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The energy of the degenerate doublet (3+/2, 5+/2) of 9
�Be, treating it as a partially nine-body system in

the �αα cluster model, has been calculated in the variational Monte Carlo framework. A simplified treatment,
with the central two-body Urbana type �N and the three-body dispersive and two-pion exchange �NN forces
along with the central two- and three-body correlations, is found to be adequate in explaining the energy of
observed γ -ray transition from the excited degenerate doublet to the ground state. The hypernucleus 9

�Be is
highly deformed and has an oblate shape in the excited state. The results of the present work are consistent with
the earlier three-body cluster model analyzes of 9

�Be.
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I. INTRODUCTION

Recently, Shoeb [1,2] and coworkers [3–5] have analyzed
the ground-state binding energies of s- and p-shell hypernuclei
and excited states of p-shell hypernuclei in the α cluster model
using the variational Monte Carlo (VMC) method. In these
analyzes [1–4], a phenomenological dispersive three-body
�αα force of Yukawa shape was proposed in analogy with
the one suggested in explaining the spectra of 12C using the
three-body cluster ααα potential [6,7]. The phenomenological
dispersive three-body �αα force [1–4] along with the appro-
priate �α, αα, and �� potentials explains the ground- and
excited-state energies of 9

�Be and 10
��Be. Moreover, a particle

stable 4+ state [4] of 10
��Be has been predicted where the

contribution of a dispersive three-body �αα force was found to
have negligibly small owing to large separation of αα clusters.
The need to incorporate a repulsive dispersive three-body force
has been pointed out not only in the α-cluster model analysis
[8] but investigated in detail in the earlier microscopic study
[9]. In contrast to our analyzes [1–5], Hiyama et al. [10] have
found the modified odd/even state �N potential important
in explaining the binding energy and excited state data of
S = −1 and −2 hypernuclei. Although these potentials have
been microscopically calculated but were tailored to adjust
the �-cluster potentials so that ground-state or ground- and
excited-state energies of hypernuclei containing clusters are
reproduced thus rendering these as phenomenological ones. In
the calculation of the properties of 9

�Be in the �αα model,
using the Faddeev method, Cravo, Fonseca, and Koike [11]
needs neither a dispersive force nor modified odd/even state
�N potential. In the past few years, other cluster model
analyzes [12,13] have also been performed for the binding
energy of s-shell hypernuclei. Here it is noteworthy to point
out that the oldest calculation for the excited state of 9

�Be is
by Ali, Murphy, and Bodmer [14].

In all the above-mentioned analyzes, α clusters are treated
as rigid entities devoid of structure and thus the effects of
the role played by the dynamical correlations among the
baryons are not explicitly manifested in the energy calculation.
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Therefore, such studies are deficient in accommodating the
realities of the internal structure and seem, therefore, far
from satisfactory. Earlier, Shoeb, Usmani, and Bodmer [15]
have calculated the ground-state energy of 9

�Be, treating it
as a partially nine-body system in the � + 2α model. This
work presupposes the existence of the αs structure. The two-
body NN correlations within αs were explicitly incorporated.
However, the effect of NN correlations, where each α

contributes a nucleon, is simulated through αα correlation.
Thus, antisymmetrization between two αs has been ignored.
However, soft repulsive core in the αα potential [7] simulates
the effect of NN antisymmetrization in the wave function.
The three-body �NN correlations were included in the trial
wave function but �N space-exchange correlations were
ignored. From this study it was concluded that dispersive
three-body �NN force and space-exchange �N potential
cannot be determined uniquely. The presence of one masks the
determination of other. However, B� of 9

�Be is satisfactorily
explained.

Recently, Usmani and his coworker [16] have investigated
the effect of space-exchange �N correlations for Argonne
v18 NN potential on the B�,� binding in 5

�He and found
it to be negligibly small. Thus ignoring of space-exchange
correlations in our earlier work [15] turned out to be justified.

The success of partially nine-body problem within the
� + 2α model in explaining the B� of 9

�Be, though for a
single set of potential parameters, motivated us to apply it to
analyze the experimental [17] binding energy B� = 3.67 MeV
of the degenerate doublet (3+/2, 5+/2) of 9

�Be. Following
the spirit of the earlier work [15], for the simplicity of the
calculation, we have chosen simple baryon-baryon potentials
along with the corresponding simple correlation functions. We
have also calculated the magnetic and quadrupole moments to
gain further insight into the structure of the hypernucleus 9

�Be.
To our knowledge, this is the first application of VMC method
to the calculation of the excited state. Preliminary results on the
excited degenerate doublet of 9

�Be were presented in the earlier
work [18]. The Hamiltonian and expressions for the input
potentials used can be found in the earlier work [15,19–21]
despite that we give these here for ready reference.

For the calculation of energy of 9
�Be, now we have two

competing models: classical � + 2α model and partially
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nine-body � + 2α model. In the former, internal structure
is ignored while the latter takes into account the relevant
correlations consistent with the philosophy of the model. Here
it will be interesting to make a comparative discussion of two
approaches and in Sec. V we have reserved a subsection for
this purpose.

The article is organized as follows: In the next section we
describe the Hamiltonian of 5

�He and of hypernucleus 9
�Be

in the α cluster model along with the potential models for
�N,NN , and αα. For the three-body �NN we use dispersive
and two-pion exchange forces. The construction of trial wave
function is discussed in Sec. III and the energy calculation
and moments are presented in Sec. IV. In Sec. V, we present
the results and discussion. The last section is devoted to the
summary of our work.

II. HAMILTONIANS IN THE α CLUSTER MODEL AND
POTENTIAL MODELS

Although ground state of 5
�He, as a (A = 5) five-body

system, has been analyzed extensively [15,19–21] in VMC
framework but 9

�Be, as a partially nine-body problem [15], is
yet to be investigated in detail. Therefore, we are interested in
making a combined and a detailed study of the energies [17,22]
of ground state of 5

�He and ground and excited states of
9
�Be by choosing the same sets of potential parameters. The
hypernucleus of mass number A consists of (A − 1) nucleons
and a � particle. The hypernuclear Hamiltonian HA

H for A

particles system, in general, can be written as the sum of HA−1
C ,

Hamiltonian of the (A − 1) nucleons of the core nucleus and
� particle Hamiltonian H�:

HA
H = HA−1

C + H�. (1)

The nuclear Hamiltonian, HA−1
C for the two-body NN inter-

action VNN (rij ) for α clusters nuclear core is given by

HA−1
C =

A−1∑
i=1

KN (i) +
A−1∑
i<j

VNN (rij ) + V (l)
αα(rα1α2 ) (2)

and the � particle Hamiltonian, H� is written as

H� = K� +
A−1∑
i=1

V�N (r�i) +
A−1∑
i<j

Vij�(ri�, rj�), (3)

where Ka is the kinetic energy operator for particle a(=N,�)
and V�N and Vij� are the two-body �N and three-body �NN

potentials, respectively. The Hamiltonian for 5
�He is obtained

from Eqs. (1), (2), and (3) on restricting baryon number A = 5
and suppressing αα potential. We calculate the energy of the
degenerate doublet (3+/2, 5+/2) of 9

�Be in the �αα cluster
model. These states are presumably built on the first excited
state JC = 2+ of 8Be core nucleus that is coupled state of
LC = 2, and SC = 0. The coupling of 0s� particle of spin
s� = 1/2 to the JC = 2+ of 8Be core in 9

�Be gives rise the
spin-flip doublet (3+/2, 5+/2). The measured energy spacing
∼0.03 MeV of the doublet is attributed to a very weak spin-
orbit force that has been ignored here.

The Hamiltonian of the A(=9) baryons system 9
�Be in the

2α + � is given as:

H 9
H =

A−1∑
i=1

KN (i) +
4∑

i<j

VNN (rij ) +
A−1∑
i<j i=5

VNN (rij )

+V (l)
αα(rα1α2 ) + K� +

4∑
i=1

V�N (r�i) +
A−1∑
i=5

V�N (r�i)

+
A−1∑
i<j

Vij�(ri�, rj�), (4)

where labels 1 to 8 specify the nucleons and α1 and α2 two
α particles. Vxy denotes the potential for a pair of particles
xy(=NN,�N, αα) and in the case of αα, V (l)

αα is potential in
the relative angular momentum l = 2 for excited state. The
three-body potential Vij�(ri�, rj�) = V D

�NN + V 2π
�NN . The

contribution of 〈V D
�NN 〉 to the energy is quite significant as

shown in Refs. [15,19], neglecting it over binds the 9
�Be. The

Hamiltonian of the ground state is recovered for V(l)
αα in the

relative angular momentum l = 0 state.

A. Baryon-baryon and αα potentials

The baryon-baryon, αα, and three-body potentials used
here are reasonable as these are motivated from the meson-
exchange model and in case of phenomenological ones are
constrained by the experimental data of the relevant pairs of
particles. All these potentials have a soft repulsive core and
in the case of three-body forces, a cut-off radius has been
introduced to simulate the short-range behavior that is yet to
be understood.

1. �N potential

An Urbana-type central spin-dependent and space-
exchange �N potential V�N consistent with the �p-scattering
data has been employed. This potential [15,19–21] for hyper-
nuclei with spin zero core in the relative �N s state has the
following form;

V�N = (1 − ε + εPx)Ṽ 0
�N, (5)

where

Ṽ 0
�N = V2π = W (r) − V̄ T 2

π (r) (6)

with V̄ (=6.15 MeV) as the spin-average strength, Px is the
Majorana space-exchange operator for � and nucleon with
strength ε(=0.25) determined from the �p-scattering data,
W (r) is a Woods-Saxon repulsive core, which is given as

W (r) = W0

[
1 + exp

(
r − R

d

)]−1

(7)

with W0 = 2137 MeV, R = 0.5 fm, d = 0.2 fm, and Tπ (r) is
the one-pion exchange tensor potential shape modified with a
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cutoff,

Tπ (r) =
[

1 + 3

µr
+ 3

(µr)2

]
exp(−µr)

µr
[1 − exp(−ĉr2)]2 (8)

with µ = 0.7 fm−1 and the cut-off parameter ĉ = 2.0 fm−2.

2. N N potential

For the NN pair we use the central, spin-isospin-
independent Malfliet-Tjon (MT) potential [23] that gives
reasonable ground-state energy (−31.20 MeV) and rms radius
(1.42 fm) for 4He within VMC approach. This potential has
the form;

VNN (r) = h̄c

r
[7.39 exp(−3.11r) − 2.93 exp(−1.55r)], (9)

We have also used Volkov NN central potential [24];

VNN (r) = 144.86 exp
[
−

( r

0.82

)2]
−83.34 exp

[
−

( r

1.60

)2]
,

(10)

which gives a binding energy of 30.34 MeV and an rms radius
of 1.51 fm for 4He, consistent with the experimental values.
The Volkov NN potential induces much weaker correlations
compared to the MT one. The energy for 8Be core is taken as
sum of the energy of 2α plus resonance energy ≈0.1 MeV.

3. αα potential

We employ Ali-Bodmer [25] αα potential that fits αα-
scattering data and has been modified by Fedorov and Jensen
[7]. The αα potential V (l)

αα(r) in the angular-momentum state l

is given by

V (l)
αα(r) = V (l)

repexp

{
−

[
r

β
(l)
rep

]2}
− V

(l)
att exp

{
−

[
r

β
(l)
att

]2}
,

(11)

where V
(l)
i and β

(l)
i are the strength and range parameters in the

relative l state, respectively, for i = rep (att). The parameters
are listed in Table I. A finite size VCoul(r) potential is added in
Eq. (11) while performing the actual calculation for the energy.
Here we remark that Filikhin and Gal [26] have used 120.0
instead of 125.0 as the coefficient of the repulsive part. We have
also repeated our calculation taking 120.0 as the soft repulsive
core and found that separation of the degenerate doublet from

TABLE I. Potential parameters of Ali and Bodmer [25] from fit
to αα-scattering data.

Angular V (l)
rep β (l)

rep V
(l)

att β
(l)
att

momentum l (MeV) (fm) (MeV) (fm)

0 125.0 1.53 30.18 2.85
2 20.0 1.53 30.18 2.85

the ground state is less at most approximately by 6% than for
the ones reported here.

B. Three-body �N N potentials

The phenomenological dispersive three-body �NN poten-
tial that we shall be using in our analysis is a representation
of the suppression of the TPE �N potential arising from
modification (“dispersion”) of the intermediate �,N∗,�, . . .

components by the medium (a “second” nucleon N2). The two
types of phenomenological dispersive �NN potentials [19,20]
have been constructed to resolve the over binding of 5

�He.
The spin-dependent dispersive three-body �NN potential for
spin-zero core nuclei (e.g., 5

�He, 9
�Be) is equivalent to the

spin-independent force that in our case corresponds to;

V D
�NN = WdT

2
π (r�1)T 2

π (r�2), (12)

where the strength parameter Wd has repulsive nature. The
contribution of this force by design is repulsive for all distances
and for all the �N correlations included in the wave function.

The two-pion exchange three-body �NN potential [27]
has, for s-shell hypernucleus 5

�He, the following form:

V 2π
�NN = Cp[1 + (3cos2 θ1�2 − 1)T̂π (r�1)T̂π (r�2)]

× Ŷ (r�1)Ŷ (r�2), (13)

where T̂π (r�i) = [1 + 3
µr

+ 3
(µr)2 ][1 − exp(−ĉr2)], Ŷ (r�i) =

exp(−µr)
µr

[1 − exp(−ĉr2)], and θ1�2 is the angle between the
arms r�1 and r�2. The coefficient Cp is also not well
determined quantity due to the ambiguity in the coupling
constant and other approximations made in deriving Eq. (13).
Further, lack of knowledge in the short range behavior of V 2π

�NN

is circumvented by introducing a cut-off distance ĉ. There is
no unique way to fix it and is rather a arbitrary number. Hence
we have chosen a range of values for both: Cp = 1 and 2 MeV,
ĉ = 1, 2, and 3 fm−2, which are not very far off from those
given in Ref. [27]. The contribution of V 2π

�NN is sensitive to ĉ

and has a highly nonlinear behavior. These values of Cp and ĉ

have a moderating effect on the strength Wd of the dispersive
three-body �NN potential when the two are used together.

III. TRIAL WAVE FUNCTION

In the construction of good trial wave function, in the
variational calculation, care should be taken to incorporate
the physics relevant to describe the state of the system under
investigation and, moreover, it should be reasonably efficient
to compute. The trial wave function for 9

�Be in the state
(J, Jz), ignoring space-exchange correlations, is the product
of central two-body correlation functions fxy and for αα it is
in the relative angular-momentum state l(=0 or 2), three-body
correlations f�NN and the ls coupled function (ylm(
α1α2 ) ⊗
χ1/2

mz
)JJ z

, a appropriate combination of χ1/2
mz

, spin function
of � particle and ylm(
α1α2 ) spherical harmonic for relative
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motion of two αs:

�
(9)
H (J, Jz) =

[
4∏

i=1

f�N (r�i)

] [
A−1∏
i=5

f�N (r�i)

]

×
⎡
⎣ 4∏

i<j

fNN (rij )

⎤
⎦

⎡
⎣A−1∏

i<j i=5

fNN (rij )

⎤
⎦

×
⎡
⎣A−1∏

i<j i=1

f�NN (ri�, rj�)

⎤
⎦

× f (l)
αα(rα1α2 )(ylm(
α1α2 ) ⊗ χ1/2

mz
)JJ z

. (14)

The two-body correlation functions f�N, fNN , and f (l)
αα(r),

as usual, are spin-independent and are obtained with the
method developed by the Urbana group, from the solution
of the Schrödinger-type equation for the appropriate relative
angular-momentum state. A Schrödinger-type equation, which
contains the effective two-body potential through which the
variational parameters enter is solved for each pair of particles.
The forms of f�N, fNN , and f (l)

αα have the asymptotic behavior
required by the full A-body Schrö dinger equation, namely

fBN ∼ r−νBN exp(−κBNr) (15)

with the appropriate products of the f ′s then having the
asymptotic behavior ∼r−1exp(−κBr) if the νBN are chosen
appropriately (ν�N = 0.125, νNN = 0.292, and ναα = 0.5 for
9
�Be). The results are quite insensitive to the precise values
of the νBN if the variational parameters are optimized for any
given choice.

The three-body correlations f�NN have the following
forms:

f�NN = f D
�NNf 2π

�NN,

where

f D
�NN = 1 − αỸ (r1�)Ỹ (r2�), (16)

is appropriate for V D
�NN and

f 2π
�NN = 1 − β(3cos2 θ1�2 − 1)Ỹ (r1�)Ỹ (r2�), (17)

for V 2π
�NN . Ỹ (r) are the Yukawa functions, as defined in

Eq. (13) with the range and cut-off parameters µ̃ and
c̃, respectively. The µ̃, c̃ and the correlation strengths
α and β are variational parameters. Here we may point
out that f�NN correlations that make negligibly small
contribution for the triad �NN , where a participating
nucleon is from each α, have been ignored. The wave
function �

(9)
H depends on a total of 13 variational parameters

κ�N, c�N, a�N, R�N, s�N, κNN, cNN, aNN,RNN, καα, cαα,

aαα , and Rαα for 9
�Be ground state and exactly the same

number of variational parameters for excited state. After
excluding the parameters related to αα correlation from the
above set we are left with the nine variational parameters in
the wave function for 5

�He.

IV. ENERGY CALCULATION AND MOMENTS

The energy −B�(J, Jz) for a hypernucleus of baryon
number A is the difference of energy of hypernucleus in
the state �

(A)
H (J, Jz) and of the nuclear core in the state

�
(A−1)
C (JC,MC) and is written as:

−B�(J, Jz) =
〈
�

(A)
H (J, Jz)

∣∣HA
H

∣∣�(A)
H (J, Jz)

〉
〈
�

(A)
H (J, Jz)

∣∣�(A)
H (J, Jz)

〉
−

〈
�

(A−1)
C (JC,MC)

∣∣HA−1
C

∣∣�(A−1)
C (JC,MC)

〉
〈
�

(A−1)
C (JC,MC)

∣∣�(A−1)
C (JC,MC)

〉
(18)

The estimates for the energy were made for 100,000
points. The two terms in Eq. (18) were separately cal-
culated and optimized with respect to variational pa-
rameters that are different for the two wave functions.
The second term in Eq. (18) is −31.20(−30.34) MeV
for 4He and−62.3(−60.58) MeV for 8Be core for MT(Volkov)
NN potential.

The variational parameters entering through the two- and
three-body correlations involved in the wave function are
varied to optimize the energy using the standard optimizing
routine. The κ�N, κNN , and καα and s�N are the parameters on
which the energy depends sensitively.

The space-exchange energy is calculated by exchanging
the coordinate of the � with each nucleon in turn in the wave
function �

(A)
H and is written as:

〈
�

(A)
H (r1, r2 . . . , r(A−1); r�)

∣∣
×

A−1∑
i=1

V�N (r�i)Px(i�)
∣∣�(A)

H (r1, r2 . . . , r(A−1); r�)
〉

= 〈
�

(A)
H (r1, r2 . . . , r(A−1); r�)

∣∣
×

A−1∑
i=1

V�N (r�i)
∣∣�(A)

H (r1, r2 . . . , r�..., r(A−1); ri)
〉
. (19)

In evaluating the above integral, it should be noted that on
exchanging of the coordinate r� of the � with ri of a ith
nucleon in all the eight terms, the Rc.m., the radius vector
of the center of mass (c.m.) of the system due to the mass
difference in the masses m� and mi of the two particles shifts
to new position R′

c.m. such that R′
c.m. − Rc.m. = (m�−mi )(ri−r�)

(A−1)mN +m�
.

The center of mass is restored to its original position by giving
an appropriate displacement to each of the particles in the wave
function.

A. Magnetic and quadrupole moments

To explore further structure of the hypernucleus 9
�Be in the

state (J, Jz) we have calculated the magnetic and quadrupole
moments. The expression for the magnetic moment operator
µ in the unit of nuclear magneton (µ0) for a hypernucleus of
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charge Z is given by;

µJ,Jz
=

[
Z∑

i=1

(li + gpsi) + gn

A−1∑
i=Z+1

si + g�s�

]
, (20)

where li is the angular momentum of i th proton, gx(x =
n, p,�) is the gyromagnetic ratio of the particle x and
si(i = nucleon,�) is the spin angular-momentum operator of
particle i.

The expectation value of Eq. (20) for the angular-
momentum state (J, Jz = J ) of 9

�Be is written as

µJ,J = 1

4(J + 1)
[J (J + 1)(2g� + 1) + s�(s� + 1)

× (2g� − 1) − JC(JC + 1)(2g�) + LC(LC + 1)],

(21)

where g� = −1.226.
The quadrupole moment in the unit of e fm2 using the

expression:

〈Q〉J,J = 〈
�

(9)
H (J, Jz)

∣∣Q∣∣�(9)
H (J, Jz)

〉
Jz=J , (22)

where the quadrupole moment operator is given by

Q =
2∑

i=1

(
3z2

i − r2
i

) +
6∑

i=5

(
3z2

i − r2
i

)
(23)

with summation index i running over coordinates of protons
in the two αs. The distances of protons are being measured
from the center of mass of the two αs.

V. RESULTS AND DISCUSSION

The experimental data for the systems 5
�He and 9

�Be are
given in Refs. [17,22]. Prior to the analysis of the energy of the
degenerate doublet (3+/2, 5+/2) of 9

�Be we need to recalculate
the ground state energy of 5

�He and 9
�Be. The parameters of

the two-body �N force are V̄ = 6.15 MeV and ε = 0.25 and
the strength Wd of dispersive force is adjusted for the sets of
combinations of Cp and ĉ to fit B� of 5

�He for a chosen NN

potential. These parameters are then employed to analyze the
ground and excited states of 9

�Be. We will first discuss the
detailed results of the calculation for the energy for MT NN

potential of all the systems included here and only quote the
final results for the Volkov potential [24].

A. Ground states of 5
�He and 9

�Be

The optimized energy −B� of 5
�He for the �N potential

Eq. (5) in conjunction with Wd = 0.012 MeV of the dispersive
force Eq. (12) for Cp(ĉ) = 0(0) is close to the experimental
value. For other sets of Cp(ĉ), the results of our calculations
are shown in Table II. From the table we note that as cut-off
radius changes from 1 to 3 fm−2, the contribution of V 2π

�NN

changes from moderately repulsive to moderately attractive
and consequently, a minor adjustment in the strength Wd is
made to produce the B� of 5

�He close to the experimental.
The energy of 9

�Be is optimized for all the three-body
�NN potentials parameters sets which fit B� of 5

�He. The
αα potential of Ali and Bodmer [25] in l = 0 was employed.

TABLE II. VMC results for 5
�He for Urbana type (V̄ =

6.15 MeV) �N and Malfliet-Tjon NN potentials. The last column
gives the total energy with statistical error. The third and fourth
columns have the values of average kinetic 〈T 〉 and two-body
potential 〈VBN 〉 energies while the contribution of dispersive
〈V D

�NN 〉 and two-pion exchange 〈V 2π
�NN 〉 energies are given in the

fifth and sixth columns for combinations of dispersive and two-pion
exchange three body �NN potential strength parameters, given in
the first two columns. All the potential strengths and the energies
are in MeV and ĉ in fm−2. Experimental B� = 3.12 MeV.

Wd Cp(ĉ) 〈T 〉 −〈VBN 〉 〈V D
�NN 〉 〈V 2π

�NN 〉 −E ± �E

0.012 0 (0) 83.91 120.68 2.35 0.00 34.42 ± 0.04
0.009 1 (1) 84.67 121.51 1.89 0.64 34.31 ± 0.06
0.010 1 (2) 84.49 121.09 2.27 0.09 34.24 ± 0.06
0.0115 1 (3) 84.65 121.17 2.70 −0.60 34.42 ± 0.05
0.006 2 (1) 84.67 121.51 1.26 1.29 34.29 ± 0.06
0.009 2 (2) 86.53 122.95 2.20 −0.23 34.45 ± 0.05
0.016 2 (3) 82.49 117.57 3.95 −3.23 34.36 ± 0.07

Thus there is no free potential parameter in the calculation of
9
�Be. In all the cases, listed in Table III, the theoretical B�

values are found to lie between 6.30 and 6.90 MeV, which
are consistent with the experimental value 6.71 MeV. Further,
Rαα varies between 3.7 and 4.0 fm, which is more than twice
the rms radius of an α particle and thus justifying the internal
consistency of the α cluster model.

B. Degenerate doublet (3+/2, 5+/2) of 9
�Be

The same potential parameters sets as employed for the
ground state of B� of 9

�Be were utilized to calculate the energy
of the degenerate doublet (3+/2, 5+/2) of 9

�Be. The excitation
energy of the degenerate doublet has been calculated for the
first time in the VMC approach using the αα potential [7,25] in
the relative l = 2 state. The results of calculation for optimum
values of variational parameters are tabulated in Table IV for
(3+/2, 3/2) state. The energy is found to lie between −3.32
and −3.89 MeV which is 2.89 to 3.14 MeV higher than
the calculated ground-state energy of 9

�Be given in Table III.
These values are close to those obtained in the �αα cluster
model calculations [1]. Essentially the same results are
obtained for the (5+/2, 5/2) state. The separation energy
�E�[=E(9

�Be∗) − E(9
�Be)], the difference between excited-

and ground-states energies for all the combinations of the
three-body �NN potentials, listed in the column third of
Table V for MT NN potential, is in good agreement with the
observed emitted γ -ray [17] provided small spin-orbit splitting
is ignored. We have also calculated the quadrupole moment
for 9

�Be∗ to explore its structure. Its value for (3+/2, 3/2)
state is found to vary from −7.12 to −6.24 e fm2, and for
(5+/2, 5/2) it is approximately 50% higher in magnitude than
for (3+/2, 3/2). The hypernucleus 9

�Be is highly deformed
and has an oblate shape. The values of quadrupole moment
are comparable to those calculated in the �αα cluster model
by Shoeb [1]. Further, Rαα is marginally larger than that for
the ground state as it should be due to the centrifugal barrier
in the relative l = 2 state.
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TABLE III. VMC results for the ground state (1+/2, 1/2) of 9
�Be. Rαα (in fm), the αα rms radii for various potential

parameters sets, are given in the last column. The energy −62.3 MeV, which is the sum of energies of two αs plus
≈0.1 MeV for the resonance energy of 8Be, is to be subtracted from the energy given in the seventh column to get the
calculated energy −B� of 9

�Be. Other quantities are the same as in Table II. Experimental B� = 6.71 MeV.

Wd Cp(ĉ) 〈T 〉 −〈VBN 〉 〈V D
�NN 〉 〈V 2π

�NN 〉 −E ± �E Rαα

0.012 0 (0) 160.61 233.07 3.26 0.00 69.20 ± 0.07 3.98
0.009 1 (1) 159.94 232.69 2.77 1.07 68.91 ± 0.07 3.96
0.010 1 (2) 161.22 233.87 3.39 0.43 68.83 ± 0.06 3.73
0.0115 1 (3) 159.46 231.92 3.66 −0.15 68.95 ± 0.08 3.80
0.006 2 (1) 163.08 236.11 2.31 1.83 68.89 ± 0.08 3.74
0.009 2 (2) 160.51 233.05 3.47 −0.01 69.08 ± 0.07 3.78
0.016 2 (3) 158.50 229.53 5.99 −3.56 68.60 ± 0.08 3.77

For all the three choices of ĉ discussed above it should
be noted that for a given Cp, the contribution 〈V 2π

�NN 〉 is
highly nonlinear for the ground and excited states of 9

�Be
as was found above in Table II for 5

�He. It changes from
moderately repulsive to attractive as ĉ changes from 1 to
3 fm−2.

We have also carried out the calculation of the energy using
Volkov NN potential [24] for the same sets of combinations
Cp(ĉ) as given in Table V. This potential induces weaker
correlations compared to MT NN potential. However, the
results for separation energy �E�, listed in the fourth column
of Table V are not very different from those obtained for the
MT potential. Thus both the central NN potentials with soft
repulsive core give equally good fit to the separation energy of
the ground and excited states of 9

�Be.
From the analytical expression Eq. (21), the magnetic

moment µJ,Jz
in the unit of µ0 for 9

�Be in various states has
been calculated and is given as:

µ1+/2,1/2 = µ� = −0.613, µ3+/2,3/2 = 1.268, and

µ5+/2,5/2 = 0.387.

These are exactly the same as calculated by Cravo, Fonseca,
and Koike [11].

C. Cluster model �αα versus partially nine-body
system for 9

�Be

In our earlier work [15], the investigation of the ground
state of 9

�Be through partially nine-body problem within the

�αα model and its application here to the excited state, where
nuclear degrees of freedom in the αs are assumed from the
outset, is in essence an extension of the �αα cluster model
[1–4,8–11,13,14] in which rigid αs are devoid of structure. The
three-body cluster model for the analysis of the energy of 9

�Be
uses �α and αα potentials constrained to fit the properties of
5
�He and low-energy αα-scattering phase shifts. The potential
for �α pair and realistic αα potential for l = 0 and 2 take into
account the NN and �N forces with all its complications and
their corresponding correlations represent a sort of average
over all types of the NN and �N correlations compatible
with the relevant baryon-baryon interactions. In partially
nine-body problem, the �N and NN central forces, taken
explicitly into account within each α, are simple, reasonable,
and consistent with the expectation of meson-exchange model
and satisfactorily explain the relevant data. Further, dispersive
and two-pion exchange three-body �NN forces within each α

and between nucleons where each α contributes a nucleon are
included. The trial wave function contains simple correlations
compatible with the interactions. However, in both the models,
the antisymmetrization between two αs is simulated through
soft repulsive core in the αα potential. The cluster model
calculations [1–4,8,10] of energy for the ground and excited
states of α-cluster hypernuclei give results in agreement
with partially nine-body problem. The calculated quadrupole
moments for the two models under discussion also agree
with each other. Here it will be worth mentioning to remark
that a very old cluster model variational calculation of Ali,
Murphy, and Bodmer [14] with very simple interactions and
correlations yields energy of degenerate doublet (3+/2, 5+/2)

TABLE IV. VMC results for the excited state (3+/2, 3/2) of 9
�Be. The last column has value of the quadrupole moment in the unit of

e fm2. Other quantities are the same as in the preceding table. Experimental B� = 3.67 MeV.

Wd Cp(ĉ) 〈T 〉 −〈VBN 〉 〈V D
�NN 〉 〈V 2π

�NN 〉 −E ± �E Rαα −〈Q〉(3+/2,3/2)

0.012 0 (0) 161.83 231.07 3.12 0.00 66.12 ± 0.08 4.08 7.12
0.009 1 (1) 169.06 238.75 2.83 1.09 65.77 ± 0.07 4.11 6.52
0.010 1 (2) 160.92 230.51 3.14 0.52 65.93 ± 0.07 3.91 6.41
0.0115 1 (3) 160.95 230.25 3.48 −0.13 65.95 ± 0.06 3.93 6.62
0.006 2 (1) 160.07 229.66 1.86 1.80 65.93 ± 0.07 3.89 6.27
0.009 2 (2) 163.14 232.09 2.94 −0.18 66.19 ± 0.07 3.95 6.24
0.016 2 (3) 164.65 232.22 5.62 −3.67 65.62 ± 0.08 3.96 6.64
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TABLE V. Separation energy �E� (in MeV) of 9
�Be for the MT

and Volkov NN potentials. Other quantities are the same as in the
preceding table. Experimental �E� = 3.04 MeV.

Wd Cp(ĉ) Theoretical �E�

Malfliet-Tjon [23] Volkov [24]

0.012 0 (0) 3.08 3.07
0.009 1 (1) 3.14 3.09
0.010 1 (2) 2.90 3.01
0.0115 1 (3) 3.00 3.09
0.006 2 (1) 2.96 3.11
0.009 2 (2) 2.89 3.06
0.016 2 (3) 2.98 3.07

of 9
�Be close to the one evaluated here. In view of the simplicity

of α-cluster model and its remarkable success in explaining
the observed energy of 9

�Be, makes it an obvious and serious
alternative to a partially nine-body model. Moreover, an �αα

model is expected to be superior for the excited state as
compared to the ground state because the αα separation will
be larger for l = 2 than for l = 0 and probably with less
resulting distortion in the presence of a �. Nonetheless, the
partially/full nine-body problem will still be a preferred option
over the cluster model approach because of the two counts:
first, in exploring the effect of interplay between various
components of the �N forces and their definite contributions
to the properties of the system as investigated in the earlier
work [15] and, second, it is these microscopic calculations
that ultimately guide in improving/modifying the cluster
model calculations as is indicated from the earlier analyzes
[3,10].

VI. SUMMARY

We conclude that we have made, to our knowledge the first
application of VMC method to analyze the degenerate doublet

(3+/2, 5+/2) of 9
�Be, treating it as a partially nine-body system

in the �αα cluster model using the simple potentials and
correlation functions. The Urbana �N potential consistent
with the �p-scattering data along with the dispersive �NN or
dispersive plus two-pion exchange �NN forces are adequate
to explain the emission of γ -ray of energy 3.04 MeV from the
degenerate doublet to the ground state of 9

�Be. In the absence of
any definite knowledge about the strength and cut-off radius
of two-pion exchange �NN , it is not possible, at present,
to make a unique separation of the contributions of �NN

forces. Further, 9
�Be in the excited state is highly deformed

and has an oblate shape and the quadrupole moment in 3+/2
state is less in magnitude than for the calculated in 5+/2.
The earlier three-body �αα cluster model approach also gives
results for 9

�Be consistent with the partially nine-body model.
Notwithstanding cluster model approach provides a simple and
serious alternative to the A-body approach in explaining the
properties of hypernuclei, the partially/full nine-body model
with realistic forces still remains and will be an indispensable
preferred choice for extracting information about the con-
tributions of the various components of �N forces and in
studying the effect of NN correlations on these and ultimately
for dictating the improvement and supplementing the cluster
model calculations.
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