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Description of superdeformed nuclei in the A ∼ 190 region by generalized deformed suq(2)
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The generalized deformed suq (2) model is applied to 79 superdeformed bands in the region A ∼ 190. The
transition energies and the moments of inertia are calculated within the model and their validity is investigated
by comparing them with the experimental data. Both the standard suq (2) and the generalized one fail to account
for the uprising and the downturn of the dynamic moments of inertia. Both models, however, show remarkable
agreement with the available experimental data at low angular frequancy (h̄ω � 0.25 MeV).
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I. INTRODUCTION

Superdeformed nuclei were first observed in fission isomers
in the actinide region [1]. A theoretical explanation of the
occurrence of fission isomers, based on shell effect corrections
on the liquid drop potential energy surface, was, at that time,
offered by Strutinsky [2]. The main result was the possible
existence of a second minimum in the potential energy as a
function of nuclear deformation. It is expected nowadays that
a third minimum may occur corresponding to hyperdeformed
nuclei [3].

A superdeformed rotational band in 152Dy in the form
of a series of γ -ray energies was first populated in the
heavy-ion fusion-evaporation reaction 108Pd(48Ca,4n)152Dy
[4]. Since then extensive experimental and theoretical studies
have been undertaken. At present superdeformed bands have
been observed in various atomic mass regions [5]. The most
notable regions are at A ∼ 130, 150, and 190 in which axis
ratios are, respectively, close to 1.5:1, 2:1, and 1.7:1 [6].

Superdeformed nuclei enjoy several characteristics that
make them of particular interest theoretically and experimen-
tally. In addition to their extreme shape and stability against
fission, they show great regularity in their rotational bands and
exhibit some type of universal phenomenon in relation to the
existence of nearly identical bands in pairs of nuclei in different
mass regions and as a result their dynamic moments of inertia
are approximately similar [7]. It is expected that the process of
the decay of superdeformed nuclei to normal deformed nuclei
could proceed through quantum tunneling [8].

For high spin, superdeformed rotational spectra follow, in
general, approximately that of a rigid rotor. Hence the kine-
matics and the dynamic moments of inertia are nearly constant
with slight gradual increases with angular momentum, at low
angular frequency. At high angular frequency, the dynamic
moments of inertia show irregular behavior.

In this work we consider the q deformation of the
enveloping Lie algebra suq(2) [9], which has recently attracted
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much interest for the calculation of rotational spectra of
deformed [10] and superdeformed nuclei [11]. The validity
of the standard suq(2) model has, however, been recently
questioned [12]. A generalized form of the model that
is obtained by replacing the angular momentum spectral
expression I (I + 1) by I (I + c) has been used to describe
successfully the vibrational, transitional, and rotational nuclear
spectra of well-deformed nuclei [13]. Here we apply this
generalized form to the calculation of the rotational transition
energies, the kinematic moments of inertia, and the dynamic
moments of inertia for 79 superdeformed energy bands in the
region A ∼ 190 and compare the results with the experimental
data. A sensitive measure of the applicability of a model to
superdeformed bands is the dynamic moment of inertia. This
is because it is inversely proportional to the difference of the
transition energies and these transition energies are closely
spaced. The model results show remarkable agreement with
the experimental data in the rotational region at low angular
frequency (h̄ω � 0.25 MeV). A comparison with the standard
suq(2) model is also made. It is also shown that in addition
to the previously predicted deviation of the standard suq(2)
in the case of deformed nuclei, the standard and generalized
deformed suq(2) do deviate for the case of the superdeformed
nuclei considered in this work. It is also concluded, contrary
to the expectation of Ref. [13], that in the rotational region
the generalized suq(2) does not in general coincide with the
standard one.

In the following section we present a brief description of
the model and in the next section we present our results and
conclusion.

II. MODEL DESCRIPTION

The suq(2) algebra is a q deformation of the SU(2) Lie
algebra and is generated by the operators J−, J0, and J+, which
obey the commutation relations [9,10]

[J0, J±] = ±J±, [J+, J−] = [2J0], (1)

with J
†
0 = J0, J

†
+ = J−, and [x] is the q number defined as

[x] = qx − q−x

q − q−1
. (2)
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TABLE I. The fitting parameters and rms of the present models (for 1.0 < c < 1.5).

suq (2) Modified suq (2)

h̄2

2j (0) τ σ% h̄2

2j (0) τ c σ%

191Au SD1 5.24206 0.00945 0.42239 5.23042 0.00938 1.06323 0.41994
191Au SD2 5.38074 0.01073 0.08715 5.32596 0.01041 1.38868 0.07117
190Hg SD1 5.93895 0.01313 0.58702 5.84574 0.01275 1.45 0.41552
193Hg SD1 5.39158 0.01379 0.17721 5.39158 0.01276 1.02044 0.17721
193Hg SD2 5.29818 0.01004 0.52098 5.22778 0.00965 1.45 0.35778
193Hg SD4 5.29818 0.01004 0.52098 5.22778 0.00965 1.45 0.35778
193Hg SD5 4.83994 0.00219 0.20816 4.81326 0.001 1.17459 0.19576
194Hg SD2 5.28511 0.01007 0.45569 5.20579 0.00958 1.45 0.29270
195Hg SD1 5.26228 0.01035 0.76589 5.19947 0.01004 1.45 0.62843
189Tl SD1 5.52796 0.01065 0.04996 5.49779 0.01042 1.16635 0.03881
189Tl SD2 5.50741 0.01098 0.16131 5.45634 0.01055 1.26928 0.15042
191Tl SD1 5.38536 0.01039 0.05602 5.38353 0.01037 1.01021 0.05593
192Tl SD3 5.1029 0.00890 0.25246 5.03279 0.00827 1.40185 0.18759
192Tl SD4 5.1066 0.00903 0.17178 5.06215 0.00861 1.23881 0.12532
193Tl SD1 5.18845 0.00970 0.27259 5.14984 0.00940 1.21010 0.24470
193Tl SD2 5.18638 0.00889 0.26542 5.12698 0.00839 1.33399 0.21371
194Tl SD1 5.00301 0.00835 0.12796 4.97268 0.00806 1.18518 0.11626
194Tl SD2 5.00398 0.00849 0.08714 4.97817 0.00821 1.13658 0.05851
195Tl SD1 5.2395 0.00950 0.14559 5.23000 0.00942 1.04212 0.13952
195Tl SD2 5.24353 0.01042 0.21265 5.21783 0.01023 1.12423 0.18672
193Pb SD3 5.2603 0.00895 0.19961 5.17564 0.00811 1.45755 0.11696
193Pb SD6 5.34273 0.01056 0.41145 5.25659 0.00985 1.45 0.24225
194Pb SD1 5.62768 0.01231 0.72335 5.50272 0.01128 1.44987 0.40757
194Pb SD2 5.28708 0.01133 0.16664 5.23070 0.01067 1.25752 0.14921
194Pb SD3 5.28808 0.01121 0.13644 5.23187 0.01061 1.27327 0.11896
195Pb SD1 5.05467 0.00596 0.16410 5.00077 0.00496 1.25433 0.06094
195Pb SD4 5.40187 0.01143 0.25481 5.37387 0.01116 1.12594 0.24772
196Pb SD1 5.7067 0.01174 0.23161 5.64178 0.01124 1.26440 0.04316
196Pb SD2 5.42321 0.01111 0.29565 5.34749 0.01039 1.34114 0.23212
197Pb SD1 5.09885 0.00609 0.11375 5.08275 0.00586 1.07249 0.08923
198Pb SD1 5.66046 0.00919 0.33644 5.58475 0.00871 1.45 0.20562

TABLE II. The fitting parameters and rms of the present models (for 1.5 < c < 2.0).

suq (2) Modified suq (2)

h̄2

2j (0) τ σ% h̄2

2j (0) τ c σ%

198Po SD 5.87348 0.015368 0.37078 5.71292 0.01359 1.52075 0.10810
196Bi SD 5.47304 0.009596 0.61989 5.26217 0.00646 1.82055 0.03724
191Hg SD2 5.28001 0.009649 0.23706 5.18865 0.00899 1.54006 0.08739
191Hg SD3 5.27424 0.010148 0.31120 5.15491 0.00937 1.75194 0.15758
193Hg SD3 5.308 0.010110 0.54763 5.15232 0.00927 1.95203 0.25438
194Hg SD3 5.26475 0.009839 0.55888 5.11966 0.00897 1.88759 0.25922
195Hg SD4 5.08002 0.008086 0.21760 4.98767 0.00753 1.73243 0.13646
192Pb SD 5.73047 0.013809 0.56276 5.5929 0.01268 1.57881 0.47779
193Pb SD4 5.30025 0.010653 0.22269 5.18738 0.00978 1.65015 0.09640
193Pb SD5 5.34677 0.010707 0.36132 5.22763 0.00965 1.58574 0.20445
196Pb SD3 5.4111 0.011044 0.29265 5.29645 0.01002 1.55773 0.15156
198Pb SD3 5.68231 0.011113 0.32830 5.54283 0.00982 1.60574 0.07149
194Tl SD3 5.22953 0.009804 0.30147 5.09825 0.00864 1.72394 0.08790
194Tl SD4 5.23294 0.009887 0.37686 5.08547 0.00847 1.76634 0.12778
194Tl SD5 4.93312 0.008534 0.31105 4.81538 0.00685 1.58204 0.06564
194Tl SD6 4.93169 0.008057 0.24610 4.83214 0.00656 1.50663 0.12430
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FIG. 1. Comparison between the experimental and theoretical calculations of the kinematic J (1) (dot) and dynamic J (2) (circle) moments
of inertia versus the rotational frequency (h̄ω) of a representative sample of superdeformed bands in the A ∼ 190 region. The modified suq (2)
model (solid line) and the nonmodified suq (2) model (dashed line). 192Hg SD2 and 197Pb SD6 have c = 1, and c values for the rest of the SD
bands are as shown in Table I.

In terms of the parametrization τ = ln q, this equation takes
the form

[x] = eτx − e−τx

eτ − e−τ
= sinh τx

sinh τ
. (3)

In the suq(2) formalism it is suggested that rotational spectra of
nuclei can be well described by a Hamiltonian proportional to
the second-order Casimir operator of the quantum algebra of
suq(2) in a manner similar to that of the SU(2) rotator algebra.

The second-order Casimir operator of suq(2) is

C
q

2 = J−J+ + [J0][J0 + 1], (4)

with eigenvalues [I ][I + 1].

A deformed q-like rotor is a quantum system described by
the suq(2) invariant Hamiltonian

H = h̄2

2j (0)
C

q

2 + E0, (5)

where j (0) is the moment of inertia for q = 1 and E0 is the
bandhead energy. The parameters j (0) and E0 are regarded as
constants of the model. The rotational energy spectrum can
then be expressed as

E = h̄2

2j (0)

sin(I |τ |) sin[(I + 1)|τ |]
sin2 |τ | + E0, (6)

where a pure imaginary τ (≡ ln q = i|τ |) is assumed.
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FIG. 2. Comparison between the experimental and theoretical calculations of the kinematic J (1) (dote) and dynamic J (2) (circle) moments
of inertia versus the rotational frequency (h̄ω) of a representative sample of superdeformed bands in the A ∼ 190 region. The modified
suq (2) model (solid line) and the nonmodified suq (2) model (dashed line). 191Au SD3, 189Hg SD1, 194Hg SD1, and 198Pb SD2 have c =
3.35953, 2.39011, 2.47371, and 2.81838, respectively. 194Pb SD1 has c as shown in Table I; and c values for the rest of the SD bands are as
shown in Table II.

An extended version of this model is obtained by replacing
I + 1 by I + c, where c > 1. The addition of the parameter
c allows for the description of nuclear anharmonicities in a
way similar to that of the Interacting Boson Model and the
Generalized Variable Moment of Inertia Model. The energy
spectrum in this case becomes

E = h̄2

2j (0)

sin(I |τ |) sin[(I + c)|τ |]
sin2 |τ | + E0, (7)

which contains three parameters: the moment of inertia j (0), the
deformed parameter τ , and the anaharmonicity parameter c.

In our application of the model, to fit the three parameters in
Eq. (7) we make use of the transition energies of 79 SD bands
in the A ∼ 190 region that are reported for the nuclei Au, Tl,
Bi, Pb, and Po [5]. The kinematic J (1) and the dynamical
moment of inertia J (2) are calculated from the following
defining relations

J (1) = [(2I − 1)/Eγ (I )](h̄2 MeV−1) (8)

J (2) = 4/[Eγ (I + 2) − Eγ (I )](h̄2 MeV−1), (9)

where the transition energy Eγ (I ) is

Eγ (I ) = E(I ) − E(I − 2). (10)

054324-4



DESCRIPTION OF SUPERDEFORMED NUCLEI IN THE . . . PHYSICAL REVIEW C 79, 054324 (2009)

We have used as a quantitative measure for best fit the root
mean square (rms) σ defined as

σ =
√√√√ 1

N

N∑
I=1

(
1 − Ecalc

γ (I )

E
exp t
γ (I )

)2

, (11)

where N is the number of levels fitted.

III. RESULTS AND CONCLUSION

A representative sample of the fitting parameters and the
rms of the two models, for the studied nuclei, are presented
in Tables I and II. Of the 79 superdeformed (SD) bands
studied, 20 have the anharmonic parameter c = 1; we do not
include these bands in the tables because they do not lead to
comparison between the two models. These bands are 197Bi
SD; 190Hg SD3; 191Hg SD1, SD4; 192Hg SD2, SD3; 193Hg
SD6; 195Hg SD3; 193Pb SD2; 195Pb SD2; 197Pb SD2, SD3, SD4,

SD5, SD6; 192Tl SD1, SD2; 191Tl SD2; and 193Tl SD3, SD4.
In addition 12 SD bands (191Au SD3, 189Hg SD1, 190Hg SD4,
192Hg SD1, 194Hg SD1, 195Hg SD2, 190Tl SD2, 193Tl SD5,
193Pb SD1, 195Pb SD3, 196Pb SD4, and 198Pb SD2) have
c > 2 and are outside the rotational region [13]. Figures 1
and 2 clearly illustrate that our calculations of the moments of
inertia are in good agreement with experimental data at low
angular frequency. Both models give good fits for the kinematic
moments of inertia but they show marked disagreement for the
dynamic moments of inertia at high angular frequency. The
models fail to account for the uprising and the downturn of
the dynamic moments of inertia. Comparison of the rms of the
studied SD bands, Tables I and II, for the two models shows a
significant improvement in favor of the generalized suq(2).
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