. In general, the constrained HF and
HFB calculations give roughly similar excitation energies
and inverse energy-weighted sum rules along the considered
chain from 56Ni to the neutron drip line. From 56Ni to 78Ni,

the excitation energies decrease slowly when the number of
neutrons increases. The differences between the CHF and
CHFB results in 64Ni and 66Ni come from the contribution of
the neutron 2p1/2 orbit that is partly occupied when including
the pairing effect, while the differences from 70Ni to 76Ni are
due to the contribution of the neutron 2d5/2 orbit. From 78Ni to
the neutron drip line, the excitation energies decrease steeply
because there exists an important contribution of the neutron
2d5/2 orbit both in constrained HF and HFB calculations. It
is worth analyzing the decrease of the energy above 78Ni
also by means of QRPA. Figure 6 shows the isoscalar 0+
strength functions for 58,76,78,80,82,84Ni. The decrease of the
constrained energy is associated with the gradual development
of peaks below the main giant resonance peak. These low-
lying modes are expected to be associated with the neutron
excess, similarly to what already discussed for Ca isotopes.
Figure 7 presents the proton and neutron transition densities
in 76,78,80,82,84Ni in the peaks of the strength function in Fig. 6.
When the number of neutrons increases, protons decrease their
contributions to the low-lying modes (E � 15 MeV), and they
have structures in the interior and a peak at the surface of the
nuclei. In 82,84Ni, these low-lying modes are kinds of neutron
modes.

V. SUMMARY

In this article, we have demonstrated the validity of the
dielectric theorem in the framework of HFB plus QRPA. This
theorem has been used to calculate the polarizability m−1 in
the case of monopole, along the Ca and Ni isotopes. Together
with the value of m1 obtained with the Thouless theorem,
this provides an estimate of the average monopole excitation
energy. Our method for extracting the polarizability is in good
agreement with QRPA.

For a Skyrme force like SkM∗ and a volume pairing force,
along the Ca isotopes, the global trend of the average monopole
energies is associated with a continuous decrease as the
number of neutrons increases. The pairing correlations have an
attractive effect that increases the polarizability m−1 compared
with the CHF calculations of Ref. [14]. This behavior of
the polarizability reveals that the orbits close to the Fermi
surface affect the IEWSR and the average monopole excitation
energies.

There exists a great drop above 70Ca of the average
monopole excitation energy. The detailed analysis of the
profile of the strength functions by means of HFB-QRPA,
performed in the mass region where there is a great decrease
of the average monopole excitation energy, reveals that this
decrease comes from peaks at lower energy than the ISGMR.
The transition densities calculated at these peaks show that
these low-lying modes are kinds of neutron modes. Similar
CHFB calculations in the Ni isotopes show that the decrease
of the average monopole excitation energies is associated with
a more gradual development of peaks lying below the main
giant resonance peak. The constrained HF-BCS calculations
give similar values of the IEWSR as CHFB in the stable nuclei,
while they seem to be (as it can be expected) inappropriate for
the very neutron-rich nuclei.
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FIG. 6. Same as described in the caption to
Fig. 3 but for the Ni isotopes.

Having shown the validity of the dielectric theorem paves
the way to further applications. The theorem could be used
to test other QRPA frameworks (e.g., those including the
continuum) and/or to test implementations based on more
general functionals than those based on the usual Skyrme force
plus the zero-range, density-dependent pairing. Operators
other than the monopole one can be used if one has a deformed
code at his disposal. We believe that constrained estimates
of the average excitation energies are useful to have a quick
idea of the general trends along isotopic, or isotonic, chains.

Of course they cannot replace full QRPA calculations, which
are, however, very time-consuming and should be performed
in those cases where they are expected to elucidate real novel
features of the excitation spectra.

APPENDIX: THE DIELECTRIC THEOREM IN THE
HF-BCS FRAME

The HF plus BCS (Bardeen-Cooper-Schrieffer) case can be
considered as a special limit of the HFB theory in which the

FIG. 7. Same as described in the caption to Fig. 4 but for the Ni isotopes.
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pairing field � [cf. Eq. (11)] is diagonal in the basis of the
eigenstates of the mean field h. As a consequence, the general
Bogolyubov transformation reduces to

β
†
k = uka

†
k − vkak̄ (A1)

βk = ukak − vka
†
k̄
, (A2)

where the bar labels a time-reversal state [4]. The inverse
transformations are

a
†
k = ukβ

†
k + vkβk̄ (A3)

ak = ukβk + vkβ
†
k̄
. (A4)

It is not strictly necessary to repeat step by step the proof of
the dielectric theorem in this special case. Equation (34) holds
in the HF plus BCS case as well. The operator can be written

Q̂ =
∑
kk′

qkk′a
†
kak′ =

∑
kk′

qkk′[ukuk′β
†
kβk′ + ukvk′β

†
kβ

†
k̄′

+ vkuk′βk̄βk′ + vkvk′βk̄β
†
k̄′], (A5)

and this corresponds to Eq. (16) with the simple replacements
Ulk = ukδ(lk) and Vlk = vkδ(lk̄). With the same replacements
Eq. (19) becomes

〈0̃|Q̂|λ〉 =
∑
k>k′

qk̄′kX
(λ)
kk′(ukvk′ − τuk′vk)

+ qkk̄′Y
(λ)
kk′ (ukvk′ − τuk′vk),

where τ is +1 if the operator is even under time reversal.
From this formula, one deduces that Eq. (20) is valid with the
definition (21) replaced by

q̃kk′ = qkk̄′(ukvk′ − uk′vk). (A6)

The proof of the dielectric theorem is exactly the same of the
main text, with this simpler definition of q̃: in fact, with it the
equality between the first and last members of Eqs. (37) and
(38) is still valid. The detailed expression of q̃µν,µ′ν ′ has been
said to be not needed. Consequently, the reader can follow the
steps from Eq. (39) to the end of Sec. III and obtain the proof
of the theorem also in the HF plus BCS framework.

[1] P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant Resonances:
Nuclear Structure at Finite Temperature (Harwood Academic,
New York, 1998).

[2] M. N. Harakeh and A. M. Van Der Woude, Giant Resonances:
Fundamental High-Frequency Modes of Nuclear Excitation
(Oxford University Press, Oxford, 2001).

[3] O. Bohigas, A. M. Lane, and J. Martorell, Phys. Rep. 51, 267
(1979).

[4] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).

[5] D. J. Rowe, Nuclear Collective Motion (Methuen and Co. Ltd.,
London, 1970).

[6] E. Lipparini and E. S. Stringari, Phys. Rep. 175, 103 (1989).
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