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Using the ground-state energy of 16O obtained with the realistic VUCOM interaction as a test case, we present
a comprehensive comparison of different configuration interaction (CI) and coupled-cluster (CC) methods,
analyzing the intrinsic advantages and limitations of each of the approaches. In particular, we use the importance-
truncated (IT) CI and no-core shell model (NCSM) schemes with up to 4-particle-4-hole (4p4h) excitations, with
and without the Davidson extensivity corrections, as well as the size extensive CC methods with a complete
treatment of one- and two-body clusters (CCSD) and a noniterative treatment of connected three-body clusters
via the completely renormalized correction to the CCSD energy defining the CR-CC(2,3) approach, which are
all capable of handling larger systems with dozens of explicitly correlated fermions. We discuss the impact of
the center-of-mass contaminations, the choice of the single-particle basis, and size-extensivity on the resulting
energies. When the IT-CI and IT-NCSM methods include the 4p4h excitations and when the CC calculations
include the 1p1h, 2p2h, and 3p3h clusters, as in the CR-CC(2,3) approach, we observe an excellent agreement
among the different methodologies, particularly when the Davidson extensivity corrections are added to the IT-CI
energies and the effects of the connected three-body clusters are accounted for in the CC calculations. This shows
that despite their individual limitations, the IT-CI, IT-NCSM, and CC methods can provide precise and consistent
ab initio nuclear structure predictions. Furthermore, the IT-CI, IT-NCSM, and CC ground-state energy values
obtained for 16O are in reasonable agreement with the experimental value, providing further evidence that the
VUCOM two-body interaction may allow for a good description of binding energies for heavier nuclei and that all
of the methods used in this study account for most of the relevant particle correlation effects.
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I. INTRODUCTION

Recent developments in nuclear structure theory have lead
to new perspectives for a QCD-based ab initio description of
p-shell nuclei and beyond. Significant advances have been
made regarding the two main ingredients for an ab initio
treatment of nuclear structure: the realistic interaction defining
the relevant Hamiltonian and the solution of the quantum
many-body problem. In addition to traditional realistic interac-
tions, including the Argonne V18 [1] or the CD Bonn potential
[2], the framework of chiral effective field theory [3,4] has
been used to construct consistent two- and many-nucleon
interactions based on the relevant degrees of freedom and the
symmetries of QCD [5–7].

Based on these bare interactions, several methods have been
developed to adapt the nuclear Hamiltonian to the limited
model spaces available in practical many-body calculations.
Different conceptual frameworks ranging from the Vlowk

renormalization group method [8] and the similarity renormal-
ization group scheme [9–11] to the unitary correlation operator
method [12–15] are being used to construct soft, phase-shift
equivalent interactions, which exhibit superior convergence
properties when employed in many-body calculations.
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Bare or transformed interactions are the starting point for
modern computational approaches for the ab initio solution of
the nuclear many-body problem. Two methods have become
particularly successful in this area, namely the Green’s
function Monte Carlo approach [16–20] and the no-core shell
model [21–41]. For nuclei up to A ≈ 12, detailed studies
of ground and low-lying excited states, including detailed
spectroscopic information, were conducted with both methods
using different two-nucleon interactions and phenomenolog-
ical three-nucleon forces. Very recently, the first ab initio
no-core shell model calculations using the chiral two- plus
three-nucleon interactions have shown the great potential that
this new category of interactions may offer [38].

Although the Green’s function Monte Carlo and no-core
shell model approaches are successful in describing nuclei up
to the mid-p-shell region, very few methods can provide a com-
putationally tractable ab initio description of nuclei such as 16O
or beyond. Among those are the importance-truncated no-core
shell model and the related importance-truncated configuration
interaction methods and the coupled-cluster approach, which
have recently been used for nuclear structure calculations in
the A = 16 and A = 40 mass regions [39,42–52]. Extension of
these methods toward heavier nuclei is presently in progress,
within both the ab initio description and the traditional
effective Hamiltonian approach (cf. Refs. [53,54]).

The coupled-cluster and configuration interaction method-
ologies that have been used in these recent developments are
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complementary regarding their respective advantages and lim-
itations. This work aims at a direct and quantitative comparison
of the results of large scale ab initio importance-truncated
configuration interaction, importance-truncated no-core shell
model, and coupled-cluster calculations based on the same
realistic Hamiltonian using the example of the 16O ground
state. We focus on the most practical coupled-cluster and con-
figuration interaction approaches that have been specifically
designed to handle larger systems with dozens of correlated
particles and larger single-particle basis sets. The most
essential formal differences, advantages, and limitations of the
importance-truncated configuration interaction, importance-
truncated no-core shell model, and coupled-cluster methods
are addressed and their relevance for practical nuclear structure
calculations is discussed. The nucleon-nucleon interaction
used in this work is the VUCOM potential derived in the unitary
correlation operator method (UCOM) [12–15].

Following a description of the importance-truncated con-
figuration interaction and coupled-cluster methods in Sec. II
and III, we discuss the benchmark results for 16O in Sec. IV. We
assess in detail the impact of center-of-mass contaminations
and the role of the single-particle basis and compare the results
of large-scale calculations based on the importance-truncated
configuration interaction, importance-truncated no-core shell
model, and coupled-cluster methodologies with one another
and with experiment.

II. IMPORTANCE-TRUNCATED CONFIGURATION
INTERACTION

As a first class of methods, we consider different config-
uration interaction (CI) approaches. The common element
of all CI methods, which are frequently used in nuclear
structure theory and quantum chemistry, is that the eigenvalue
problem for the Hamiltonian is solved in a many-body basis
of Slater determinants or symmetry-adapted configuration
state functions constructed from a given single-particle basis.
In particular, the so-called full CI approach of quantum
chemistry employs a model space spanned by all possible
Slater determinants built from a finite set of single-particle
orbits, providing the exact solution of the Schrödinger equation
in that single-particle basis. Unfortunately, the dimension of
the full CI model space grows factorially with the numbers of
particles and single-particle orbits, limiting full CI calculations
to small systems and relatively small single-particle basis sets.

Truncated CI models offer a simple and natural way of
reducing the dimension of the model space and the prohibitive
costs of full CI calculations. In the simplest scheme that defines
the single-reference truncated CI models, only the excited
determinants up to and including m-particle–m-hole (mpmh)
excitations from the reference determinant |�0〉, where m is
typically much smaller than the number of active particles, are
included in the Hamiltonian diagonalization. By introducing
the kpkh excitation operators Ck , the ground state emerges
then as

|�0〉 =
m∑

k=0

Ck |�0〉, (1)

where C0 |�0〉 is the reference determinant contribution to
|�0〉 and the Ck |�0〉 terms with k = 1, . . . , m are the kpkh
components of the wave function included in the calculations.
The popular approaches in this category of methods include
CISD (CI singles and doubles), CISDT (CI singles, doubles,
and triples), and CISDTQ (CI singles, doubles, triples, and
quadruples), if we use the quantum-chemistry acronyms, or
CI(mpmh) with m = 2, 3, and 4, respectively, if we use the
particle-hole language of many-body physics. Because these
truncated CI methods lack size extensivity (i.e., unlinked
diagrams are present in the truncated CI wave function
expansions, resulting in a potential loss of accuracy as the
system becomes larger), the Davidson extensivity corrections
[55] are usually added to the resulting energies to alleviate the
problem.

Another popular scheme to define truncated CI models,
which is frequently used in quantum chemistry and which
is related to the importance-truncated nuclear CI methods
considered in this work, is to consider the 1p1h and 2p2h
excitations from the multiconfigurational reference space
spanned by a number of determinants that provide a reasonable
zero-order description of the many-body state or states of
interest, as in the multireference CI methods [56,57]. The
multireference CI approaches are particularly useful when a
single reference determinant is a poor approximation to the
eigenstate(s) of interest and when one wants to accelerate
convergence toward the results of the exact diagonalization
by selecting the dominant contributions to the wave function
due to 3p3h, 4p4h, and other higher-order excitations. With
the judicious choice of the multideterminantal reference state,
the multireference CI methods can be very accurate, but they
often lead to long wave-function expansions. Thus, to further
reduce computer costs of multireference CI calculations,
one often considers reduced sets or subsets of the resulting
many-body basis states, which are usually defined through
the internal contractions of configuration state functions or the
multiconfigurational perturbation theory analysis coupled with
numerical thresholds to reject unimportant configurations. The
importance-truncation scheme used in this work uses similar
ideas to those exploited in the multireference CI approaches,
while enabling one to incorporate the higher-order mpmh
excitations from the multideterminantal reference space in
a systematic fashion. Again, because the multireference CI
methods lack size extensivity, the multireference general-
izations of the Davidson extensivity correction [57–61] are
usually added to the resulting energies (for the alternative,
more intrinsic ways of approximately restoring size extensivity
in multireference CI calculations, see, e.g., Ref. [62] and
references therein).

In nuclear structure theory, the CI concept is widely
used in the form of the diagonalization shell model and
all of its variants (see Ref. [41] and references therein).
We consider only no-core calculations in this work, i.e., all
particles are active. A full CI calculation would use a complete
model space spanned by all Slater determinants that one can
obtain for a given finite set of single-particle states, e.g., the
harmonic-oscillator single-particle states up to a maximum
principal quantum number emax, where e = 2n + l, with n

and l representing the radial and angular-momentum quantum
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numbers, respectively. Other finite sets of single-particle
states, e.g., those extracted from a self-consistent Hartree-Fock
calculation, can be employed in the CI calculations as well.
The nuclear truncated CI(mpmh) approaches, where m < A,
emerge then by considering the suitable subsets of Slater
determinants from the full CI model space, including the
reference determinant |�0〉 and all kpkh excitations from
|�0〉 with k = 1, . . . , m, as described above. By systematically
increasing m, one approaches the full CI limit in which m = A,
and by considering the emax → ∞ limit, one approaches
the exact solution of the Schrödinger equation for a given
Hamiltonian. In the following, we will reserve the term CI
exclusively for the diagonalization shell-model calculations
based on this specific form of the single-particle truncation.

A modification of the above full and truncated CI methods,
which has been used in several highly successful ab initio
investigations of nuclei in recent years, is the no-core shell
model (NCSM) [21–41]. The NCSM formalism uses a differ-
ent definition of the complete model space than that employed
in full CI. Instead of considering all Slater determinants that
one can obtain for a given set of the harmonic-oscillator
single-particle states up to a maximum principal quantum
number emax, in the NCSM approach one includes those Slater
determinants with an unperturbed excitation energy that does
not exceed Nmaxh̄�, where � is the frequency associated with
the harmonic oscillator basis [21–41]. The exact solution of the
Schrödinger equation for a given Hamiltonian is systematically
approached by considering the Nmax → ∞ limit. Although
the NCSM calculations rely on the general CI concept of the
diagonalization of the Hamiltonian used in all shell-model
calculations, in this work we distinguish between methods
that employ all or some Slater determinants resulting from
the truncation of the single-particle space, which we continue
calling the CI methods, and the NCSM approaches that
represent the special type of shell-model calculations which
uses the Nmaxh̄� model spaces. Typically, for the reasons
explained below, the NCSM calculations are performed in
the harmonic-oscillator bases (cf., however, Ref. [30] for the
Hartree-Fock based NCSM study).

For the application to nuclei, the NCSM model spaces offer
a few important advantages over the model spaces used in CI
calculations. Unlike in quantum chemistry, where the issue of
center-of-mass does not exist due to the Born-Oppenheimer
approximation, the proper description of self-bound nuclei
requires that special care is taken regarding the center-of-mass
contamination of intrinsic states. Only the NCSM model
spaces, in which the cutoff for the Slater determinants included
in the calculations is defined by setting up the maximum
unperturbed excitation energy at Nmaxh̄�, allow for an exact
separation of intrinsic and center-of-mass motions, which is
necessary to obtain translationally invariant intrinsic states, as
long as a harmonic-oscillator single-particle basis is used. The
CI truncations, in which the cutoff for the Slater determinants
included in the calculations is typically defined by the number
of major harmonic oscillator shells corresponding to the
maximum principal quantum number emax, as defined above,
violate the separation of intrinsic and center-of-mass motions,
resulting in the center-of-mass contaminated states. The degree
of center-of-mass contamination goes down as emax → ∞ and

m → A, but one cannot eliminate it mathematically, as in the
NCSM case. Furthermore, the truncation with respect to the
unperturbed excitation energy used in the NCSM calculations
automatically identifies the most relevant Slater determinants
in the wave function expansion, as is clear from elementary
perturbative arguments. One of the questions addressed in this
work is to examine the potential impact of the center-of-mass
contamination in truncated CI calculations on the results for
16O, particularly when compared to other sources of errors that
all approximate many-body methods using computationally
tractable truncated model spaces carry.

For practical applications in nuclear structure calculations,
the dimensions of the NCSM and CI model spaces become
prohibitively large, even in relatively small systems, including
the 16O nucleus examined in this work, and even when
we use the truncated CI approaches. For example, in the
aforementioned CISDTQ ≡ CI(4p4h) method one has to deal
with huge numbers of ∼n3

on
3
u and ∼n4

on
4
u determinants of the

3p3h and 4p4h types and the iterative diagonalization steps that
scale as n4

on
6
u, where no and nu are the numbers of occupied

and unoccupied single-particle states, respectively. Therefore,
in this study we introduce an additional physically motivated
truncation of the CI and NCSM model spaces, which defines
the importance-truncated (IT) CI and NCSM methods [39,63].
The IT-CI and IT-NCSM schemes are similar in the overall
philosophy to the configuration selection techniques used in
the quantum-chemical MRD-CI model of Peyerimhoff and
Buenker [57,64,65]. Using the multiconfigurational pertur-
bation theory of Ref. [66], we estimate the importance of
individual basis states for the description of a certain target
state. The amplitude with which a many-body basis state |�ν〉
contributes in the first-order perturbation theory to an initial
approximation |�ref〉 of the target state of interest, e.g., the
ground state |�0〉, defines an a priori importance measure

κν = −〈�ν | Hint |�ref〉
εν − εref

, (2)

where εν − εref is the unperturbed excitation energy result-
ing from a Møller-Plesset-type partitioning of the Hamilto-
nian [66]. With the intrinsic Hamiltonian Hint = T − Tc.m. +
VUCOM being a two-body operator, the nonzero importance
measures can be obtained only for the determinants |�ν〉 that
differ from the reference state |�ref〉 by a 2p2h excitation at
most.

To access higher-order mpmh excitations with m > 2, we
embed the concept of the importance measure into an iterative
construction of the importance-truncated model space. Starting
from the lowest-energy Slater determinant |�0〉 as an initial
reference |�ref〉, all basis states with the importance measure
|κν | � κmin, where κmin defines the importance threshold, are
included in the model space and the eigenvalue problem is
solved. The resulting eigenvector, providing an improved ap-
proximation for the target state, is used to define the reference
state |�ref〉, which is now a multideterminantal state, for the
second iteration and the above procedure is repeated. In the
limit κmin → 0, this iterative scheme converges to the full CI
or NCSM space. The perturbative character of the importance
measure entails an mpmh hierarchy. In the first iteration, only
the determinants up to the 2p2h level are generated, resulting
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in the IT-CI(2p2h) approximation. In the limit κmin → 0, the
IT-CI(2p2h) calculation recovers the full CISD ≡ CI(2p2h)
model space. In the second iteration, up to 4p4h determinants
are present, leading to the CISDTQ ≡ CI(4p4h) model space
in the κmin → 0 limit. In this study, we restrict ourselves to
two iterations of IT-CI and IT-NCSM, i.e., model spaces up to
the 4p4h level, so that the resulting IT-CI(4p4h) wave-function
expansions are approximations to the CISDTQ wave functions.
We should emphasize that for 16O and for larger single-particle
basis sets used in this study, the full CISDTQ ≡ CI(4p4h)
calculations would not be possible due to the prohibitively
large dimensions of the corresponding model spaces. The IT
methodology is among very few methods that enable one to
incorporate 4p4h excitations in the CI calculations for nuclei
with larger numbers of correlated particles, such as 16O, and
large single-particle basis sets with hundreds of orbitals in a
computationally tractable fashion.

Eventually, as in the MRD-CI approach of Refs. [57,64,65],
we construct the importance-truncated model spaces and solve
the corresponding eigenvalue problems for a sequence of
importance thresholds κmin and extrapolate to κmin → 0. All
IT-NCSM and IT-CI results presented in Sec. IV are based
on sequences of calculations with the importance thresholds
in the range κmin = 2 × 10−5 to 15 × 10−5. To warrant a
robust extrapolation result, we use additional information
from a second-order perturbative estimate for the energy
contributions �excl(κmin) of the excluded determinants |�ν〉,
i.e., those determinants |�ν〉 for which |κν | < κmin. In the limit
of a vanishing threshold, which means that no determinants
are discarded, we obviously have �excl(0) = 0. We employ
this property as a constraint in a simultaneous extrapolation
of the energies E(κmin) obtained from the truncated eigen-
value problem and of the perturbatively corrected energies
E(κmin) + �excl(κmin) using fifth- to seventh-order polynomi-
als for each of the quantities. The details of this procedure
will be discussed elsewhere [63]. The uncertainties of the
extrapolated energies reported in Sec. IV are always below
0.5 MeV.

The process of constructing the importance-truncated
model spaces, combined with the extrapolation to the κmin → 0
limit, as described above, is very efficient in reducing the
dimensions of the corresponding CI or NCSM spaces to
the many-body basis states that are most relevant for the
eigenvalue problem of interest. Nevertheless, we still have
to solve relatively large eigenvalue problems. Because the
resulting eigenvalue problems involve sparse Hamiltonian
matrices, we can use the Lanczos or Arnoldi technique to
solve them. We use the ARPACK library for that purpose. The
largest dimensions of the importance-truncated model spaces
that appear in the calculations for 16O presented in Sec. IV are
a factor of a few times 107. Because we solve the eigenvalue
problem in a restricted space, the importance-truncated CI
and NCSM calculations fulfill the variational principle and
the Hylleraas-Undheim theorem [67]. Furthermore, as in
all CI and NCSM calculations, the IT-CI and IT-NCSM
approaches provide us with easy access to the eigenstates
of the Hamiltonian in a shell-model representation, along
with the energies, without any additional effort. The IT-CI
and IT-NCSM eigenstates can readily be used to compute

expectation values of various observables, transition matrix
elements, or densities and form factors.

If we stop the iterative construction of the importance-
truncated model space before full self-consistency is reached,
e.g., after just two iterations, as is done in this work,
then the resulting IT-CI(4p4h) approach is not strictly size
extensive. Thus, as in multireference CI calculations in
quantum chemistry, where a similar problem occurs, we
employ the aforementioned multireference Davidson (MRD)
correction to estimate the effect of higher-order configurations
beyond the 4p4h excitation level and to approximately re-
store size extensivity. We use the multireference rather than
single-reference Davidson correction, because, in analogy
to the multireference CI methods of quantum chemistry,
the IT-CI(4p4h) wave function expansions contain subsets
of the 3p3h and 4p4h determinants resulting from the up
to 2p2h excitations from the multiconfigurational reference
state |�ref〉. There are several ways of calculating the MRD
extensivity corrections [57–61,68]. We use the Davidson-
Silver form of the MRD correction discussed in Ref. [68],
which we add to the IT-CI(4p4h) energy to obtain the final,
approximately size extensive IT-CI(4p4h)+MRD result and
which is calculated using the energy of the multiconfigu-
rational reference state |�ref〉 and the summed weight of
the reference determinants in the IT-CI(4p4h) eigenstate. By
employing the a posteriori MRD corrections to IT-CI(4p4h)
energies, we can incorporate the effects of the most essential
higher-than-4p4h configurations in a computationally efficient
manner without dealing with the higher-than-4p4h excitations
explicitly. In the coupled-cluster methods discussed in Sec. III
such contributions are represented by the disconnected product
terms involving one- and two-body clusters. As shown in this
work, the approximately size extensive IT-CI(4p4h)+MRD
approach is competitive with the rigorously size extensive
and accurate coupled-cluster schemes that are discussed in
the following section.

III. COUPLED-CLUSTER METHOD

The second class of methods that we consider are those
based on the single-reference coupled-cluster (CC) theory [69–
73] (see Refs. [74–80] for selected reviews), which utilizes the
exponential ansatz for the A-particle ground state,

|�0〉 = exp(T )|�0〉, (3)

where |�0〉 is the reference determinant and

T =
A∑

k=1

Tk (4)

is the cluster operator. The cluster operator T is a particle-hole
excitation operator, defined relative to the Fermi vacuum |�0〉,
whose many-body components

Tk =
∑

i1<···<ik,a1<···<ak

t i1...ik
a1...ak

a†
a1

· · · a†
ak

aik · · · ai1 (5)

generate the connected wave function diagrams of |�0〉
to infinite order. The remaining linked, but disconnected,
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contributions are produced through the exponential ansatz for
|�0〉. Here and elsewhere in this article, we use the notation
in which i1, i2, . . . or i, j, . . . are the single-particle states
occupied in the Fermi vacuum state |�0〉 and a1, a2, . . . or
a, b, . . . are the single-particle states unoccupied in |�0〉 (we
will use labels p, q, . . . for the generic single-particle basis
states).

Typically, the explicit equations for the ground-state energy
E0 and the cluster amplitudes t i1...ik

a1...ak
defining the many-body

components Tk of T according to Eq. (5) are obtained by
inserting the wave function |�0〉, Eq. (3), into the Schrödinger
equation, H |�0〉 = E0|�0〉, premultiplying both sides of the
resulting equation on the left by exp(−T ) to obtain the
connected cluster form of the Schrödinger equation [71,72],

H̄ |�0〉 = E0|�0〉, (6)

where

H̄ = exp(−T )H exp(T ) = [H exp(T )]C (7)

is the similarity-transformed Hamiltonian or, equivalently, the
connected product of the Hamiltonian and exp(T ) (designated
by subscript C), and projecting both sides of Eq. (6) on
the reference determinant |�0〉 and excited determinants
|�a1...ak

i1...ik
〉 = a

†
a1 · · · a†

ak
aik · · · ai1 |�0〉 that span the relevant A-

particle Hilbert space. The latter projections result in a non-
linear system of explicitly connected and energy-independent
equations for the cluster amplitudes t i1...ik

a1...ak
,

〈
�

a1...ak

i1...ik

∣∣H̄ |�0〉 = 0, i1 < · · · < ik, a1 < · · · < ak, (8)

where H̄ is defined by Eq. (7) and k = 1, . . . , A, whereas the
projection on |�0〉 results in the CC energy formula,

E0 = 〈�0|H̄ |�0〉. (9)

The advantage of this formulation of CC theory, which is
a standard formulation adopted, for example, in quantum
chemistry, where most of the development and application
work involving CC methods has occurred, is that, unlike
the expectation value of the Hamiltonian with the CC wave
function, which would lead to a nonterminating power series
in T of the form E0 = 〈�0|[exp(T †)H exp(T )]C |�0〉 [72],
the CC equations written above represent algebraic expres-
sions that mathematically terminate at a finite power of T .
The similarity-transformed Hamiltonian H̄ , or the connected
product of the Hamiltonian and the exp(T ) operator that is
equivalent to H̄ [cf. Eq. (7)], is a finite polynomial expansion
in T whose length depends only on the highest many-body
rank of the interactions in the Hamiltonian, not on the number
of particles in a system, so one does not need to make ad
hoc truncations in powers of T , which would have to be
invoked if one attempted to minimize the expectation value
of the Hamiltonian, to solve for the cluster amplitudes and
energy. For example, for Hamiltonians that do not contain
higher-than-pairwise interactions, H̄ and the resulting CC
equations for cluster amplitudes, Eq. (8), terminate at the T 4

terms, which is a purely mathematical truncation resulting
from the fact that one cannot connect more than four T

diagrams to the diagrams representing the Hamiltonian in the
definition of H̄ , Eq. (7), if H is a two-body Hamiltonian. The

energy formula, Eq. (9), simplifies even further in this case.
If H does not contain higher-than-pairwise interactions, we
obtain

E0 = 〈�0|H |�0〉 + 〈�0|
[
HN

(
T1 + T2 + 1

2T 2
1

)]
C
|�0〉, (10)

where HN = H − 〈�0|H |�0〉 is the Hamiltonian in the
normal-ordered form relative to |�0〉. In other words, after
determining the cluster operator T by solving the system of
equations represented by Eq. (8), we only need the 1p1h or
singly excited and 2p2h or doubly excited components of
T , T1, and T2, respectively, to determine the energy if H is
a two-body Hamiltonian.

The above is the exact CC theory, which is equivalent to
the exact diagonalization of the Hamiltonian with the full CI
approach. Indeed, we could obtain Eqs. (8) and (9) by directly
projecting the Schrödinger equation for the exact CC wave
function |�0〉, Eq. (3), H exp(T )|�0〉 = E0 exp(T )|�0〉, with
T defined by Eq. (4), on the |�0〉 and |�a1...ak

i1...ik
〉 determinants

that span the A-particle Hilbert space. The energy-dependent
terms on the right-hand side of the resulting equations,

〈
�

a1...ak

i1...ik

∣∣H exp(T )|�0〉 = E0
〈
�

a1...ak

i1...ik

∣∣ exp(T )|�0〉, (11)

cancel out the unlinked terms on the left-hand side of Eq. (11)
to produce the system of the explicitly connected amplitude
equations represented by Eq. (8) (see, e.g., Ref. [81] for a
pedagogical derivation). Similarly, the disconnected diagrams
corresponding to the product of the Hamiltonian and exp(T )
in the resulting energy formula,

E0 = 〈�0|H exp(T )|�0〉, (12)

do not contribute to Eq. (12), resulting in Eq. (9). Alter-
natively, one can show that Eq. (9) is equivalent to the
expectation value of the Hamiltonian with the CC wave func-
tion, 〈�0| exp(T †)H exp(T )|�0〉/〈�0| exp(T †) exp(T )|�0〉,
as long as the cluster operator T has the exact form given by
Eq. (4), in which all many-body components of T including
TA are included, and as long as the corresponding cluster
amplitudes t i1...ik

a1...ak
with k = 1, . . . , A satisfy Eq. (8) (see, e.g.,

Ref. [82]).
The exact CC theory, as described above, being equivalent

to the full CI diagonalization, is limited to small few-body
problems. Thus, in all practical applications of CC theory,
including those reported in this work, one truncates the
many-body expansion for T at some, preferably low, mpmh
excitation level Tm. In this study, following the footsteps
of quantum chemistry, where the CC theory has become
one of the most successful and frequently used many-body
methodologies, we focus on the most practical CC approx-
imations that can be applied to systems with dozens or
even hundreds of correlated fermions. Thus, we consider the
basic CCSD (CC singles and doubles) approximation [83–86],
which accounts for the effects of one- and two-body clusters,
T1 and T2, respectively, as well as the completely renormalized
CR-CC(2,3) approach [87–89], which accounts for the effects
of connected three-body T3 clusters through a relatively
inexpensive, yet very effective, noniterative correction to the
CCSD energy and which represents an improved variant of the
completely renormalized CCSD(T) [CR-CCSD(T)] method
[77,78,81,90] used in previous ab initio no core calculations for
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the 4He and 16O nuclei [47–50]. In addition to many successful
quantum chemistry applications (see Refs. [87–89,91–100]
for representative examples), the CR-CC(2,3) approach was
recently used to study the ground and excited states of the 56Ni
nucleus, treated by the effective Hamiltonian in the pf -shell
basis [53], demonstrating its ability to provide a virtually
exact description of closed-shell nuclei at a tiny fraction of
the costs of the shell-model calculations that aim at similar
accuracies, such as the CI method with up to 4p4h excitations,
and the ability to retain the accuracy of the CI approach with
up to 4p4h excitations even when the reference determinant
contributes very little to the wave function [the CPU timings
of the CR-CC(2,3) calculations reported in Ref. [53] were on
the order of one minute on a single processor]. The present
article shows the high accuracy offered by the CR-CC(2,3)
approach in the context of the much larger scale no-core ab
initio calculations for 16O employing realistic nucleon-nucleon
interactions and single-particle bases as large as eight major
oscillator shells (480 uncoupled single-particle basis states).

In the CCSD calculations, which, in addition to producing
reasonably accurate results for closed-shell systems, provide
the framework for the determination of the CR-CC(2,3)
corrections due to T3 clusters, the many-body expansion of
the cluster operator T defining the CC wave function ansatz
is truncated at the level of 2p2h (or double) excitations, i.e.,
T = T1 + T2, where [cf. Eq. (5)]

T1 =
∑

i,a

t iaa
†
aai (13)

and

T2 =
∑

i<j,a<b

t
ij

aba
†
aa

†
bajai (14)

are the singly and doubly excited clusters. In analogy to the
exact CC theory defined by Eqs. (8), where k = 1, . . . , A, and
(9), we determine the cluster amplitudes t ia and t

ij

ab defining the
CCSD wave function

∣∣�(CCSD)
0

〉 = exp(T1 + T2)|�0〉 (15)

by solving the nonlinear system of energy-independent and
explicitly connected algebraic equations similar to Eq. (8).
Specifically, because we only need the T1 and T2 cluster com-
ponents, we consider the subset of equations corresponding to
the projections on the singly and doubly excited determinants
[Eq. (8) with k = 1 and 2], so that the number of equations
matches the number of unknown amplitudes t ia and t

ij

ab. We
obtain

〈
�a

i |H̄ (CCSD)
∣∣�0〉 = 0, (16)

〈
�ab

ij

∣∣H̄ (CCSD)|�0〉 = 0, (17)

where

H̄ (CCSD) = exp(−T1 − T2)H exp(T1 + T2)

= [H exp(T1 + T2)]C (18)

is the similarity-transformed Hamiltonian of CCSD [the
similarity-transformed Hamiltonian H̄ , Eq. (7), written for
T = T1 + T2], and |�a

i 〉 and |�ab
ij 〉 are the singly and doubly

excited determinants, respectively, relative to |�0〉. Once the

cluster amplitudes t ia and t
ij

ab defining T1 and T2 are known, the
CCSD energy E

(CCSD)
0 is computed using Eq. (9) in which H̄

is replaced by H̄ (CCSD), Eq. (18).
As pointed out above, the CC equations obtained through

projections of the Schrödinger equation have finite polynomial
nature, i.e., they terminate at a finite power of T that depends
on the highest many-body rank of the interactions in the
Hamiltonian. When the Hamiltonian is a two-body operator,
the CC equations for cluster amplitudes terminate at the T 4

terms and the ground-state energy is given by Eq. (10). In
particular, when H does not contain higher-than-two-body
interactions, the generic CCSD amplitude equations, Eqs. (16)
and (17), that apply to all Hamiltonians simplify to
〈
�a

i

∣∣[HN

(
1 + T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

)]
C
|�0〉 = 0

(19)

and
〈
�ab

ij

∣∣[HN

(
1 + T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1 + 1

2T 2
2

+ 1
2T 2

1 T2 + 1
24T 4

1

)]
C
|�0〉 = 0, (20)

respectively. If the cluster operator T was not truncated, as in
the exact CC theory defined by Eqs. (4), (8), and (9), the results
would be equivalent to the variational, full CI calculation
corresponding to the minimization of the expectation value
of the Hamiltonian with the CC wave function |�0〉, Eq. (3).
Unfortunately, in the CCSD case, T is truncated at T2, so
that the resulting ground-state energy E

(CCSD)
0 , determined

by solving the CCSD amplitude equations, Eqs. (16) and
(17) [or, when the Hamiltonian is two-body, Eqs. (19) and
(20)], and by using the resulting T1 and T2 clusters in
Eq. (9) [or, in the two-body Hamiltonian case, (10)] is not
equivalent to the expectation value of the Hamiltonian with
the CCSD wave function |�(CCSD)

0 〉, Eq. (15), and, as such,
does not have the bound if A > 2. One could, at least in
principle, contemplate variational CCSD calculations based
on minimizing the expectation value of the Hamiltonian with
the CCSD wave function, as in Refs. [101,102], but, as already
explained, the expectation value of the Hamiltonian with the
CC (e.g., CCSD) wave function is a nonterminating series in
cluster amplitudes that does not lead to practical computational
schemes. On the other hand, due to the exponential nature of
the CC wave function, the approximate CC methods using
truncated cluster operators T = ∑m

k=1 Tk with m < A (CCSD
corresponds to the m = 2 case) converge more rapidly to
the full CI limit as m → A than the equivalent truncated
shell-model expansions that rely on the same manifold of
excited determinants, defined by Eq. (1), while providing the
rigorously size extensive results that truncated CI expansions
cannot provide due to the presence of unlinked contributions in
the wave function and disconnected contributions in the energy
that do not cancel out. For example, as already established in
the 1970s and early 1980s, the CCSD method, which relies
on up to 2p2h cluster components, is more accurate than the
CI approach truncated at 2p2h determinants. As mentioned
earlier, and as demonstrated in this article, the CCSD approach
corrected for the connected 3p3h clusters T3 via the CR-
CC(2,3) method is as accurate as the CI approach with up to
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4p4h excitations, while providing a size extensive description
of many-particle systems. The issue of the lack of extensivity
in CI calculations is addressed in this article through the
suitably defined, quantum-chemistry-inspired corrections to
the CI energies, as described in the previous section. The
elementary analysis that enables one to understand why the
CR-CC(2,3) method is as accurate as the CI approach with up
to 4p4h excitations is provided in Sec. IV C.

The CCSD approximation provides information about the
bulk of the correlation effects, which are described by T1, T2,
and their products, but one must account for the higher-than-
doubly excited connected clusters, particularly the T3 clusters,
to obtain a more quantitative description. This can be done
through the CCSDT (CC singles, doubles, and triples) method
[103,104], in which the cluster operator is truncated at the 3p3h
level (T = T1 + T2 + T3) and, in addition to the equations
corresponding to the projections on singly and doubly excited
determinants, one considers the projections on triply excited
determinants [k = 3 in Eq. (8)]. Unfortunately, as explained
below, the CCSDT scheme has very large computational
costs, and so is generally not practical and limited to small
few-body problems and relatively small single-particle basis
sets. As a result, inspired by the similar difficulties encountered
in quantum chemistry, where CCSDT is limited to small
few-electron systems, we instead use the considerably less
expensive CR-CC(2,3) approach, in which we incorporate the
effects of T3 clusters by adding a noniterative a posteriori
correction

δ0(2, 3) =
∑

i<j<k,a<b<c

	abc
ijk M

ijk

abc (21)

to the CCSD energy E
(CCSD)
0 so the final CR-CC(2,3) energy

is

E
(CR-CC(2,3))
0 = E

(CCSD)
0 + δ0(2, 3), (22)

where δ0(2, 3) is given by Eq. (21). The quantities M
ijk

abc

entering Eq. (21) are the projections of the connected cluster
form of the Schrödinger equation written for the CCSD wave
function on the triply excited determinants |�abc

ijk 〉, which
define the triply excited moments of the CCSD equations
[77,78,81,87–90], i.e.,

M
ijk

abc = 〈
�abc

ijk

∣∣H̄ (CCSD)|�0〉, (23)

where H̄ (CCSD) is the similarity-transformed Hamiltonian of
the CCSD approach, Eq. (18). As in the case of the CCSD
equations, the explicit form of Eq. (23) depends on the nature
of the interactions in the Hamiltonian. When the Hamiltonian
does not contain higher–than–two-body interactions (the case
examined in this article), one can write

M
ijk

abc = 〈
�abc

ijk

∣∣[HN

(
T2 + T1T2 + 1

2T 2
2 + 1

2T 2
1 T2

+ 1
2T1T

2
2 + 1

6T 3
1 T2

)]
C
|�0〉. (24)

The 	abc
ijk coefficients entering Eq. (21) are defined as

	abc
ijk = 〈�0|
H̄

∣∣�abc
ijk

〉/
D

ijk

abc, (25)

where the denominator

D
ijk

abc = E
(CCSD)
0 − 〈

�abc
ijk

∣∣H̄ (CCSD)
∣∣�abc

ijk

〉
(26)

is obtained by approximating the triples-triples block of
the matrix representing the H̄ (CCSD) operator, Eq. (18), by
its diagonal, as in the Epstein-Nesbet perturbation theory,
while 
 = 
1 + 
2 is the hole-particle de-excitation operator
defining the CCSD “bra” or dual ground state [105–107]

〈
�̃

(CCSD)
0

∣∣ = 〈�0|(1 + 
1 + 
2) exp(−T1 − T2), (27)

which satisfies the biorthonormality condition
〈�̃(CCSD)

0 |�(CCSD)
0 〉 = 1. The one- and two-body components

of the 
 operator of CCSD,


1 =
∑

i,a

λa
i a

†
i aa (28)

and

2 =

∑

i<j,a<b

λab
ij a

†
i a

†
j abaa, (29)

respectively, are obtained by solving the linear system of
equations [105–107]

〈�0|(1 + 
1 + 
2)H̄ (CCSD)
∣∣�a

i

〉 = E
(CCSD)
0 λa

i , (30)

〈�0|(1 + 
1 + 
2)H̄ (CCSD)
∣∣�ab

ij

〉 = E
(CCSD)
0 λab

ij . (31)

The details of the derivation of the noniterative correction
δ0(2, 3) defining the CR-CC(2,3) calculations, which orig-
inates from the mathematical formalism referred to as the
biorthogonal method of moments of coupled-cluster equations
[87,88] and which describes the leading terms toward the full
CI energy due to T3 clusters, mimicking the performance of
the much more expensive CCSDT method at the small fraction
of the computer cost, can be found in Refs. [87,88].

The fact that the construction of the CR-CC(2,3) correction
δ0(2, 3) requires the determination of the 
 operator of the
CCSD theory, which defines the CCSD bra state 〈�̃(CCSD)

0 |, as
described above, has an additional advantage that we can use
the same operator 
 to determine properties other than energy.
We can, for example, use it to determine the CCSD one-body
reduced density matrices

γ p
q ≡ 〈

�̃
(CCSD)
0

∣∣(a†
paq)

∣∣�(CCSD)
0

〉

= 〈�0|(1 + 
1 + 
2)(a†
paq)|�0〉 (32)

and properties
〈
�̃

(CCSD)
0

∣∣
∣∣�(CCSD)

0

〉 =
∑

p,q

θq
pγ p

q , (33)

where  is a one-body property operator defined through
matrix elements θ

q
p ≡ 〈p|θ |q〉,

(a†
paq) = exp(−T1 − T2)(a†

paq) exp(T1 + T2)

= [(a†
paq) exp(T1 + T2)]C (34)

is the similarity-transformed connected form of the operator
string (a†

paq), analogous to the similarity-transformed Hamil-
tonian H̄ (CCSD), T1 and T2 are the singly and doubly excited
clusters obtained by solving the CCSD equations, Eqs. (16) and
(17), and 
1 and 
2 are obtained by solving the linear system
of equations given by Eqs. (30) and (31) [105–107]. In general,
if � is an operator representing the quantum-mechanical
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quantity of interest, the CC analog of the expectation value
of � can be determined using the equation [105–107]

〈�〉 ≡ 〈�̃0|�|�0〉 = 〈�0|(1 + 
) �̄|�0〉, (35)

where

�̄ = exp(−T )� exp(T ) = [� exp(T )]C (36)

is the similarity-transformed form of � and 
 is the hole-
particle de-excitation operator defining the left ground eigen-
state of H̄ , Eq. (7), which has the form 〈�0|(1 + 
), and the
bra or dual CC ground state

〈�̃0| = 〈�0|(1 + 
) exp(−T ). (37)

In analogy to the CCSD case, 
 can be obtained by solving
the linear system of equations,

〈�0|(1 + 
)H̄
∣∣�a1...ak

i1...ik

〉 = E0λ
a1...ak

i1...ik
, (38)

where E0 is the CC ground-state energy and λ
a1...ak

i1...ik
are the

amplitudes that define the many-body components of 
,


k =
∑

i1<···<ik,a1<···<ak

λ
a1...ak

i1...ik
a
†
i1

· · · a†
ik
aak

· · · aa1 (39)

[clearly, Eq. (38) is the generalization of Eqs. (30) and (31),
corresponding to the CCSD case, to any level of CC theory].
In particular, when � is the Hamiltonian H , we obtain from
Eq. (35)

〈H 〉 = 〈�0|(1 + 
)H̄ |�0〉, (40)

which is equivalent to the CC energy formula, Eq. (9), since
the 〈�0|
kH̄ |�0〉 contributions to Eq. (40) vanish when the
cluster operator T entering the definition of H̄ , as in Eq. (7),
satisfies the system of CC equations, Eq. (8). It should be
noted that the above way of calculating the 〈�〉 values,
which reflects on the biorthogonal character of CC theory,
becomes fully equivalent to the determination of 〈�〉 as the
conventional expectation value 〈�0|�|�0〉/〈�0|�0〉 when T

is a nontruncated cluster operator given by Eq. (4) obtained
in the exact CC calculations defined by Eq. (8). When T is
truncated, as in the CCSD case, the value of 〈�〉 determined
from Eq. (35), although no longer identical to the quantum-
mechanical expectation value 〈�0|�|�0〉/〈�0|�0〉, where
|�0〉 is the corresponding CC wave function, is equivalent
to the alternative way of determining 〈�〉 as (∂E0(λ)/∂λ)λ=0,
where E0(λ) is the CC energy, Eq. (9), calculated after solving
the relevant CC equations for the auxiliary Hamiltonian
Hλ = H + λ�, as in the response CC theory [82,108], as
long as the reference determinant |�0〉 does not vary with
λ. We use this fact in Sec. IV A to determine the expectation
values of the center-of-mass Hamiltonian corresponding to
the CCSD and CR-CC(2,3) calculations as the appropriate
CC energy derivatives. The vast experience with performing
CC calculations in quantum chemistry is that the difference
between the values of 〈�〉 calculated as the conventional
quantum-mechanical expectation values and the 〈�〉 values
obtained as the corresponding energy derivatives, as described
above, are very small, because the approximate CC methods,
such as those used in this work, provide results close to full
CI. Clearly, there are no differences between the 〈�〉 values

obtained as the traditional expectation values and energy
derivatives in truncated CI calculations, because all CI methods
are variational and, as such, satisfy the Hellmann-Feynman
theorem. In approximate CC methods, we have to rely on a
response formulation and the equations such as Eq. (35), or the
equivalent energy derivatives, as described above, because, in
analogy to the Hamiltonian, the traditional expectation value
expression with the CC wave function, 〈�0|�|�0〉/〈�0|�0〉,
would lead to a nonterminating power series in cluster
amplitudes of the form 〈�0|[exp(T †)� exp(T )]C |�0〉 that does
not lead to practical computational schemes.

By using the CR-CC(2,3) approach, we are able to
significantly reduce the computational costs associated with
the inclusion of the connected triply excited clusters, enabling
calculations with relatively large model spaces, while pro-
ducing results that should be as accurate as those obtained
with the full CCSDT scheme [87]. Indeed, the most expensive
computational steps of CR-CC(2,3) scale as n3

on
4
u in the

determination of the noniterative correction due to T3 and
n2

on
4
u in the underlying CCSD calculation, where, as mentioned

earlier, no and nu represent the numbers of occupied and
unoccupied single-particle states, respectively. For realistic
values of no and nu, including the larger single-particle basis
sets used in this work, this is less expensive than the n3

on
5
u

iterative steps defining CCSDT by orders of magnitude. In
addition, unlike in CCSDT, in the CR-CC(2,3) calculations one
does not have to store the large number of ∼n3

on
3
u amplitudes

t
ijk

abc defining the T3 cluster operator, because the noniterative
correction δ0(2, 3) defining the T3 correction to the CCSD
energy, Eq. (21), is calculated using the one- and two-body
clusters, T1 and T2, and their 
 de-excitation analogs, 
1 and

2, respectively, as described above, which need a storage of
the nonu amplitudes t ia and λa

i and n2
on

2
u amplitudes t

ij

ab and
λab

ij . Thus, the total storage requirements of the CR-CC(2,3)
calculations are primarily defined by the number of two-body
matrix elements that define the Hamiltonian or the two-body
matrix elements of the similarity-transformed Hamiltonian
H̄ (CCSD). The memory requirements scale as non

3
u. A small

subset of the three-body matrix elements of H̄ (CCSD) that
enter the calculation of the CR-CC(2,3) triples correction
δ0(2, 3) via the aforementioned equations for the 
 operator of
CCSD and the triply excited moments M

ijk

abc do not have to be
precomputed and stored, because one can rigorously factorize
the diagrams that represent them and express all quantities
that enter the calculation of δ0(2, 3) in terms of the one- and
two-body matrix elements of H̄ (CCSD) (see, e.g., Ref. [109], and
references therein). Thanks to the consistent use of the recur-
sively generated intermediates, including one- and two-body
matrix elements of H̄ (CCSD), and fast matrix multiplication
routines [110], as is always done in the most efficient, modern
implementations of CC methods in quantum chemistry, our
CCSD and CR-CC(2,3) computer codes are fully vectorized.
Thanks to the DIIS algorithm [111], which we use to solve
the CCSD equations and their 
 counterparts (for the first
application of the DIIS procedure to solving the CC equations,
see Ref. [112]), our CCSD calculations typically converge
in about 20 iterations to obtain an energy accurate to within
10−5 MeV. The triples correction δ0(2, 3) requires no itera-
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tions, which is one of the biggest advantages of CR-CC(2,3) as
opposed to the iterative CCSDT approach. We refer the reader
to Refs. [87–89] for the details of the CR-CC(2,3) theory,
Ref. [109] for the explicit, computationally efficient expres-
sions for the one- and two-body matrix elements of H̄ (CCSD)

and moments M
ijk

abc that enter the CR-CC(2,3) calculations,
and Ref. [51] for the computationally efficient, fully factorized
form of the CCSD equations that precede the calculation of
the triples correction δ0(2, 3). We also note that although
the earlier form of the CR-CC(2,3) approach, designated as
CR-CCSD(T) [77,78,81,90], which was used in the studies of
the 4He and 16O nuclei [47,48], was only approximately size
extensive (to within 0.5–1% of the correlation energy [77]), the
CR-CC(2,3) method used in this work is fully size extensive,
so that no loss of accuracy occurs when going from smaller to
larger many-fermion systems.

One of the most important findings of this work is that the
CR-CC(2,3) method, with its relatively inexpensive computa-
tional steps that scale as n2

on
4
u in the iterative part and n3

on
4
u in

the noniterative part, is capable of providing the results that
are virtually identical to those that effectively correspond to
the diagonalization of the Hamiltonian using the CI approach
with up to 4p4h excitations from the reference determinant
|�0〉, corrected for the effects of higher-than-4p4h excitations
and extensivity through the use of the Davidson corrections.
The IT-CI(4p4h) approach reduces the most expensive n4

on
6
u

steps of the full CI(4p4h) calculation and the need to deal with
the large numbers of the 3p3h and 4p4h determinants in the
CI(4p4h) diagonalization by orders of magnitude through the
use of importance truncation and extrapolation to the κmin → 0
limit, as discussed in the previous section. The CR-CC(2,3)
method does effectively the same work, eliminating, in particu-
lar, the need to deal with the 3p3h and 4p4h excitations of CI in
an explicit manner, by representing the dominant higher-order
correlations through the disconnected product terms involving
low-order T1 and T2 clusters, such as, for example, T1T2 for
3p3h excitations, (1/2)T 2

2 for 4p4h excitations, (1/2)T1T
2

2 for
5p5h excitations, (1/6)T 3

2 for 6p6h excitations, etc., while
making sure that the connected 3p3h excitations that are
usually more important than the disconnected T1T2 terms
are accounted for through the computationally affordable
noniterative δ0(2, 3) correction to the CCSD energy. The
detailed analysis of the CI and CC wave functions that explains
this is provided in Sec. IV C. The numerical similarity of
the CR-CC(2,3) and Davidson-corrected IT-CI(4p4h) [i.e.,
IT-CI(4p4h)+MRD)] results does not address the issue of the
center-of-mass contaminations that are present in all truncated
CC and all truncated CI calculations other than NCSM. The
impact of the center-of-mass contaminations on the truncated
CC [CCSD and CR-CC(2,3)] and CI [IT-CI(4p4h)] results for
16O is examined in Sec. IV A.

IV. BENCHMARK FOR 16O

We aim at a quantitative comparison of the different
approaches using the ground state of 16O as an example.
For the interaction we use the realistic VUCOM potential
derived in the framework of the unitary correlation operator

method (UCOM) discussed in Refs. [12–15]. Using a unitary
transformation tailored for the description of short-range
central and tensor correlations, a phase-shift equivalent soft
interaction is derived from the Argonne V18 potential [1].
Applications in various many-body approaches, from the
no-core shell model for light nuclei to Hartree-Fock and
many-body perturbation theory for heavy nuclei [113], show
that this two-body potential allows for a realistic description
of binding energies throughout the nuclear chart without the
explicit inclusion of additional three-body (or other higher-
than-two-body) interactions. All calculations presented here
are based on the same VUCOM(Iϑ = 0.09 fm3) potential as that
used in Refs. [12,113].

As implied by the discussion in the previous section, we
compare the following three groups of ab initio methods:
(i) the coupled-cluster approach including singly and doubly
excited clusters, CCSD, as well as the noniterative completely
renormalized CR-CC(2,3) scheme that corrects the CCSD
results for the effects of the connected triply excited clusters;
(ii) the importance-truncated configuration interaction method
including up to 4p4h excitations, IT-CI(4p4h), without and
with the MRD size extensivity corrections; and (iii) the
importance-truncated no-core shell model approach including
up to 4p4h excitations, IT-NCSM(4p4h), with and without
the MRD corrections. In addition to comparing the results of
CC, CI, and NCSM calculations, particularly the CR-CC(2,3)
and IT-CI(4p4h)(+MRD) levels, we examine several issues
relevant for this comparison, including the role of center-
of-mass contaminations and the sensitivity of the results
to the choice of the single-particle basis. By comparing
the size extensive, but not variationally bound CR-CC(2,3)
results with the variational, but not rigorously size extensive
IT-CI(4p4h)(+MRD) results for the binding energies of 16O
side by side, we have an opportunity to comment on the
significance or insignificance of such issues as the violation of
size extensivity by the truncated CI calculations and the lack
of the variational bound in the CC calculations.

We begin with two important issues relevant for the
comparison of the CCSD, CR-CC(2,3), IT-CI(4p4h)(+MRD),
and IT-NCSM(4p4h) results, namely the role of center-of-mass
contaminations and the sensitivity of the results to the choice
of the single-particle basis.

A. Center-of-mass problem

All calculations are performed with a translationally
invariant intrinsic Hamiltonian Hint = T − Tc.m. + VUCOM.
However, this does not imply that the resulting many-body
states and intrinsic energies are free of spurious contribu-
tions induced by a coupling of intrinsic and center-of-mass
degrees of freedom. For the nucleus as a self-bound and
translationally invariant system the intrinsic properties should
not depend on the center-of-mass motion, i.e., intrinsic and
center-of-mass components of the many-body state have to
decouple.

For a Slater determinant basis, an exact separation of
intrinsic and center-of-mass motions is possible only in a
complete Nmaxh̄� model space based on harmonic oscillator
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single-particle states as employed in the full NCSM approach.
The use of a different model-space truncation or a differ-
ent single-particle basis destroys this decoupling property
and induces center-of-mass contaminations. This problem is
well known in the context of the nuclear shell model (see
Ref. [114] and references therein) and it was also addressed in
the context of CC calculations for nuclei, both intrinsically,
through a translationally invariant formulation [115,116],
and numerically, through heuristic center-of-mass corrections
added to the Hamiltonian [44–52].

To probe to what extent intrinsic and center-of-mass
motions are coupled in the different many-body approaches
examined in this work, we study the impact of an artificial shift
of the center-of-mass spectrum using the Lawson prescription
[114,117,118]. We introduce the modified Hamiltonian

Hβ = Hint + βHc.m., (41)

where

Hc.m. = 1

2Am
P2

c.m. +
Am�2

2
X2

c.m. −
3

2
h̄�, (42)

with center-of-mass momentum Pc.m. and center-of-mass
coordinate Xc.m.. If the center-of-mass motion is completely
decoupled, then the expectation value of the intrinsic Hamil-
tonian Hint, 〈Hint〉, computed with the ground state resulting
from the modified Hamiltonian Hβ is independent of the
value of β. Any dependence of 〈Hint〉 on β indicates an
unphysical coupling of intrinsic and center-of-mass motions
and a violation of translational invariance.

In Table I we compare the results for the binding energy of
16O obtained with the different many-body methods used in
this work for two β values, namely β = 0, at which the initial
intrinsic Hamiltonian is recovered, and β = 10, which is a
typical empirical value used in shell-model applications [114].
We use the representative h̄� values that approximately match
the minima on the curves that describe the dependence of the
relevant energies on h̄�. Because there is no rigorous criterion
for choosing β, we will come back to the impact of variations
of this parameter later on. The IT-CI(4p4h), IT-NCSM(4p4h),
and NCSM values of 〈Hint〉 and 〈Hc.m.〉 are calculated directly
as the standard quantum-mechanical expectation values of the

TABLE I. The CI and NCSM expectation values of Hint and
Hc.m., and their CC analogs defined in the text (in units of MeV),
obtained from the many-body solutions using Hβ for β = 0 and
β = 10. The CC and IT-CI calculations use a harmonic oscillator
basis with emax = 5 and h̄� = 30 MeV, whereas the IT-NCSM and
NCSM calculations use a model space with Nmax = 8 and h̄� =
22 MeV. The oscillator frequencies correspond to the respective
energy minima of the CC and NCSM calculations.

β = 0 β = 10

〈Hint〉 〈Hc.m.〉 〈Hint〉 〈Hc.m.〉
CCSD −107.32 5.88 −104.84 0.24
CR-CC(2,3) −113.14 5.38 −111.23 0.20
IT-CI(4p4h) −98.67 1.37 −97.32 0.19

IT-NCSM(4p4h) −104.10 0.08 −104.01 0.02
NCSM −104.75 0.00 −104.75 0.00

relevant Hamiltonians using the eigenvectors obtained from
the solution of the eigenvalue problem of Hβ . The CCSD
and CR-CC(2,3) analogs of 〈Hint〉 at β = 0 are calculated
using the appropriate CC energy formulas [Eq. (10) for
CCSD and Eq. (22) for CR-CC(2,3)] applied to H = Hint,
rather than the expectation values of Hint with the CC wave
functions that, as explained in Sec. III, are not used in the
practical implementations of CC methods employed in this
work. The CCSD and CR-CC(2,3) 〈Hc.m.〉 values are obtained
by numerically differentiating the corresponding energies,
Eq. (10) for CCSD and Eq. (22) for CR-CC(2,3), where
H = Hβ , with respect to β at the β values of interest, as in the
response CC considerations described in the previous section.
Following the Lawson recipe, the CCSD and CR-CC(2,3) val-
ues of 〈Hint〉 at nonzero β are calculated as E0(β) − β〈Hc.m.〉β ,
where E0(β) is the relevant CC [CCSD or CR-CC(2,3)] energy
obtained for the center-of-mass-corrected Hamiltonian Hβ and
〈Hc.m.〉β = ∂E0(β)/∂β is the corresponding value of 〈Hc.m.〉
calculated at the same β through the numerical differentiation
of E0(β), as described above.

As Table I shows, the full NCSM approach allows an
exact separation of intrinsic and center-of-mass motions and
consequently the intrinsic energy 〈Hint〉 is independent of
β. The IT-NCSM(4p4h) method shows a minimal variation
of the intrinsic energy at the level of 0.1 MeV, which is a
consequence of the importance truncation. This tiny coupling
in the IT-NCSM(4p4h) calculations can safely be neglected.
The CCSD, CR-CC(2,3), and IT-CI(4p4h) methods violate
translational invariance from the beginning through the choice
of the model space. This results in a more sizable coupling
between intrinsic and center-of-mass motions when compared
to the IT-NCSM(4p4h) scheme: the intrinsic energies 〈Hint〉
change by 2 to 3 MeV when going from β = 0 to β = 10.
As mentioned above, the oscillator frequencies used in Table I
correspond to the approximate positions of the minima on the
curves that show the dependencies of the relevant energies
on h̄�. The full h̄� dependence of the intrinsic energies
〈Hint〉 for β = 0 and β = 10 obtained in the CCSD and
CR-CC(2,3) calculations is depicted in Fig. 1. Evidently,
the change of 〈Hint〉, when going from β = 0 to β = 10,
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FIG. 1. (Color online) The intrinsic ground-state energies, 〈Hint〉,
of 16O, obtained with the CCSD and CR-CC(2,3) approaches at β = 0
(open symbols) and β = 10 (filled symbols), as functions of h̄�

for a harmonic oscillator basis with emax = 5: CCSD (�, �) and
CR-CC(2,3) (�, ♦).
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increases somewhat with increasing oscillator frequency. For
example, for h̄� = 18 MeV, the intrinsic energy obtained with
the CR-CC(2,3) approach changes by 1.18 MeV when going
from β = 0 to β = 10, whereas the analogous change in the
CR-CC(2,3) energy for h̄� = 34 MeV is 2.03 MeV.

The above results demonstrate that the Lawson prescription
is quite efficient in reducing the expectation value of the
center-of-mass Hamiltonian, 〈Hc.m.〉, obtained from the CCSD,
CR-CC(2,3), and IT-CI(4p4h) solutions, as shown in Table I.
However, this does not mean that a decoupling between
intrinsic and center-of-mass motions or a spuriousness-free
intrinsic state has been completely achieved. In fact, if we
take the same Lawson prescription and compare the intrinsic
energies 〈Hint〉 for β = 10 and β = 20, we observe changes
in the values of 〈Hint〉 that are similar in magnitude to those
observed when one goes from β = 0 to β = 10. For example,
for the IT-CI(4p4h) calculations at h̄� = 30 MeV using six
major oscillator shells (i.e., emax = 5), the change in the 〈Hint〉
value when going from β = 0 to β = 10 is 1.35 MeV. When
going from β = 10 to β = 20, the IT-CI(4p4h) value of the
〈Hint〉 energy changes by 0.91 MeV although 〈Hc.m.〉 at β = 10
is already below 0.2 MeV. This shows that the smallness of
〈Hc.m.〉 alone does not indicate a decoupling or warrant an
intrinsic state free of center-of-mass contaminations.

Apart from an explicit projection [114] or a translationally
invariant formulation, there is no rigorous way to eliminate the
center-of-mass contamination problem from the CC and CI
calculations. Of the methods presented in this work, only the
NCSM and IT-NCSM calculations are free (in the IT-NCSM
case, virtually free) of this spuriousness. The CC and CI
results are center-of-mass contaminated although, as shown
in Table I and Fig. 1, the degree of this contamination, when
the harmonic oscillator reference |�0〉 is used, seems relatively
small in the case of 16O. Indeed, the degree of center-of-mass
contamination, as measured by the changes in the intrinsic
energies 〈Hint〉 when going from β = 0 to β = 10, does not
seem to exceed 2–3 MeV when a medium-size single-particle
basis consisting of six major oscillator shells is employed
and |�0〉 is the harmonic oscillator reference, although we
must remember that similar changes in the intrinsic energies
are observed when going from β = 10 to β = 20, suggesting
that the real degree of center-of-mass contamination in the
CC and CI results is somewhat bigger than 2–3 MeV. The
degree of center-of-mass contamination, as measured by
the 〈Hc.m.〉 values at β = 0, does not seem to exceed about
5–6 MeV in the same basis. When the size of the single-particle
basis is increased, as is done in the following sections where
we examine single-particle basis sets as large as emax = 7
(eight major oscillator shells), the magnitude of the unphysical
coupling of intrinsic and center-of-mass motions in the CC
and CI calculations is expected to be reduced, since we
approach the limit of the complete single-particle basis. On
the other hand, other effects, such as the h̄� dependencies of
the resulting energies shown in Fig. 1 and the fact that the
CCSD, CR-CC(2,3), and IT-CI(4p4h) methods do not provide
the exact wave function that would factorize into the intrinsic
and translational components, might hinder the reduction of
the center-of-mass contaminations present in the CC and CI
results. For all these various reasons, in the assessment of the

quality of the CC and CI calculations reported in this work,
we will remain cautious and keep in mind that the resulting
ground-state energies may carry an uncertainty anywhere
between 2 and 6 MeV or so as a result of center-of-mass
contamination, at least when the harmonic oscillator reference
|�0〉 is employed. We will continue examining the role of
center-of-mass contaminations on the CCSD, CR-CC(2,3),
and IT-CI(4p4h) calculations with different types of single-
particle bases and different basis set sizes in the future work.

B. Role of the single-particle basis

In many cases, the harmonic oscillator basis is not the
optimal choice for the expansion of the nuclear many-body
state. The naive reference determinant |�0〉 obtained by occu-
pying the lowest-energy harmonic oscillator states may have a
relatively small overlap with the final wave function |�0〉,
resulting in unnecessarily long CI expansions to represent
the correlated |�0〉 state that have to compensate for the
deficiencies of the reference determinant |�0〉. By switching
to a single-particle basis optimized for the nucleus under
consideration, generated, for example, by a Hartree-Fock
calculation, the convergence with respect to the many-particle
basis can be significantly enhanced. Generally, this option
is not used in the NCSM calculations, because the use of
a single-particle basis set other than the harmonic oscillator
basis would destroy the mathematical decoupling of intrinsic
and center-of-mass motions that the NCSM model space
guarantees for any finite basis set. However, for the truncated
CC or CI approaches, where we do not have this property
anyway, we may benefit from the use of optimized single-
particle bases.

To demonstrate the effect of an optimization of the single-
particle basis, we compare the results of the CC and CI
calculations using the harmonic oscillator (HO) and Hartree-
Fock (HF) bases. The latter is obtained from a self-consistent
Hartree-Fock calculation using the same intrinsic Hamiltonian
Hint and the same single-particle space as those employed in
the subsequent many-body calculations [113]. Therefore, the
HF optimization can be viewed as a unitary transformation
within the set of single-particle states employed in the many-
body calculations. For a full CI calculation at given emax,
where all determinants resulting from a given single-particle
basis set are included, this transformation would not affect
the results. The situation changes when one uses the truncated
CI and CC wave function expansions, where the HO → HF
transformation of single-particle states may have an effect on
the resulting energies. As elaborated on below, this effect is
expected to be small in the case of CC calculations, which
rely on the exponential form of the wave function that makes
the results of truncated CC calculations virtually invariant
with respect to orbital rotations through the presence of the
exp(T1) component in the CC wave operator, as in the Thouless
theorem [119], but can be quite significant when the truncated
CI expansions are employed, because the CI wave operator
is a linear rather than an exponential excitation operator
that does not contain sufficiently many terms to make the
results numerically invariant with respect to orbital rotations if
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FIG. 2. (Color online) Ground-state energy of 16O as a function
of h̄� obtained with the HO single-particle basis (open symbols) and
the HF-optimized basis (filled symbols) in an emax = 5 model space.
(a) Importance-truncated configuration interaction calculations: IT-
CI(4p4h) (�, �) and IT-CI(4p4h)+MRD (�, ♦). (b) coupled-cluster
calculations: CCSD (�, �) and CR-CC(2,3) (�, ♦).

truncated at the mpmh excitations with m � A. Our numerical
analysis confirms these expectations.

The impact of the basis optimization on a IT-CI(4p4h)
calculation is illustrated in Fig. 2(a), where we compare the
HO- and HF-based IT-CI(4p4h) results obtained with the
emax = 5 model space. We performed similar calculations
using other model spaces up to and including emax = 7, and
the results are very similar to those shown in Fig. 2(a), so
in the following discussion we focus on the emax = 5 case.
At smaller oscillator frequencies, the ground-state energies
of 16O obtained with both bases agree very well. However,
with increasing h̄� the HF basis leads to lower ground-
state energies than the HO basis. At the same time, the
Davidson correction for the HO-based calculation increases
rapidly, indicating that contributions beyond the 4p4h level
become significant in this case. In contrast to the HO-based
IT-CI(4p4h) calculation, the HF-based IT-CI(4p4h) calculation
develops a minimum at larger h̄� and the Davidson correc-
tion remains small at all frequencies, clearly implying that
the role of higher-than-4p4h excitations in the CI expansion of
the ground-state wave function of 16O is suppressed when the
optimum HF determinant is used as a reference determinant
|�0〉.

The analogous analysis for the CCSD and CR-CC(2,3)
calculations, presented in Fig. 2(b), reveals that the CC
methods are significantly less sensitive to the choice of the
single-particle basis. Again, we show only the sample of
the HO- and HF-based CCSD and CR-CC(2,3) calculations
corresponding to the emax = 5 model space. We performed

similar CC calculations using other model spaces up to and
including emax = 7, and the observed patterns are similar
to those shown in Fig. 2(b), so we focus on the emax =
5 case here. As was the case for the IT-CI(4p4h) calculations,
the energies obtained with the two bases are virtually the
same for smaller h̄� values. As we increase the oscillator
frequency, the disagreement between the HO- and HF-based
CC results grows, but only slightly, particularly for the
CR-CC(2,3) approach. Indeed, unlike the IT-CI(4p4h) case,
where the largest discrepancies between the results obtained
with the two bases in the h̄� = 14–34 MeV region, which
occur at h̄� = 34 MeV, are as much as 8 MeV with the
Davidson correction and about 20 MeV without it, the
analogous differences between the HO- and HF-based CC
results at larger h̄� values are quite small, with the two
results differing by 3.8(4.2) MeV in the CCSD case and
1.4(1.5) MeV in the CR-CC(2,3) case, when the emax = 5
basis set is employed and h̄� = 34(38) MeV. Furthermore,
we see that the overall shapes of the curves displaying the h̄�

dependence of the total energies obtained with the CCSD and
CR-CC(2,3) approaches are very similar regardless of which
single-particle basis is used. It is interesting to note that for
both the CC and CI methodologies, the agreement between
the results obtained with the two bases improves as we use
more accurate approximations. This is particularly true for
the CC calculations, where the difference between the HO-
and HF-based results obtained with the CR-CC(2,3) method,
which is a more accurate approximation when compared to
CCSD, is smaller than the analogous difference between the
HO- and HF-based CCSD results. The differences between the
CI results obtained with the two bases are generally larger, but
even in this case, the difference between the HO- and HF-based
results obtained with the IT-CI(4p4h)+MRD approach, which
corrects the IT-CI(4p4h) energies for at least some effects of
higher-than-4p4h excitations, are smaller than the analogous
difference between the HO- and HF-based IT-CI(4p4h) results.
This makes sense, of course, because the closer we get to the
full CI limit, the less sensitive the results become with respect
to orbital rotations.

The relative insensitivity of the CC results to the choice of
the single-particle basis, which has been known in quantum
chemistry for a long time (cf., e.g., Ref. [120]), is a conse-
quence of the implicit inclusion of the Thouless theorem [119]
in the CC calculations through the exp(T1) component of
the CC wave operator exp(T ), even when T is truncated at
the two-body level, as in CCSD, where T = T1 + T2. The
exp(T1) component of the CCSD wave operator exp(T1 +
T2) = exp(T1) exp(T2) (T1 and T2 are particle-hole excitation
operators and hence they commute), obtained by solving the
coupled system of equations for the T1 and T2 clusters, as
described in Sec. III, acting on the reference determinant
|�0〉 effectively optimizes the single-particle basis for the
many-particle state of interest without the need for the explicit
introduction of orbital relaxation, thus reducing the impact of
any inadequacies of the basis on the final results and making the
CCSD energies almost independent of the type of the single-
particle basis. One can simply write the CCSD wave function,
Eq. (15), as |�(CCSD)

0 〉 = exp(T1 + T2)|�0〉 = exp(T2)|�′
0〉,

where |�′
0〉 = exp(T1)|�0〉 is a new reference determinant
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optimized for the ground-state |�(CCSD)
0 〉 through the suitable

choice of T1 obtained from the CCSD calculations. Indeed, if
we analyze the T1 cluster amplitudes resulting from our CCSD
calculations, we see that they are quite large when the HO
basis and large h̄� are employed, i.e., when the HO reference
determinant |�0〉 is far from the optimum reference. When
the optimized HF basis is employed, the T1 cluster amplitudes
resulting from CCSD calculations are small, independent of
h̄�. These patterns are reflected in the values of the so-called T1

Diagnostic [121], which is defined as (〈�0|T †
1 T1|�0〉/no)1/2.

In defining the T1 Diagnostic, we divide the connected (i.e.,
size extensive) quantity 〈�0|T †

1 T1|�0〉, which represents the
magnitude of T1 cluster contributions to the wave function,
by no to make the result independent of the system size. For
the case of the emax = 5 model space and the HO basis, the
T1 Diagnostic resulting from the CCSD calculations changes
quite dramatically, from 0.10 at h̄� = 14 MeV to 0.42 at
h̄� = 38 MeV and 0.48 at h̄� = 42 MeV, indicating a steep
increase in the values of the T1 cluster amplitudes due to the
increasing inadequacy of the HO reference determinant |�0〉
at larger h̄� values that those large T1 amplitudes compensate
for. For the optimized HF basis, the same diagnostic remains
almost constant, with values that do not exceed 0.04 in the
entire h̄� = 14–42 MeV region, confirming the smallness of
T1 cluster amplitudes independent of h̄� in the HF-basis case.
In fact, it is easy to understand why T1 is small in the HF
basis. When |�0〉 is the HF reference, the lowest orders of
many-body perturbation theory that the T1 cluster component
contributes to are second for the wave function and fourth for
the energy. For comparison, T1 contributes to the first-order
wave function and second-order correction to the energy when
the non-HF references, such as the HO reference determinant,
are used. In the region of larger h̄� values, the HO reference
determinant is so far from the optimum HF determinant that
the resulting T1 amplitudes become very large, as reflected in
the above values of the T1 Diagnostic.

To confirm that the primary role of the T1 operator in CC
calculations is to effectively relax the orbitals to produce the
optimum reference determinant |�′

0〉 = exp(T1)|�0〉 for the
many-particle state of interest, we compare the T2 cluster
operators resulting from the HO- and HF-based CCSD
calculations. We expect the T2 clusters, which describe the
leading correlation effects, to be very similar in the HO- and
HF-based CCSD calculations if the main role of T1 is to
optimize the reference determinant. The T2 Diagnostic (cf.,
e.g., Ref. [53]), which is defined as (〈�0|T †

2 T2|�0〉/no)1/2 and
which measures the significance of the T2 cluster contributions,
confirms this expectation. For the emax = 5 model space, the
values of the T2 Diagnostic obtained from the HO-based CCSD
calculations are 0.17–0.18 in the entire h̄� = 14–42 MeV
region. The analogous values of the T2 Diagnostic resulting
from the HF-based CCSD calculations are 0.15–0.17 in the
same region. Thus, the T2 clusters that describe the true
correlation effects barely change with the type of the basis
(HO vs. HF) and h̄�. The T1 clusters remain small and do
not change much with h̄� when the optimized HF basis is
employed, while becoming sizable in the large h̄� region
when the naive reference determinant |�0〉, obtained by filling

the lowest-energy HO single-particle states, which is a poor
representation of the correlated ground state in that region,
is employed. The CC theory can cope with the inadequacy
of the HO basis by using the exp(T1) component of the CC
wave operator with large T1 amplitudes to transform the naive
reference determinant |�0〉 resulting from the use of the HO
basis, as in the Thouless theorem, to the more optimal form that
is adjusted to the ground-state wave function |�0〉. The same
exp(T1) operator does not change the reference determinant
|�0〉 too much when T1 is small, i.e., when the orbitals
are properly optimized beforehand, as in the HF case. This
explains the virtual invariance of the CC results on the choice
of the single-particle basis.

The same arguments enable us to understand why the
results of truncated CI calculations may significantly depend
on the type of the basis in the region of larger h̄� values
and why one needs to use the HF-optimized orbitals in
that region to obtain the results of the CC quality with the
truncated CI approaches. Let us focus on the IT-CI(4p4h)
approach and the related CISDTQ scheme, in which the
linear excitation operator C defining the ground-state wave
function |�0〉 through the formula |�0〉 = C|�0〉 has the
truncated form C = C0 + C1 + C2 + C3 + C4. Here, Ck is
the kpkh excitation operator generating the contributions from
the k-tuply excited determinants when acting on |�0〉 (C0

generates the reference contribution). When the intermediate
normalization condition 〈�0|�0〉 = 1 is imposed on the CI
wave function, so that C0 becomes a unit operator, the 1p1h
component of the CI wave function, C1|�0〉, is equivalent
to the 1p1h component of the CC wave function, T1|�0〉. In
addition to the connected T1|�0〉 contribution, the IT-CI(4p4h)
and CISDTQ wave functions contain the disconnected cluster
terms, such as (1/2)T 2

1 |�0〉 (through the C2 contribution),
(1/6)T 3

1 |�0〉 (through the C3 contribution), and (1/24)T 4
1 |�0〉

(through the C4 contribution), but they do not contain the
entire exp(T1)|�0〉 expansion, which includes higher powers
of T1 if A > 4 (as is the case for the 16O nucleus). In other
words, the linear excitation operators C of the IT-CI(4p4h)
and CISDTQ approaches or other truncated CI schemes do
not have the mathematical structure of the Thouless theorem
that would enable one to factor out the exp(T1) component
that would make the results virtually independent of the
orbital choice. In consequence, the results of truncated CI
calculations may display a strong dependence on the choice
of the basis, as our IT-CI(4p4h) calculations shown in Fig. 2
clearly demonstrate. Full CI is the only CI method that contains
the exp(T1)|�0〉 component in its entirety, since one can always
represent the intermediately normalized full CI wave function
for the A-body system, |�0〉 = (1 + C1 + · · · + CA)|�0〉, in
the exponential form |�0〉 = exp(T1 + · · · + TA)|�0〉.

The analogous analysis can be used to explain why the
HO-based IT-CI(4p4h) calculations become less accurate in
the region of larger h̄� values and why the IT-CI(4p4h)
calculations benefit from the use of the HF-optimized orbitals,
particularly in the region of larger h̄� values. As already
pointed out, the T1 cluster component becomes large in the
region of larger h̄� values when the HO reference |�0〉 is
employed. This can be seen by analyzing the CCSD wave
function, as described above, or by examining the IT-CI(4p4h)
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wave function. Because the 1p1h component of the CI
wave function, C1|�0〉, is equivalent to the 1p1h component
of the CC wave function, T1|�0〉, when the intermediate
normalization is imposed, we can immediately conclude that
if T1 is large, as is the case for larger h̄� values and HO
basis, the corresponding C1 excitation amplitudes should
be large as well. This is exactly what we observe in the
HO-based IT-CI(4p4h) calculations. For example, the largest
C1 excitation amplitude in the IT-CI(4p4h) intermediately
normalized wave function increases from 0.08 at h̄� =
14 MeV to 0.29 at h̄� = 30 MeV and 0.40 at h̄� = 38 MeV
when the HO basis is used and emax = 5. In contrast, the HF-
based IT-CI(4p4h) calculations exhibit largest C1 amplitudes
that do not exceed 0.03 throughout the entire h̄� range.
Now, if the C1 or T1 component is large, the product terms
such as T1T2, (1/2)T 2

1 T2, (1/6)T 3
1 T2, (1/2)T1T

2
2 , (1/4)T 2

1 T 2
2 ,

etc., become relatively large as well. All of these terms are
included in the CCSD wave function, helping the accuracy of
the CCSD and CR-CC(2,3) calculations, but not all of them
are present in the IT-CI(4p4h) wave function, which contains
the T1T2 and (1/2)T 2

1 T2 components through the 3p3h and
4p4h contributions described by C3 and C4, respectively, but
not the (1/6)T 3

1 T2, (1/2)T1T
2

2 , and (1/4)T 2
1 T 2

2 components,
which represent the 5p5h [(1/6)T 3

1 T2 and (1/2)T1T
2

2 ] and
6p6h [(1/4)T 2

1 T 2
2 ] excitations neglected in IT-CI(4p4h). As

we can see, the absence of the 5p5h, 6p6h, etc., components
in the IT-CI(4p4h) wave function hurts the accuracy of the
IT-CI(4p4h) calculations when C1 or T1 is large, which is
exactly what happens when we use the HO basis in the region
of larger h̄� values.

The situation dramatically changes when the HF basis is
employed. In that case, the C1 or T1 contributions are small and
the higher-order product terms, such as (1/6)T 3

1 T2, (1/2)T1T
2

2 ,
and (1/4)T 2

1 T 2
2 , which are neglected in the IT-CI(4p4h) cal-

culations, become very small as well, resulting in an excellent
description of the 16O nucleus by the IT-CI(4p4h) method
in the entire region of h̄� that matches the accuracy of the
CR-CC(2,3) calculations, particularly when the already very
good IT-CI(4p4h) results are corrected for size extensivity and
the remaining small higher-than-4p4h excitations through the
multireference Davidson correction. The excellent agreement
between the HF-based IT-CI(4p4h)+MRD and CR-CC(2,3)
results, illustrated in Fig. 2 for emax = 5, remains valid when
larger model spaces are employed, enabling us to draw several
important conclusions regarding the quality of the ab initio
results for 16O reported in this work. These conclusions are
discussed in the next section.

C. Comparison of large-scale calculations

We now compare the predictions for the ground-state
energy of 16O obtained in the IT-NCSM, IT-CI, and CC
calculations employing VUCOM and the largest model spaces
that we could handle with a reasonable computational effort.

In Fig. 3 the convergence of the IT-NCSM ground-state
energy as a function of Nmax is shown for fixed h̄� =
22 MeV, which is determined by the position of the energy
minimum for the larger model spaces [63]. In addition to
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FIG. 3. (Color online) Importance-truncated no-core shell-model
calculations for the ground-state energy of 16O with VUCOM for
h̄� = 22 MeV. Shown are the results of the IT-NCSM(4p4h)
calculations (�), IT-NCSM(4p4h)+MRD calculations (�), and full
NCSM calculations (+). The vertical line indicates the result of an
exponential extrapolation of the IT-NCSM(4p4h)+MRD energies.

the IT-NCSM(4p4h) results without and with the Davidson
correction, we report the results of full NCSM calculations
using the ANTOINE code [122] for Nmax � 8. In the region
where these exact reference results are available, the IT-
NCSM(4p4h)+MRD and full NCSM energies agree to within
0.1 MeV or better.

Using exponential fits involving the five largest model
spaces [123], we obtain an extrapolated ground-state energy
of (−129 ± 1) MeV for the IT-NCSM(4p4h) data and of
(−130 ± 1) MeV for the IT-NCSM(4p4h)+MRD results.
The change due to the Davidson correction provides an
estimate of the effects beyond 4p4h configurations. This
estimate agrees very well with the preliminary results of the
explicit inclusion of up to 6p6h configurations that will be
fully elaborated on elsewhere [63]. The comparison of these
results with the experimental binding energy of −127.6 MeV
[124] proves that the VUCOM two-body interaction provides
an excellent description of ground-state energies for heavier
nuclei.

The results of the IT-CI(4p4h) and IT-CI(4p4h)+MRD
calculations based on the HF-optimized basis are summarized
in Fig. 4(a). With increasing size of the single-particle basis
from emax = 4 to 7 the position of the energy minimum shifts
systematically toward larger h̄�. The Davidson correction
remains on the order of 1 MeV for all model-space sizes and os-
cillator frequencies, indicating that the effects of beyond-4p4h
configurations are small when the HF basis set is employed.
A similar picture emerges from the CC calculations, shown
in Fig. 4(b), which use the same HF-optimized bases and the
same model spaces as the IT-CI(4p4h) and IT-CI(4p4h)+MRD
calculations. The inclusion of connected triples through the
CR-CC(2,3) scheme leads to a lowering of the ground-state
energy by up to 6 MeV, indicating the importance of T3 cluster
contributions in the quantitative calculations of the nuclear
binding energies.

A direct comparison of the IT-CI(4p4h)+MRD and CR-
CC(2,3) results is presented in Fig. 4(c). The agreement
between these two entirely different many-body approaches
is extraordinary. Apart from the largest model space employed
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FIG. 4. (Color online) Systematic comparison of IT-CI and CC
results for the ground-state energy of 16O using HF-optimized
single-particle bases with emax = 4, 5, 6, and 7. (a) Comparison of IT-
CI(4p4h) (open symbols) with IT-CI(4p4h)+MRD (filled symbols).
(b) Comparison of CCSD (open symbols) with CR-CC(2,3) (filled
symbols). (c) Comparison of IT-CI(4p4h)+MRD (open symbols)
with CR-CC(2,3) (filled symbols).

in this study consisting of eight major oscillator shells, the two
data sets are practically on top of each other. For the largest
emax = 7 space, the discrepancies between the CR-CC(2,3)
and IT-CI(4p4h)+MRD results are slightly larger than in
the case of smaller basis sets, i.e., the CR-CC(2,3) energies
are approximately 1–2 MeV lower than the corresponding
IT-CI(4p4h)+MRD energies, but the overall agreement be-
tween the IT-CI(4p4h)+MRD and CR-CC(2,3) energies is
outstanding. Based on this systematic agreement, we can
conclude that neither the lack of strict size extensivity of
the truncated IT-CI(4p4h) calculations, which can be taken
care of through the use of the Davidson corrections, nor the
violation of the variational principle by the CC methods, which
is compensated by the high accuracy these methods offer, pose
significant practical problems.

The excellent agreement between the CR-CC(2,3) and
IT-CI(4p4h)+MRD data can be rationalized by comparing
the CC and CI wave function expansions. If we impose the
intermediate normalization condition 〈�0|�0〉 = 1 exploited

in CC theory on the exact CI wave function expansion, we
obtain the following relationships between the CI excitation
operators Cn and the CC cluster components Tn:

C1 = T1, (43)

C2 = T2 + 1
2T 2

1 , (44)

C3 = T3 + T1T2 + 1
6T 3

1 , (45)

C4 = T4 + T1T3 + 1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1 , etc. (46)

By design, the CR-CC(2,3) approach provides a highly accu-
rate description of the connected T1, T2, and T3 clusters, but not
of T4 or Tn with n > 4, and of all of the disconnected product
terms that enter the Cn excitation operators with n = 1–4,
except for T1T3. The T1T3 term is much smaller than the
leading 4p4h component represented by (1/2)T 2

2 , particularly
when the HF basis is employed. When the HF basis is
employed, (1/2)T 2

2 contributes to the second-order many-body
perturbation theory correction to the wave function and the
fourth-order correction to the energy, whereas the lowest-order
corrections to the wave function and energy resulting from the
T1T3 cluster are fourth and sixth, respectively. The connected
T4 cluster contributions, which contribute to the fifth and
higher orders in the many-body perturbation theory expansion
for the energy, are much smaller than the disconnected (1/2)T 2

2
contributions as well. In fact, much of the success of CC theory
in areas such as quantum chemistry is related to the fact that
one can safely neglect T4 in calculations for the nondegenerate
closed-shell systems. The negligible role of T4 clusters has
also been observed in the study of the semi-closed-shell 56Ni
nucleus, as described by the effective Hamiltonian in the
pf -shell basis [53]. The 16O nucleus is a closed-shell system,
so one does not need T4 to accurately describe its ground state.
This is why the CR-CC(2,3) approach provides a virtually
exact description of the CI excitation contributions Cn up
to and including the 4p4h (i.e., n = 4) terms. Because the
CR-CC(2,3) method is based on the idea of correcting the
CCSD energy for the leading T3 contributions and because
the CCSD approach describes all higher-than-4p4h excitations
that can be represented as products of the T1 and T2 clusters,
one has to correct the IT-CI(4p4h) energies for the selected
higher-than-4p4h correlations via the Davidson corrections
to improve the agreement between the IT-CI(4p4h) and CR-
CC(2,3) data. This explains why the IT-CI(4p4h)+MRD and
CR-CC(2,3) results obtained in this work agree so well.

In order to compare the IT-CI(4p4h)+MRD and CR-
CC(2,3) results with the aforementioned converged IT-NCSM
calculations, an extrapolation emax → ∞ is necessary. In view
of the convergence pattern of the CI and CC results and
the fact that our IT-CI(4p4h)+MRD and CR-CC(2,3) data
are limited to emax � 7, this extrapolation can only provide a
rough estimate. The crude exponential extrapolations based
on the total energies obtained with the four different model
space sizes with emax = 4–7 at fixed h̄� = 30, 34, 38, and
42 MeV, for which the full set of the IT-CI(4p4h)+MRD
and CR-CC(2,3) data for emax = 4–7 is available, lead to an
estimate of the emax → ∞ CR-CC(2,3) energy in the range
of −131 to −133 MeV in the entire h̄� = 30–42 MeV
region. The IT-CI(4p4h)+MRD result is similar. It looks
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as though the emax → ∞ CR-CC(2,3) energies of −131 to
−133 MeV and their IT-CI(4p4h)+MRD analogs, obtained
via the above exponential extrapolations based on the total
energies, are in excellent agreement with the extrapolated
IT-NCSM(4p4h)+MRD result of (−130 ± 1) MeV, but we
should be very careful in interpreting this agreement, which
might be fortuitous, because crude extrapolations based on
the limited set of CC and CI data that we have access to
may carry sizable error bars. For example, if we use the
more careful approach where instead of extrapolating total
energies we extrapolate only the correlation energies obtained
with emax = 3, 5, and 7, and add the results to the highly
accurate estimate of the converged (to within 0.1 MeV) HF
energy resulting from the emax = 20 HF calculations, we
obtain the extrapolated total CR-CC(2,3) energy in the range
of −135 to −141 MeV in the entire h̄� = 30–42 MeV
region. The analogous IT-CI(4p4h)+MRD energies are in
the range of −132 to −135 MeV. The use of only odd
values of emax in the correlation energy extrapolations can
be justified by the fact that the HF and, in consequence,
correlation energies do not change uniformly when increasing
the basis set; changes in the HF energies are much stronger
when another radial excitation is added to the p states, as
observed when going from emax = 4 to 5 and from emax = 6
to 7. Thus, based on the limited set of the CC and CI
data we have at our disposal, we can only state that the
extrapolated emax → ∞ CR-CC(2,3) and IT-CI(4p4h)+MRD
energies fall within the broader range of −131 to −141 MeV,
which implies that our extrapolated results carry an uncertainty
which could be as big as about 10 MeV. Clearly, the few
MeV differences between the extrapolated CR-CC(2,3)/IT-
CI(4p4h)+MRD and IT-NCSM(4p4h)+MRD results for the
binding energy of 16O prompt further study, so that we can
understand the nature of these differences in more precise
terms, but it is already worth pointing out that these few
MeV differences between the extrapolated CR-CC(2,3) and
IT-CI(4p4h)+MRD binding energies on the one hand and their
Nmax → ∞ IT-NCSM(4p4h)+MRD counterpart on the other
hand are consistent with our estimate of the effect of center-
of-mass contaminations on the calculated CR-CC(2,3) and
IT-CI(4p4h) energies discussed in Sec. IV A. Because the CR-
CC(2,3), IT-CI(4p4h)+MRD, and IT-NCSM(4p4h)+MRD
methods contain similar many-body correlation effects as
emax(Nmax) → ∞ and because the IT-NCSM(4p4h)+MRD
results are virtually free of the center-of-mass contaminations
(cf. Sec. IV A), it is quite possible that the center-of-mass
contaminations in the CR-CC(2,3) and IT-CI(4p4h)+MRD
results are largely responsible for the observed few MeV
differences between the extrapolated CR-CC(2,3) or IT-
CI(4p4h)+MRD and IT-NCSM(4p4h)+MRD energies. The
fact that the relatively inexpensive CR-CC(2,3) approach
can produce the binding energy of 16O that differs from
the best IT-NCSM(4p4h)+MRD estimate and experiment
by only a few MeV (less than 10%), when the VUCOM

interaction is employed, is an indication that the CR-CC(2,3)
method captures practically all correlations relevant for the
description of the ground state of 16O and that VUCOM provides
the accurate representation of the relevant nucleon-nucleon
interactions.

V. CONCLUSIONS

Through the direct comparison of results for the 16O
ground-state energy obtained using the VUCOM interaction
within the IT-NCSM, IT-CI, and CC approaches, we have
established a comprehensive picture of the quality of the
different many-body approaches and the practical relevance
of formal limitations associated with each one of them.
Among the points that we have discussed in detail are the
possible role of center-of-mass contaminations, the choice of
the single-particle basis, and the impact of size-extensivity.

The analysis of the coupling of intrinsic and center-of-
mass motions using the Lawson prescription shows that
the IT-CI and CC methods, which are based on a single-
particle truncation when constructing the relevant model
spaces, exhibit a coupling between intrinsic and center-of-
mass motions that in the case of 16O affects the intrinsic
energies at the level of about 2–6 MeV or so when the
HO reference determinant is employed. The same analysis
also indicates that a small value of the expectation value
of the center-of-mass Hamiltonian 〈Hc.m.〉 alone does not
automatically warrant a decoupling and a spuriousness-free
intrinsic state. Only the IT-NCSM approach, which is based
on approximating the complete Nmaxh̄� model space of the
NCSM theory, shows a virtually perfect decoupling, leading to
effectively contamination-free intrinsic eigenstates. However,
the relatively small center-of-mass contaminations observed
in the IT-CI and CC calculations for 16O do not seem
to be detrimental for the quality of the resulting energies,
which almost perfectly agree with one another when the
appropriate levels of both theories are employed, namely
IT-CI(4p4h)+MRD in the case of IT-CI and CR-CC(2,3) in the
case of CC, and which are in reasonable agreement with the
results of the converged IT-NCSM(4p4h)+MRD calculations
when we attempt to extrapolate the IT-CI(4p4h)+MRD and
CR-CC(2,3) results to the complete basis set limit. The remain-
ing few (up to about 10) MeV differences between the crudely
extrapolated CR-CC(2,3) and IT-CI(4p4h)+MRD energies
and the converged IT-NCSM(4p4h)+MRD calculations are
consistent with the magnitude of the center-of-mass contam-
inations present in the CR-CC(2,3) and IT-CI(4p4h)+MRD
calculations.

The comparison of the calculations employing the HO
single-particle bases with the calculations using HF-optimized
bases demonstrates that the CC method is largely insensitive
to the basis set choice, whereas the IT-CI calculations show
a strong basis set dependence, significantly benefiting from
the use of an optimized basis. This fundamentally different
behavior of the CC and IT-CI approaches with regard to the
choice of the single-particle basis is related to the presence
of the exp(T1) component in the exponential wave operator
of CC theory, as in the Thouless theorem, which makes
the CC results almost insensitive to the basis set choice, and
the incomplete treatment of this component by the linear wave
operator of IT-CI. As shown in this work, an effective measure
of the suitability of the single-particle basis for the truncated
CI (e.g., IT-CI) calculations can be provided by the T1 or C1

excitation amplitudes and the corresponding T1 Diagnostic as
well as the magnitude of the Davidson extensivity corrections.
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The T1 or C1 values, the values of the T1 Diagnostic, and
the Davidson extensivity corrections all become large if the
basis is ill adapted to the truncated CI calculations of interest.
We can, therefore, check the suitability of a given basis set
for the IT-CI and IT-NCSM calculations by monitoring these
quantities.

When using the HF-optimized basis in large scale CR-
CC(2,3) and IT-CI(4p4h)+MRD calculations, we observe an
excellent agreement of the ground-state energies of 16O for
all values of h̄� and emax. Only for the largest emax = 7
space and large h̄� values do we observe the slightly larger
differences between the CR-CC(2,3) and IT-CI(4p4h)+MRD
results, on the order of 1 to 2 MeV. This excellent agreement
between the results of the CR-CC(2,3) and IT-CI(4p4h)+MRD
calculations demonstrates that neither the violation of strict
size extensivity by the IT-CI schemes nor the violation of the
variational principle by the truncated CC schemes are of major
practical concern in nuclear structure calculations, because
both the IT-CI and CC methodologies are systematically
improvable through the inclusion of higher-order many-body
components in the corresponding excitation operators (Cm

components in the case of IT-CI and cluster components
Tm in the case of CC) and the use of suitable energy
corrections (the Davidson corrections in the case of IT-CI
and the corrections due to the effects of higher-order clusters
in CC). The IT-CI(4p4h)+MRD and the CR-CC(2,3) results
converge toward somewhat lower binding energies than the
IT-NCSM(4p4h)+MRD calculations, but, as already pointed
out, the observed few MeV or a few-percentage differences
between the extrapolated emax → ∞ IT-CI(4p4h)+MRD and
CR-CC(2,3) energies on the one hand and the Nmax → ∞ IT-
NCSM(4p4h)+MRD energies on the other hand are consistent
with the effects expected from the presence of center-of-mass
contaminations in the CI and CC calculations. Based on
all of these observations, we conclude that all ab initio
schemes used in the present work—IT-NCSM, IT-CI, and
CC—provide powerful, affordable, and potentially accurate
computational tools to tackle the nuclear many-body problem.
Due to the complementarity of the IT-NCSM, IT-CI, and CC
methods, comparative computational studies using all of these
approaches, following the analysis presented in this work,
may provide a comprehensive and precise picture of nuclear
structure of p-shell nuclei and beyond.

Finally, it is interesting to compare the results for the
ground-state energy of 16O obtained in the present study with
the VUCOM two-body interaction with the earlier recent CC cal-
culations using other two-body interactions. The extrapolated
ground-state energy obtained in the IT-NCSM(4p4h)+MRD
calculations with VUCOM is (−130 ± 1) MeV, i.e., within
about 2 MeV from the experimental value of −127.6 MeV.
Although the CR-CC(2,3) results reported in this work and
obtained with the same potential are not as well converged
with the single-particle basis set, the attempt to extrapolate the

CR-CC(2,3) energies to the emax → ∞ limit produced the
result that implies overbinding, compared to experiment,
on the order of 3–13 MeV. We believe that most of this
overbinding and the analogous overbinding observed in
IT-CI(4p4h)+MRD calculations is due to center-of-mass
contaminations that affect the CCSD and the subsequent
CR-CC(2,3) calculations as well as the IT-CI(4p4h)+MRD
calculations, although future, more detailed, studies will be
required to verify this statement. The CR-CCSD(T) study
reported in Ref. [48] using the Idaho-A two-body potential [5]
produced, after correcting the result for the effect of the
Coulomb interaction, an extrapolated ground-state energy of
about −109.3 MeV. A similar result (approximately, −112
MeV) was obtained with the two-body component of the chiral
N3LO potential [6], which includes the Coulomb interaction
directly [48]. Thus, with these chiral two-body interactions,
the CR-CCSD(T) approach underbinds 16O by approximately
17 MeV, which was concluded to be due to the effect of
missing three-body forces [48]. Similar underbinding has also
been observed in the CC calculations for 16O employing the
Argonne V18 potential reported in Refs. [44–46], where the
explicit inclusion of three-nucleon interactions was used to
improve the agreement with experiment [44,45]. A recent
CCSD(T) study based on the two-body Vlowk interaction
presented in Ref. [52] (CCSD(T) is another noniterative
treatment of T3 clusters in CC theory [125], which is less robust
and generally less accurate than the CR-CC(2,3) approach
used in the present study [87–89,91,94–96,98]), has led to
an extrapolated ground-state energy of −148.2 MeV, i.e.,
the binding energy overestimated by more than 20 MeV.
These comparisons demonstrate that the VUCOM interaction, in
contrast to many other two-nucleon interactions, requires no
or minimal contributions from a three-body force to provide
a reasonably accurate description of the ground-state energy
of 16O. An extension of these investigations to open-shell
systems and excited states, including other p-shell nuclei, will
be presented elsewhere.
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[22] P. Navrátil, G. P. Kamuntavicius, and B. R. Barrett, Phys. Rev.

C 61, 044001 (2000).
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[70] F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).
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