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Localized single-particle potentials for all octet baryons, N, �, �, and �, in finite nuclei, 12C, 16O, 28Si,
40Ca, 56Fe, and 90Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated
in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local
density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical
single-particle properties of the nucleon and the � hyperon in a nuclear medium have been known to be explained
semiquantitatively in the LOBT framework. Attention is focused in the present consideration on predictions for
the � and � hyperons. The unified description for the octet baryon-baryon interactions by the SU6 quark model
enables us to obtain less ambiguous extrapolation to the S = −1 and S = −2 sectors based on the knowledge in
the NN sector than other potential models. The � mean field is shown to be weakly attractive at the surface, but
turns out to be repulsive inside, which is consistent with the experimental evidence. The � hyperon s.p. potential
is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence � hypernuclear bound
states are unlikely. We also evaluate energy shifts of the �− and �− atomic levels in 28Si and 56Fe, using the
calculated s.p. potentials.
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I. INTRODUCTION

One of the salient features of atomic nuclei is the success
of the description of their properties by a single-particle (s.p.)
picture. Although the nucleon-nucleon interaction is known
to be strongly repulsive at the short-range part, which was
once conveniently described by a hard core, the nucleon
single-particle potential is well represented by a well-behaved
local potential of the Woods-Saxon form. The theoretical
base of understanding this circumstance in view of the
singular two-body interaction was provided by the Brueckner
theory in 1950s [1–3]. The progress of the density-dependent
Hartree-Fock (DDHF) description of nuclear bulk properties
followed in 1970s [4,5], introducing some phenomenological
adjustment for G matrices in the Brueckner theory.

The mean field picture seems to hold also for hyperons in
nuclei. For the � hyperon, the potential properties have been
known from light to heavy nuclei from � formation and spec-
troscopy experiments [6]. Experimental studies of the � and �

hyperons in a nuclear medium properties are now in progress.
Because direct hyperon-nucleon scattering experiments are not
readily available, the properties of the hyperon s.p. potentials
are a valuable source of hyperon-nucleon interactions. In this
case, we have to resort to an effective interaction theory to
relate s.p. properties of the hyperon embedded in nuclei to the
character of hyperon-nucleon interactions.

In this paper, we develop a method for obtaining local
potentials for octet baryons in finite nuclei that uses full
nonlocal G-matrix elements in nuclear matter, starting from
the baryon-baryon bare interactions. The calculation of single-
particle properties in nuclear matter can provide the basic
information about the baryons in a nuclear medium derived
from the bare interaction. Nevertheless, it is instructive to ex-
plicitly calculate the s.p. potential in finite nuclei starting from

two-body baryon-baryon interactions and compare them with
the empirical ones. It is not even obvious whether the shape
represented by the Woods-Saxon form that was established
both for the nucleon and the � hyperon mean fields is suitable
for the � and the � hyperons. The straightforward folding
of the two-body effective interaction in momentum space
provides a nonlocal potential in a nucleus. The nonlocality also
comes from the exchange character of the basic interaction.
To make a comparison with empirical data, it is meaningful
to define a local potential by some localization procedure. We
employ in this paper a zero-momentum Wigner transformation
method based on the WKB localization approximation [7].

It is necessary for a predictive discussion about hyperon
s.p. properties in nuclei to use octet baryon-baryon bare inter-
actions that are as reliable as possible. With little experimental
information except for the �N interaction, the construction
of the interactions in the strangeness S = −1 and S = −2
sectors is not simple, although some constraints are imposed
by the flavor symmetry. The typical potential model has been
developed in a one-boson-exchange potential (OBEP) picture
by the Nijmegen group. The early parametrization with the
hard core in the 1970s [8,9] has been successively revised
by adjusting parameters in the soft-core version [10–12] and
introducing new terms [13]. There are now a number of
sets of parameters, reflecting ambiguities due to the lack
of experimental data. Although the description for the �N

interaction seems to be under control, there are various
uncertainties in the �N sector. For the � hyperon, namely,
the strangeness S = −2 sector, the situation is no better.

Using the spin-flavor SU6 quark model, the Kyoto-Niigata
group [14–18] has developed a unified description for the
interactions between full octet baryons. In this model, the
interaction is constructed as the Born kernel in the framework
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of the resonating group method for the three-quark clusters,
the short-range part of which is composed of the effective
one-gluon exchange mechanism. The basic SU6 symmetry
provides a specific framework to the interactions between octet
baryons, and the Pauli principle respected on the quark level
in addition brings about a characteristic structure to them.
Incorporating effective meson exchange potentials between
quarks, namely, the scalar, pseudoscalar, and vector meson
exchanges, the model is able to account for the NN scattering
data as accurately as other modern NN potential models.

Parameters of the SU6 quark model by the Kyoto-Niigata
group are mostly fixed in the NN and �N sectors, and the
uncertainties in the extension to the �N and �N channels
are limited. In fact, the definite predictions such as the
smallness of the �N spin-orbit interaction and the overall
repulsive nature of the �-nucleus s.p. potential in nuclei have
been supported by the experiments afterward. Therefore it is
interesting to examine the whole prediction of this potential
for s.p. properties of all the octet baryons in a nuclear medium.
In particular, concrete predictions are presented for the �

hyperon. We use the most recent quark-model potential fss2
[17,18] in this paper. The parameter set includes no adjustable
parameter for the tuning afterward. The original interaction as
a Born kernel has an inherent energy dependence. Recently
a method to eliminate the energy dependence was developed
[19]. We actually use this renormalized version of the fss2
potential.

We present, in Sec. II, basic expressions of the method to
evaluate localized N,�,�, and � s.p. potentials in a finite
nucleus. We first discuss the numerical results of these s.p.
potentials in nuclear matter to represent basic characters of the
G matrices of the quark-model baryon-baryon interactions.
Calculated results in the finite nuclei 12C, 16O, 28Si, 40Ca,
56Fe, and 90Zr are shown in Sec. IV. The energy shift and
width of the �− and �− atomic levels in 28Si and 56Fe are
studied in Sec. V on the basis of the s.p. potential obtained in
Sec. IV. A summary is given in Sec. VI.

II. LOCALIZED SINGLE-PARTICLE POTENTIAL IN
A FINITE NUCLEUS

We calculate a baryon single-particle potential in a finite
nucleus, which is defined by folding NN or YN G-matrix
elements in nuclear matter with respect to nucleon occupied
states through the local density approximation. It has been a
traditional method for the microscopic study of bulk properties
of nuclei to construct density-dependent two-body local inter-
actions based on the G matrices in nuclear matter and apply
the effective interaction to mean field calculations for finite
nuclei. Avoiding this procedure, we directly fold G-matrix
elements to obtain nonlocal s.p. potentials and localize them. In
the DDHF calculations, some phenomenological adjustments
are introduced to reproduce the properties of the well-known
nuclei. The purpose of the present paper is not to reproduce the
empirical values, but to examine the overall implications of the
unified description of the baryon-baryon bare interaction by
the quark-model potential fss2 [18] for hyperon s.p. potentials
in finite nuclei. In this section, we derive a basic expression

for the s.p. potential by introducing some approximations and
a localized method by the zero-momentum Wigner transform.

A. Direct term

First we consider the following direct term contribution.
The wave function φ�hjhmjh

denotes the nucleon s.p. wave
function of the nucleus with the orbital angular momentum
�h and the total angular momentum jh, and the dummy wave
function of the baryon for which the potential is calculated is
denoted by φ�jmj

. The average over the z component of the
total angular momentum, 1

ĵ

∑
mj

with ĵ ≡ 2j + 1, means that
we assume the spherical symmetry from the beginning. For
simplicity, we do not write the isospin indices in the following
derivation but recover them in the final expression.

ID ≡ 1

ĵ

∑
mj

∑
hmjh

∫ ∫ ∫ ∫
d r1 d r2 d r ′

1 d r ′
2 φ∗

�jmj
(r ′

1)

×φ∗
�hjhmjh

(r ′
2)G(r ′

1, r ′
2, r1, r2)φ�jmj

(r1)φ�hjhmjh
(r2)

=
∑

h

∑
JMLL′S

ĵhŜ
√

L̂L̂′

⎧⎨
⎩

� �h L

1/2 1/2 S

j jh J

⎫⎬
⎭

⎧⎨
⎩

� �h L′

1/2 1/2 S

j jh J

⎫⎬
⎭

×
∫ ∫ ∫ ∫

d r1 d r2 d r ′
1 d r ′

2

×[[
φ∗

� (r ′
1) × φ∗

�h
(r ′

2)
]L′ × χS

]J

M
G(r ′

1, r ′
2, r1, r2)

× [[
φ�(r1) × φ�h

(r2)
]L × χS

]J

M
. (1)

The effective baryon-baryon interaction G(r ′
1, r ′

2, r1, r2) in a
coordinate space is supposed to be related to the G matrix in
momentum space G(k′, k; K,ω) by

G(r ′
1, r ′

2, r1, r2) = (2π )3

(2π )12

∫ ∫ ∫ ∫
dk1 dk2 dk′

1 dk′
2

× δ(K − K ′)ei(k′
1·r ′

1+k′
2·r ′

2−k1·r1−k2·r2)G(k′, k; K,ω). (2)

Here each momentum has the following relation:
k1 = m1

m1+m2
K + k, k2 = m2

m1+m2
K − k, k′

1 = m1
m1+m2

K ′ + k′,
and k′

2 = m2
m1+m2

K ′ − k′. The mass of the baryon for which
the s.p. potential is evaluated is denoted by m1, and the mass
of the nucleon in the target nucleus by m2. The G matrix
is evaluated in symmetric nuclear matter by solving the
baryon-channel coupling Bethe-Goldstone equations

Gα,α′ (k′, k; K,ω)

= Vα,α′ (k′, k; K ) + 1

(2π )3

∑
β

∫
dq Vα,β (k′, q; K )

× Qβ(q,K)

ω − Eb(k1) − EN (k2)
Gβ,α′ (q, k; K,ω), (3)

with the suffix specifying the pair of a baryon b and a nucleon
N by β. The Pauli exclusion operator Qβ is treated in the
standard angle-average approximation. The explicit expression
may be found in Ref. [20]. Ea(k) is a s.p. energy of the baryon
a in nuclear matter. We employ the continuous choice for the
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energy denominator in Eq. (3). That is, Ea(k) = ma + h̄2

2ma
k2 +

Ua(k) is defined self-consistently by the following definition
of the s.p. potential Ua:

Ua(k) =
∫

dk′ Gα,α(q, q; k + k′, ω), (4)

where q = 1
2 (k − k′) and ω = EN,Y (k) + EN (k′). The pre-

scription for the starting energy ω in the local density
approximation is explained in the next section.

The straightforward calculation of Eq. (1) needs much
computational effort and is not fruitful in obtaining any
physical insight into baryon properties in nuclei by starting
from the bare baryon-baryon interactions. We introduce two
simplifying approximations. One is the spin-average in taking
the sum of the matrix elements, which means that we take the
average over the spin orientation:

1

Ŝ

∑
MS

〈SMS |G(k′, k; K,ω)|SMS〉

=
∑
qJq

Ĵq

4πĴq Ŝ
G

JqS
qq (k′, k; K,ω)Pq (cos k̂′k), (5)

where the G matrix is decomposed into partial waves, and
Pq stands for the Legendre polynomial with q specifying
the orbital angular momentum. The other simplification is the
following replacement:∫ ∫

d r1 d r ′
1 φ∗

�jmj
(r ′

1)φ�jmj
(r1)

=
∫ ∫

d R1 ds1 φ∗
�jmj

(
R1 + 1

2
s1

)
φ�jmj

(
R1 − 1

2
s1

)

⇒
∫

d R1 φ∗
�jmj

(R1)φ�jmj
(R1)

∫
ds1. (6)

This corresponds to the zero-momentum Wigner transforma-
tion of the nonlocal potential. That is, we set p = 0 for the
Wigner transformation UW (R, p) of the nonlocal potential
U (r1, r2):

UW (R, p) =
∫

dsei p·sU
(

R + 1

2
s, R − 1

2
s
)

. (7)

The results shown in Sec. IV for nucleons and �s, for
which we know what s.p. potentials are expected in G-
matrix calculations with bare NN and �N interactions in
various studies in literature, imply that the zero-momentum
approximation works well. More direct confirmation of the
reliability of this approximation will be presented elsewhere
[21].

To evaluate Eq. (1) with the above simplification, it is
convenient to use the Fourier transform of the s.p. wave
function φ�jmj

,

φ̃�jmj
(k) = 1

(2π )3

∫
d re−ik·rφ(r)

= 1

(2π )3/2
i2n−�

[
Y�(k̂) × χ1/2

]j

mj

1

k
φ̃�j (k), (8)

where n is a nodal quantum number, and the Fourier transfor-
mation of the radial wave function is defined as

1

k
φ̃�j (k) = (−i)2n

√
2

π

∫
dr rj�(kr)φ�j (r). (9)

After carrying out some integrations and taking angular
momentum recouplings, we obtain the final expression

ID = 1

4(4π )2

1

(2π )3

(
1 + m2

m1

)3 ∑
h

ĵh

∫
dR1|φ�j (R1)|2

×
∫ ∫

dk dk′ j0(|k′ − k|R1)
1

| Q′
1|

φ̃∗
�hjh

(| Q′
1|)

× 1

| Q1|
φ̃�hjh

(| Q1|)P�h
(cos Q̂′ Q)

×
∑
qJqS

ĴqG
JqS
qq (k, k′)Pq(cos k̂k′), (10)

where Q1 and Q′
1 are defined by k and k′ as

Q1 ≡ −
(

1 + m2

2m1

)
k − m2

2m1
k′, (11)

Q′
1 ≡ −

(
1 + m2

2m1

)
k′ − m2

2m1
k. (12)

B. Exchange term

We also have to consider the exchange term contribution,
which is familiar for the nucleon through the antisym-
metrization of the wave function. For hyperons, such terms
appear in association with the exchange character of the
hyperon-nucleon interaction, which is realized by the strange
meson exchange in the OBEP description. Denoting the
space-exchange and spin-exchange operators by Pr and Pσ ,
respectively, and specifying the even and odd components of
the interaction under the space exchange, the matrix element
of the YN interaction is written as

〈YN |V |YN〉 = 〈YN |VE
1
2 (1 + Pr )+VO

1
2 (1 − Pr )|YN〉

= 〈YN | 1
2 (VE + VO)|YN〉

− 〈YN | 1
2 (VO − VE)Pσ |NY 〉, (13)

where the relation PσPr |NY 〉 = |YN〉 is used. The first term
was treated in the previous section as a direct term contribution,
and the second term is considered in this section. The effective
interactions in the direct and exchange contributions should be
treated as such a combination of the even and odd parts in each
spin and isospin channels, though the isospin dependence is
disregarded in the above expression, because the inclusion of
it in the final expression is simple.

IE ≡ −1

ĵ

∑
mj

∑
hmjh

∫ ∫ ∫ ∫
d r1 d r2 d r ′

1 d r ′
2 φ∗

�hjhmjh
(r ′

1)

×φ∗
�jmj

(r ′
2)G(r ′

1, r ′
2, r1, r2)φ�jmj

(r1)φ�hjhmjh
(r2)
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= −
∑

h

∑
JMLL′S

ĵhŜ
√

L̂L̂′(−1)j+jh−J

⎧⎨
⎩

� �h L

1/2 1/2 S

j jh J

⎫⎬
⎭

×
⎧⎨
⎩

� �h L′

1/2 1/2 S

j jh J

⎫⎬
⎭

∫ ∫ ∫ ∫
d r1 d r2 d r ′

1 d r ′
2

× (−1)�h+�+1+jh+j+L′+S+J
[[

φ∗
�h

(r ′
1) × φ∗

� (r ′
2)

]L′ × χS
]J

M

×G(r ′
1, r ′

2, r1, r2)
[[

φ�(r1) × φ�h
(r2)

]L × χS
]J

M
. (14)

In this case, we define R1 and s1 as

R1 = 1
2 (r1 + r ′

2), s1 = r ′
2 − r1. (15)

Introducing the same simplifying approximations as in the
direct term, we obtain

IE = −1

4(4π )2

1

(2π )3

(
1 + m2

m1

)3 ∑
h

ĵh

∫
dR1 |φ�j (R1)|2

×
∫ ∫

dk dk′j0(|k + k′|R1)
1

| Q′
2|

φ̃∗
�hjh

(| Q′
2|)

× 1

| Q2|
φ̃�hjh

(| Q2|)P�h
(cos Q̂′

2 Q2)

×
∑
qJqS

(−1)1+SĴqG
JqS
qq (k, k′)Pq(cos k̂k′), (16)

where Q2 and Q′
2 are defined by k and k′ by

Q2 = −
(

1 + m2

2m1

)
k + m2

2m1
k′, (17)

Q′
2 =

(
1 + m2

2m1

)
k′ − m2

2m1
k. (18)

These Q2 and Q′
2 are obtained by changing the sign of k′ in

Q1 and Q′
1 of Eqs. (11) and (12). It is easy to see that the

difference of the expressions of IE and ID is only the factor
(−1)S+q . Thus, recovering the isospin degrees of freedom, we
obtain

ID + IE = 1

4(4π )2

∑
h

∫
dR1|φ�j (R1)|2ĵh

(
1 + m2

m1

)3 1

(2π )3

×
∫ ∫

dk dk′j0(|k + k′|R1)
1

| Q′
2|

φ̃∗
�hjh

(| Q′
2|)

× 1

| Q2|
φ̃�hjh

(| Q2|)P�h
(cos Q̂′

2 Q2)

×
∑

qJqST

(1 + (−1)S+q+IB+1/2−T )

×
(

IBMB

1

2
ih|T MB + ih

)2

× ĴqG
JqST
qq (k, k′)Pq(cos k̂k′). (19)

In the above expression, IB is the isospin of the baryon
for which the s.p. potential is considered, and MB is its z

component. The index ih denotes the proton or neutron in the
target nucleus.

Equation (19) defines a s.p. potential UB(R) to give

ID + IE = 4π

∫
R2dR|φ�j (R)|2UB(R). (20)

Note that the potential UB(R) does not have � and j

dependences thanks to approximations introduced in the
derivation.

III. SINGLE-PARTICLE POTENTIALS IN SYMMETRIC
NUCLEAR MATTER

Before discussing baryon s.p. potentials in finite nuclei,
we show s.p. potentials in nuclear matter at various Fermi
momenta, 0.75 � kF � 1.45 fm−1, with the quark-model po-
tential fss2 [18]. This potential is defined as a Born kernel
of the resonating-group method (RGM) description of the
interaction between the three-quark clusters. We use the
energy-independent renormalized version of the fss2 potential
[19]. The details of the G-matrix calculation for hyperons in
nuclear matter are reported in Ref. [20]. It has been known that
the lowest order Brueckner theory (LOBT) saturation curve in
ordinary nuclear matter does not reproduce the empirical sat-
uration property. Although the curve obtained by the potential
fss2 with the continuous choice for intermediate spectra almost
goes through the empirical saturation point of kF = 1.35 fm−1

and E/A = −16.5 MeV, the energy minimum appears at kF =
1.7 fm−1 and E/A = −20 MeV. Nevertheless, the LOBT
calculation provides a useful starting point and meaningful
information for the baryon s.p. potentials in a nuclear medium
in the microscopic studies based on the bare baryon-baryon
interactions. Missing effects in the LOBT, such as contribu-
tions from higher order diagrams and three-body forces are
now semiquantitatively understood in the nucleon sector [22].

Real and imaginary parts of the calculated s.p. potentials
for N,�,�, and � in symmetric nuclear matter are shown in
Figs. 1 and 2 as a function of the momentum k. These are the
results after the self-consistency for the starting energy ω being
reached. The Fermi momentum kF is chosen approximately in
a step of one-tenth the normal nuclear-matter density ρ0. These
densities are used as the discretized points of the density in
the local density approximation for considering finite nuclei.
Below kF = 0.75 fm−1, the nuclear matter NN G-matrix
calculation becomes unstable because of the appearance of
a bound state in the 3S1 channel. Because we expect little
relevance of this phenomenon to ground states of finite nuclei,
the instability is not inspected further. In the case that the
effective interaction at low density below kF = 0.75 fm−1 is
needed in the local density approximation for finite nuclei, we
use the G matrices at kF = 0.75 fm−1.

As for the nucleon, the result is very similar to those by
other realistic NN potentials. The depth of the s.p. potential at
the normal density is considerably larger than the magnitude
of the standard Woods-Saxon potential, which is 50∼60 MeV.
It has been known that the rearrangement potential reduces the
strength by about 10–20 MeV.

We are concerned mainly with the prediction of the quark-
model potential fss2 [18] for hyperon s.p. potentials. The
strength of the attractive � s.p. potential in normal nuclear
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FIG. 1. Real and imaginary parts of
single-particle potentials for N and � in
symmetric nuclear matter at various Fermi
momenta, 0.75 fm−1 � kF � 1.45 fm−1.

matter shown in Fig. 1 is almost 45 MeV, which is again larger
than the empirically known value of around 30 MeV. At the low
density, the potential is shallower. However, as will be shown
in the next section, the depth of the calculated � s.p. potential
in finite nuclei, taking into account the finite geometry and the
effects of the nondiagonal properties of G, seems to be dictated
by the potential depth at the normal nuclear density. We can
expect that the rearrangement effects give rise to a repulsive
contribution of the order of 10 MeV for the � mainly through
the energy dependence of the G matrix.

Nuclear matter calculations using the early version of the
Kyoto-Niigata SU6 quark-model potential, FSS, predicted a
repulsive � s.p. potential [20]. Results shown in Fig. 2 are
obtained by the most recent quark-model parametrization, fss2
[18]. The � potential at k = 0 is definitely repulsive with a
strength of about 15 MeV at normal density. This repulsion
chiefly comes from the strong repulsive contribution of the 3S1

state in the isospin T = 3
2 channel, which is naturally predicted

by the quark model as the consequence of the Pauli principle on
the quark level. The interaction in the 1S0 with T = 1

2 channel
is also repulsive. These repulsive contributions overwhelm the
attractive contributions from the 1S0 with T = 3

2 and 3S1 with
T = 1

2 channels. The width � of the � hyperon in a nuclear
medium is related to the imaginary strength of the s.p. potential

by �(k) = −2 ImU (k). �(0) is seen in Fig. 2 to be more than
30 MeV at normal density.

The � s.p. potential in symmetric nuclear matter predicted
by fss2 is weakly attractive, as is shown in Fig. 2. As
the momentum increases, the magnitude of the attraction is
seen to become larger at the low-momentum region of k <

6 fm−1. The momentum dependence may be characterized
by the effective mass. To obtain a rough estimation of it, we
parametrize the potential by U real

� (k) � ak2 + b. In this case,
the effective mass at k = 0 is obtained by

m∗
�

m�

=
[

1 + 2m�a

h̄2

]−1

. (21)

Calculated s.p. potentials give m∗
�/m� ∼ 1.1 at kF =

1.35 fm−1 and m∗
�/m� ∼ 1.05 at kF = 1.07 fm−1.

The �−p elastic and inelastic cross-section measurements
at low energy by Ahn et al. [23] indicate that the width of a
� s.p. state in a nuclear medium is � ∼ 3 MeV. Although it
is uncertain at which energy this number should be compared
with the calculated imaginary strength, the small imaginary
strength of the � s.p. potential at the low-momentum region
given in Fig. 2 is in accord with the empirical small width of
the � in a nuclear medium.
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FIG. 2. Same as in Fig. 1, but for �

and �.

It is encouraging to see that the results for � and � hyperons
agree at least qualitatively with empirical indications so far
obtained.

IV. RESULTS IN FINITE NUCLEI

We apply the calculational method presented in Sec. II to
light to medium-heavy nuclei: 12C, 16O, 28Si, 40Ca, 56Fe, and
90Zr. Nucleon density distributions are prepared by density-
dependent Hartree-Fock calculations using the Campi-Sprung
G-0 force [5]. Profiles of the point nucleon density distribution
ρt (r), which is a sum of the neutron and proton densities, are
shown in Fig. 3.

Nuclear matter G matrices are used in finite nuclei by
the local density approximation. At the position R1 where
the s.p. potential is evaluated, the local Fermi momentum
is defined by the correspondence kF (R1) = [ 3π2

2 ρt (R1)]1/3.
The G matrices calculated in nuclear matter with this Fermi
momentum are used in Eq. (19). In actual calculations,
the G-matrix calculation is carried out only for the Fermi
momenta shown in Figs. 1 and 2. At each position R1, the
Fermi momentum closest to kF (R1) among these 12 values
is chosen. As explained in Sec. II, for small densities below

kF = 0.75 fm−1, namely, the total density ρt = 0.028 fm−3,
we always use kF = 0.75 fm−1. In homogeneous matter, the
s.p. potential is determined by the matrix element with the zero
momentum transfer, namely, diagonal (k′ = k) components of
G(k′, k; K , ω). In finite nuclei, nondiagonal components of the
G matrices also contribute to the s.p. potential.
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FIG. 3. Point nucleon density distributions ρt (r) obtained by
DDHF wave functions of the G-0 force [5].
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FIG. 4. Real part of localized single-particle potentials for
N, �, �, and � in 12C with the quark-model potential fss2 [18]
for the octet baryon-baryon interactions.

The starting-energy dependence of the G matrix plays an
important role in the LOBT. The prescription of the starting
energy as the sum of s.p. energies of the two baryons consid-
ered means that certain higher order diagrams are included.
Hence the self-consistency between the s.p. energy, which is
defined by the G matrix, and the G matrix, which depends on
the starting energy, is required. Calculations in nuclear matter
shown in Sec. II achieve results with this consistency. When
the G matrix in nuclear matter is applied to a finite nucleus,
however, there is no simple way to treat the starting-energy
dependence. We introduce an ad hoc prescription to use a s.p.
potential value at the median momentum 2−1/3kF :

ω = 2mN + h̄2

mN

k2 + h̄2

4mN

K2

+UN (2−1/3kF ) + UN (2−1/3kF )

for the nucleon and

ω = mY + mN + h̄2(mY + mN )

2mY mN

k2 + h̄2

2(mY + mN )
K2

+UY (0) + UN (2−1/3kF )

for the hyperons.
The results with the SU6 quark-model potential fss2 [18]

in the energy-renormalized form are shown in Figs. 4–9. The
charge state of the baryon specified by MB in Eq. (19) is set to
be MB = −IB . Comments on the calculated s.p. potential of
each baryon are given in the following discussion.

A. Nucleon s.p. potential

The shape of the calculated nucleon potential is seen to
follow the density distribution, and the depth is 80–90 MeV,
which corresponds to the s.p. potential in nuclear matter at
the normal density. It is well known that the straightforward
application of the LOBT starting from realistic NN interac-
tions overestimates the attractive nucleon-nucleus potential.
To compare the calculated potential with the empirical one,
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FIG. 5. Same as in Fig. 4, but for 16O.
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FIG. 6. Same as in Fig. 4, but for 28Si.
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FIG. 7. Same as in Fig. 4, but for 40Ca.
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FIG. 8. Same as in Fig. 4, but for 56Fe.

we need to include the so-called rearrangement potential.
The repulsive strength is known to be 10–20 MeV [5]. If
this contribution is taken into account, the resulting potential
becomes closer to the phenomenological potential of the
Woods-Saxon form.

Note that it is still a remaining problem in nuclear physics to
understand nuclear bulk properties in a fully microscopic way
on the basis of the realistic interactions including higher order
correlations, three-body forces, and other possible medium
effects.

B. � hyperon s.p. potential

The �N 1S0 state has a similar character to the NN 1S0

state in the spin-flavor SU6 symmetry, although there is small
admixture of a completely quark Pauli forbidden component.
Similarly, the interaction in the �N 3S1 channel resembles
that in the 3S1 NN channel with a smaller magnitude by
a factor of 1/

√
2, although there is an important difference
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FIG. 9. Same as in Fig. 4, but for 90Zr.

that the pion exchange is absent. Thus it is probable that the
�-nucleus potential is attractive, about a half of the N -nucleus
potential in magnitude. Looking at the density dependence
of the � s.p. potential in nuclear matter, we should expect
a similar rearrangement potential as in the nucleon case. The
addition of the hyperon to the nuclear medium does not change
directly the nucleon density and hence the nucleonic Pauli
effect. The rearrangement effect for the � hyperon originates,
in the LOBT, mainly from the energy dependence of the NN

and �N G matrices. If we assume a repulsive rearrangement
potential of the order of 10 MeV, calculated results shown
in Figs. 4–9 correspond well to the empirical �-nucleus
potential in the Woods-Saxon form with the depth of about
30 MeV.

C. � hyperon s.p. potential

The experimental information has been limited for the �

s.p. potential in nuclei. Because the � state in a nucleus is
expected to have a large width due to the strong �N → �N

conversion process, it is unlikely to observe a clear peak
structure in the �-formation spectra. Nevertheless, results
from the early experiments of (K,π ) inclusive spectra [24]
measured at CERN were interpreted as indicating that the
�-nucleus potential is moderately attractive. The discovery
of the bound 3He + �0 and 3H + �+ systems [25] and the
theoretical consideration by Harada et al. [26] showed that the
attraction in the �N, T = 1/2 channel should be attractive
enough. Another important source of the �-nucleus interaction
is the energy shift and the width of �− atomic orbits extracted
from the x-ray data. Batty, Friedman, and Gal [27] analyzed the
data to conclude that the �-nucleus potential changes its sign
toward the higher density region in a nucleus from the attractive
potential at the surface region. Dąbrowski [28] analyzed the
BNL experiment of the (K,π ) spectrum on 9Be [29] in a
plane-wave model and conjectured that the � potential is
repulsive with a strength of the order of 20 MeV. Recent
experimental data with better accuracy of (π−,K+) inclusive
spectra measured at KEK [30] was reported to suggest that the
�-nucleus potential is strongly repulsive, the strength being
more than 100 MeV. Several theoretical analyses carried out
later [31,32] confirmed the repulsive nature of the � s.p.
potential, but the height may be a few 10 MeV.

On the theoretical side, �N interaction models admit large
uncertainties. Most parameter sets of the Nijmegen hyperon-
nucleon OBEP potential [8–10] predict an attractive �-nucleus
potential in nuclear matter, except the model F [33–35]. On
the contrary, the strong repulsive character in the T = 3/2 3S1

channel is inherent in the quark-model description [18,36].
Thus the Kyoto-Niigata quark-model potential predicts an
overall repulsive � s.p. potential in nuclear matter. Results
given in Figs. 4–9 show the consequence of this property to
finite nuclei. At the higher density region inside a nucleus, the
�-nucleus potential has a repulsive strength of 10–20 MeV.
The overall repulsive nature of the �-nucleus potential has
been deduced by the analyses of (K−, π+) �− formation
inclusive spectra [30–32]. Beyond the surface region, the
potential becomes attractive. It is interesting to see that the
radial dependence indicated by the analyses of � atomic data
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[27] is actually derived by the microscopic calculation using
the quark-model bare interaction with no phenomenological
adjustment.

We should note that in the present evaluations, we apply
G matrices in symmetric nuclear matter to finite nuclei
without separating neutron and proton density distributions.
However, in heavy nuclei, e.g., 90Zr in our calculations, in
which neutron and proton distributions are visibly different,
we should take care of the isospin dependence when solving
the Bethe-Goldstone equation. In that case, the repulsive
contribution to the �− s.p. potential from the T = 3/2 3S1

channel becomes more predominant.

D. � hyperon s.p. potential

For the � s.p. potential, the experimental information has
been more scarce than the �. The � hyperon is formed in
(K−,K+) reactions on nuclei with small production rates.
There has been no concrete evidence of the � hypernuclear
bound state. The existing experimental data of the � formation
spectrum [37–39] suggest that the � feels an attractive poten-
tial in nuclei, the depth of which is not so large, 10–20 MeV.
Our results shown in Figs. 4–9 with the quark-model potential
fss2 [18] indicate that the �-nucleus potential is weakly
attractive at and beyond the nuclear surface region, which
is similar to the �-nucleus potential. Toward the inside of
the nucleus, the � s.p. potential tends to be repulsive and
oscillates around zero with a magnitude of about 10 MeV.
It is not possible to simulate the potential shape by a
single Woods-Saxon form. No � hypernuclear bound state
is expected from such a weak potential. The situation does not
change even if the actual potential strength differs by a factor
of 2 or so. In that case, the level shift of the �− atomic orbit
should be a valuable source of information about the �-nucleus
interaction. This subject is addressed in the next section.

The evaluated �N G matrices include full baryon-channel
couplings, namely, the possible �N-��-�� or �N-��-��

couplings. It is helpful to use equivalent interactions in low-
momentum space to check the character of the �N interaction
and the effect of the baryon-channel coupling in each spin
and isospin state. Inspecting the matrix elements in Ref. [40],
we see that the �N effective interaction from the fss2 in the
T = 1 channels both in 1S0 and 3S1 are repulsive. The T = 0,
3S1 interaction is very weak, and the T = 0, 1S0 interaction is
attractive for which the �N-��-�� coupling is responsible.
It turns out that the net s-wave contribution is small, and thus
the attractive p-wave contribution plays an important role in
making the � s.p. potential attractive at the surface region.

V. ENERGY SHIFT AND WIDTH OF ATOMIC ORBIT

The level shift and the width of �− atomic orbits are
a valuable source of information on the �-nucleus strong
interaction. The analyses by Batty, Friedman, and Gal [27]
indicate that the �-nucleus potential is attractive at the surface
region, but at the higher density region in a nucleus, the
potential turns to be repulsive. The radial dependence of the
calculated �− s.p. potential shown in the previous section
agrees with this. Therefore it is instructive to explicitly

evaluate the energy shift and the width of �− atomic orbits
with the calculated potential. As will be shown below, the
result is consistent with the experimental data. This indicates
that the microscopic calculation with the quark-model fss2
is reliable in the �N channel. Thus, it is interesting to
extend the level shift calculation to �− atomic orbits. The
experimental data should be available in the near future,
because the first measurement of �− atomic x rays from an Fe
target is proposed [41] to be performed at the Japan Proton
Accelerator Research Complex (J-PARC). The theoretical
prediction provides guiding information for this experiment.

We consider 28Si and 56Fe for explicit evaluations of the
level shift of the atomic orbit. We first fit the shape of the
calculated s.p. potential using the Woods-Saxon form. For
28Si, a sum of three Woods-Saxon shapes is used; for 56Fe,
a sum of two Woods-Saxon shapes and one derivative of
the Woods-Saxon shape is assigned. Parameters are given
in Table I. Note that the imaginary parts are also given to
illustrate the order of the magnitude of the absorptive strength,
intending to demonstrate that the � imaginary potential is
about one order of magnitude smaller than the � one. However,
actual numbers should not be taken very seriously, because
nuclear matter calculations tend to overestimate the imaginary
strength, as indicated by the calculations [42] of nucleon
optical model potential. In addition, the prescription to use
the G matrices at kF = 0.75 fm−1 for all the densities below
kF = 0.75 fm−1 probably leads to the overestimation of the
imaginary strength at the surface region. Also note that the
localized imaginary potential through the zero-momentum
Wigner transformation may become positive at some points.

A. �−

Results of the level shift �E = E − EC and the width
� = −2 ImE for the �− f and g atomic levels on 28Si and
the �− g and h atomic levels on 56Fe are given in Table II,
where EC stands for the Coulomb bound state energy without
the �−-nucleus strong interaction. When the real part of
the � s.p. potential is taken into account, the energy of the
n = 4, � = 3 orbit on 28Si is shifted downward by 222 eV.
To investigate the contribution of the absorptive effect, we
do not use the calculated potential given in Table I. The
imaginary potential is rather strong as explained above. The
magnitude of the level shift and the width depend nonlinearly
on the strength of the imaginary potential. Hence we use an
phenomenological imaginary potential to discuss the level shift
of the atomic orbits of the �−. We add an imaginary potential
in the single Woods-Saxon form used in Ref. [27], namely,
r0 = 1.1 × 281/3 and a = 0.67 with the depth of −9 MeV.
In that case, we obtain �E = 208 eV and � = 249 eV,
which correspond well with the experimental values of
�Eexp = 159 ± 36 eV and �exp = 220 ± 110 eV. This result
indicates that the real part of the � s.p. potential calculated
microscopically in the LOBT starting from the two-body
quark-model potential fss2 is reasonable.

B. �−

Observing that our calculated �-nucleus potential gives
a reliable result for the shift of the �− atomic level, it is
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TABLE I. Strength and geometry parameters of the Woods-Saxon form fi(r) = U 0
i /{1 +

exp[(r − r0,i)/ai]} fitted to the real and imaginary parts of � and � s.p. potentials UB (r) in 28Si
and 56Fe.

i

Real part Imaginary part

U 0
i (MeV) r0,i (fm) ai (fm) U 0

i (MeV) r0,i (fm) ai (fm)

28Si
∑

i=1,3 fi(r)
∑

i=1,3 fi(r)

� 1 −25.94 4.179 0.7164 −65.63 3.819 0.7539
2 +57.43 3.049 0.7860 +41.93 3.997 0.8185
3 −41.13 1.220 0.4348 −6.078 0.3944 1.576

� 1 −310.4 2.171 1.066 −6.760 4.980 0.6915
2 +543.3 2.959 0.9484 +5.639 5.209 0.6668
3 −270.3 3.421 0.8630 −1.838 1.118 0.2948

56Fe
∑

i=1,2 fi(r) + df3(r)
dr

∑
i=1,3 fi(r)

� 1 −3.746 6.035 0.5655 −65.78 4.955 0.8902
2 22.19 4.031 0.3990 +37.65 5.486 0.8867
3 32.22 1.553 0.5527 +16.77 −0.4167 1.163

� 1 −2.232 6.367 0.2389 −15.92 5.845 0.6820
2 +8.295 3.796 0.2597 +14.64 5.947 0.6728
3 +20.67 1.674 0.4887 +1.290 0.7581 0.1709

interesting to proceed to �− atoms without any adjustment. In
Ref. [43], Batty et al. estimated the level shift and the width of
�− atoms for the �−-nucleus potential having an attraction of
a depth of 15–20 MeV with an imaginary strength of 1–3 MeV
in the shape roughly following a nuclear density distribution.
Although the �-nucleus potential is weakly repulsive inside
the nucleus in our calculation, the attractive strength at the

TABLE II. Energy shift �E = E − EC and width � = −2 ImE

of the �− atomic orbits in 28Si and 56Fe, using the parameterized
� s.p. potential given in Table I for the real part. The imaginary
potential is given in a Woods-Saxon form with the strength W0 =
−9 MeV and the geometry parameters r0 = 1.1A1/3 fm and a =
0.67 fm. Entry numbers are in eV.

�E �

�−-28Si, 4f orbit
Real part only −222 –
Real + imaginary −208 249
Exp. [44] −159 ± 36 220 ± 110

�−-28Si, 5g orbit
Real part only −0.8 –
Real + imaginary −0.8 0.7
Exp. [44] – 0.41 ± 0.1

�−-56Fe, 5g orbit
Real part only −943 –
Real + imaginary −943 1205
�−-56Fe, 6h orbit
Real part only −11 –
Real + imaginary −11 8.3

surface region is found to be close to that of the Woods-Saxon
potential with the depth of 10–20 MeV and the geometry
parameters of r0 = 1.1A1/3 fm and a = 0.67 fm. Results for
the f and g orbits in 28Si and the g and h orbits in 56Fe are given
in Table III, together with those of the Woods-Saxon potential
as a reference. Because the atomic level shift is insensitive
to the short-range part of the strong interaction potential, our
potential parametrized as shown in Table I, predicts a similar
magnitude of the level shift of the reference Woods-Saxon
potential. Because the � imaginary potential obtained by the
G matrix is small, we directly use it to estimate the width �,
though it is likely to overestimate the absorptive effect as in
the case of �−. As seen in Table III, the width is of the order
of a few hundred eV for the g orbit in 56Fe and the energy shift
is hardly affected. It is needed to see what order of magnitude
is detected for the �− n = 5, � = 4 level in 56Fe in the future
experiment being prepared at J-PARC [41].

VI. SUMMARY

To examine the prediction of single-particle properties of
all the octet baryons in a nuclear medium, especially the
� hyperon, by the recently developed quark-model baryon-
baryon interactions, we have evaluated localized s.p. potentials
in finite nuclei by folding G matrices in nuclear matter with
respect to nucleon s.p. wave functions in the scheme of
the local density approximation. Introducing a spin-average
approximation and a zero-momentum Wigner transformation,
the nonlocal baryon s.p. potential calculated in momentum
space is reduced to a local potential in coordinate space.
The final expression is feasible for numerical calculations in
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TABLE III. Energy shift �E = E − EC and width � = −2 ImE

of the �− atomic orbits in 28Si and 56Fe, using the parametrized
� s.p. potential given in Table I for both the real and imaginary
parts. As a reference, results obtained by the complex Woods-Saxon
potential with the strength of U0 = −14 − 3i MeV, r0 = 1.1A1/3 fm,
and a = 0.67 fm are included. Entry numbers are in eV.

�E �

�−-28Si, 4f orbit
Real part only −346 –
Real + imaginary −345 16
Reference pot. −383 216

�−-28Si, 5g orbit
Real part only −6.9 –
Real + imaginary −7.0 0.0
Reference pot. −1.4 0.5

�−-56Fe, 5g orbit
Real part only −1287 –
Real + imaginary −1281 88
Reference pot. −1675 1092

�−-56Fe, 6h orbit
Real part only −12 –
Real + imaginary −12 1.0
Reference pot. −17 8.0

the case that the nucleon density distribution is discretized.
Adopting about one-tenth the normal nuclear density as the
interval of the discretization, we carried out calculations in 12C,
16O, 28Si, 40Ca, 56Fe, and 90Zr for each octet baryon: N,�,�,
and �. This is the first comprehensive evaluations of the s.p.
potentials of all the octet baryons in finite nuclei, starting
from the baryon-baryon bare interactions. These microscopic
calculations of octet baryon s.p. potentials in finite nuclei
are meaningful to elucidating the character of the theoretical
model of the octet baryon-baryon interactions by comparing
them with empirical s.p. potentials, which are not yet available
for the � and � hyperons.

We use the most recent quark-model potential, fss2 [18], as
the bare baryon-baryon interactions. The energy dependence in
the original form of the quark-model potential is eliminated by
the renormalization procedure. The NN sector of this potential
describes scattering data as accurately as other modern realistic
interaction. Calculated nucleon s.p. potentials in a nuclear
medium are found to be similar to those obtained in the
LOBT framework with other potentials. The �N interaction
is under control to a certain extent by the experimental data
of � hypernuclei. The fss2 gives similar � s.p. potentials in
nuclear matter to those of the Nijmegen OBEP potential. It has
been shown [40] in fact that the fss2 and the Nijmegen NSC97f
actually have very similar matrix elements of the equivalent
interaction in low-momentum space.

The extension to the �N channel and further to the
�N sector of the strangeness S = −2 has many ambiguities
because of scarcity of experimental information. It is necessary
to rely on a theoretical framework that is as reliable as
possible to construct these baryon-baryon interactions. At

present, the SU6 quark model fss2 is more predictive than
the OBEP model, in the sense that the potential parameters
are uniquely given in contrast to various sets of parameters
presented by the Nijmegen group. Thus we focus our attention
in this paper on the fss2 as the input �N and �N two-
body interactions. Comparing our results with those of other
potential models, including the parametrization based on the
effective chiral field approach [45,46], is an interesting future
subject.

Properties of the calculated � s.p. potential in finite nuclei
are found to agree well with the experimental evidence so
far obtained. The potential has a repulsive strength of the
order of 10–20 MeV, which is necessary to account for the
(π−,K+) �− formation spectra on nuclei [31,32], whereas
it should be attractive at the surface region, as the atomic
level shifts indicate [27]. The attraction obtained by the
present microscopic calculation can reproduce the empirical
energy shifts of the �− atomic levels. To determine more
precisely the shape and the strength of the �-nucleus potential
including its isospin-dependence and to study the relation to
the underlying bare interaction, we need more experimental
data.

On the basis of these observations, it is interesting to
consider the �N sector. The imaginary part of the � s.p.
potential is small in the quark-model description, which is
consistent with the empirical estimation based on the �−p

scattering cross section at low energy [23]. Therefore, if the
real part is sufficiently attractive to sustain hypernuclear bound
states, we can expect clear spike structures in the (K−,K+)
inclusive spectra on nuclei. At the surface region, the potential
has a similar attraction as the � potential. However, the
potential does not have a familiar shape simulated well by a
Woods-Saxon form. Inside the nucleus, the potential fluctuates
around zero, reflecting the fluctuation of the nucleon density
distribution. The quark-model potential fss2 implies that the
net s-wave contribution to the � s.p. potential is small, and
the net weakly attractive contribution from the p waves is
relatively important.

Such a potential does not support � nuclear bound states.
In that case, measurements of the energy shift and width of the
� atomic level become an invaluable source of the information
about the �-nucleus strong interaction. Our � s.p. potential
calculated by the fss2 suggests that the negative energy shift
is the order of a few hundred eV for the 4f orbit in 28Si
and the order of 1 keV for 5g orbit in 56Fe. The existence or
nonexistence of � hypernuclear bound states and the energy
shifts of the �− atomic states will be clarified in the near future
by the experiments being prepared in the J-PARC project [47],
which should advance our understanding of the interactions
in the S = −2 sector. Our calculational framework provides a
useful method for linking the baryon s.p. properties in nuclei
with the two-body interactions between octet baryons.
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