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New analysis method of the halo phenomenon in finite many-fermion systems:
First applications to medium-mass atomic nuclei
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A new analysis method to investigate halos in finite many-fermion systems is designed, as existing
characterization methods are proven to be incomplete/inaccurate. A decomposition of the internal wave-function
of the N -body system in terms of overlap functions allows a model-independent analysis of medium-range
and asymptotic properties of the internal one-body density. The existence of a spatially decorrelated region
in the density profile is related to the existence of three typical energy scales in the excitation spectrum of
the (N−1)-body system. A series of model-independent measures, taking the internal density as the only
input, are introduced. The new measures allow a quantification of the potential halo in terms of the average
number of fermions participating to it and of its impact on the system extension. Those new “halo factors” are
validated through simulations and applied to results obtained through energy density functional calculations of
medium-mass nuclei. Performing spherical Hartree-Fock-Bogoliubov calculations with state-of-the-art Skyrme
plus pairing functionals, a collective halo is predicted in drip-line Cr isotopes, whereas no such effect is seen in
Sn isotopes.

DOI: 10.1103/PhysRevC.79.054308 PACS number(s): 21.10.Gv, 21.10.Pc, 21.60.Jz, 27.60.+j

I. INTRODUCTION

The study of light nuclei at the limit of stability has
been possible in the past two decades thanks to the first
generations of radioactive ion-beam facilities. One of the
interesting phenomena observed close to the nucleon drip-line
is the formation of nuclear halos. In such systems, either the
proton or the neutron density displays an unusually extended
tail due to the presence of weakly bound nucleons [1]. Because
the first experimental observation of such an exotic structure
in 11Li [2,3], other light neutron halo systems have been
identified, e.g., 6He [4], 11Be [5–7], 14Be [5,8], 17B [5], or 19C
[9,10]. On the proton-rich side, theoretical works demonstrated
the existence of halo structures in spite of the presence of
the Coulomb barrier [11], as was seen experimentally for
8B [12–15] and 17Ne [16,17]. Halos in excited states have been
observed for 17F [18,19], 12B [20], or 13B [21], and several
others are predicted [22]. It is worth noticing that weakly
bound systems extending well beyond the classically allowed
region have also been theoretically predicted or experimentally
observed for molecules (3He-3He-39K [23], 4He2 [24–26],
3He4He2 [27] . . .), atom-positron complexes (e+Be, PsLi+,
PsHe+ . . .) [28] and hypernuclei (3

�H) [29].
The theoretical description of light halo systems is rather

well under control. It usually relies on a cluster vision
where one (11Be, 19C . . .) or two (11Li, 6He . . .) loosely
bound nucleons define a low-density region surrounding a
core. Assuming that core and halo degrees of freedom can
be decoupled, essentially exact solutions of the simplified
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many-body problem are obtained by solving the Schrödinger
equation for two-body systems [30,31] or Faddeev equations
for three-body ones [4,30,32,33]. However, the boundary
between halo and nonhalo nuclei is blurred by the presence
of core excitations. Indeed, the inert decoupling of the loosely
bound nucleons from the core is only an approximation.
Nevertheless it has been assessed that halo systems arise
when [34,35] (i) the probability of nucleons to be in the
forbidden region outside the classical turning point is greater
than 50% and (ii) the cluster structure is dominant and accounts
for at least 50% of the configuration. Such conditions have
been thoroughly studied [36,37] and found to be fulfilled when
(a) the separation energy of the nucleus is very small, of the
order of 2 MeV/A2/3; (b) the loosely bound nucleons occupy
low-angular-momentum states (� = 0 or � = 1) for two-body
clusters or low-hyperangular-momentum states (K = 0 or
K = 1) for three-body ones in order to limit the effect of
the centrifugal barrier that prevents nucleons from spreading
out [38]; and (c) the charge of the core remains small for
proton halos. The latter requirement might be weakened
because of a potential Coulomb-induced rearrangement of the
single-particle states [39].

Going to heavier nuclei, few-body techniques face theoret-
ical and computational limits because of the large number
of degrees of freedom involved. Single-reference energy-
density functional (SR-EDF) methods under the form of
self-consistent Hartree-Fock-Bogoliubov (HFB) calculations
become appropriate [40,41]. The EDF, either nonrelativistic
(Skyrme [42,43] or Gogny [44]) or relativistic [45–49],
constitutes the only phenomenological input to the method.
Phenomenological functionals have now reached an accuracy
suitable for comparison of various observables with experi-
mental data over the known part of the nuclear chart [50–53].

0556-2813/2009/79(5)/054308(24) 054308-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.054308
mailto:vincent.rotival@polytechnique.org
mailto:thomas.duguet@cea.fr


V. ROTIVAL AND T. DUGUET PHYSICAL REVIEW C 79, 054308 (2009)

However, properties of current EDFs are not yet under control
in extreme conditions, where low-density configurations,
isospin, or surface effects come strongly into play. Thus, the
capacity of existing functionals to predict properties of exotic
nuclei, such as their limits of stability, remains rather weak
[54]. In that respect, the input from the coming generation of
radioactive-beam facilities (e.g., FAIR at GSI, RIBF at RIKEN,
REX-ISOLDE at CERN, SPIRAL2 at GANIL) will help to
further constrain models and to design a universal EDF.

Halo structures may contribute significantly to such a
quest as they emphasize low-density configurations and
surface/finite-size effects. Their study in medium-mass nuclei
might provide relevant information regarding isovector density
dependencies and gradient/finite-size corrections in the energy
functional. In particular, the pairing strength in low-density
regimes and the evolution of shell structures toward the limit
of stability might be constrained. However, two questions
arise as we discuss potential medium-mass halos. Indeed,
medium-mass nuclei are (i) large enough that the cluster
picture at play in light nuclei needs to be revisited, in
such a way that our understanding of the halo phenomenon
might change significantly, and (ii) light enough that explicit
correlations associated with symmetry restorations and other
large amplitude motions are important and may impact halo
properties. Including such correlations require to perform
multi-reference (MR) EDF calculations based on projection
techniques and on the generator coordinate method (GCM)
[55–57].

The first part of the present work, is dedicated to introducing
a new method to identify and characterize halo structures in
finite many-fermion systems. Although in the present article
we apply the method to only even-even, spherical, medium-
mass nuclei, its range of applicability is wider [58]. Regarding
nuclei, extensions of the method to odd and deformed systems
can be envisioned. The charge restriction for proton halos
identified in light nuclei is such that we do not expect proton
halos in medium-mass systems. As a result, the present work
focuses on exotic structures at the neutron drip-line.

The article is organized as follows. Section II provides a
brief overview of the features that are crucial to the formation
of halos. In Sec. III, the limitations of existing tools used
to characterize skins and halos, such as the Helm model
[59], are highlighted. A new method to properly identify
and characterize halo features of weakly bound systems in
a model-independent fashion is introduced in Sec. IV. We
validate the method using a selection of toy models before
applying it to the results of self-consistent spherical HFB
calculations of Cr and Sn isotopes in Sec. V. The latter section
is also devoted to a critical discussion of our results. Our
conclusions are given in Sec. VI.

II. BASIC FEATURES OF HALO SYSTEMS

The goal of the present section is to outline some of the
elements that are crucial to the formation of halos. This will
serve as an introduction to the more quantitative discussion
proposed later on as we develop our new analysis method.
For convenience, the discussion is conducted within the EDF

framework whose basic aspects are briefly recalled at first.
Note, however, that the features discussed are not specific to a
particular many-body method or approximation but constitute
generic aspects of halos. For simplicity, spin and isospin
indices are dropped in the present section.

A. Elements of the nuclear EDF method

The nuclear EDF approach is the microscopic tool of
choice to study medium-mass and heavy nuclei in a systematic
manner [41]. We consider a single-reference EDF formalism.
In such an implementation, the energy is postulated under
the form of a functional E[ρ, κ, κ∗] of the (local or nonlocal)
density ρ and pairing tensor κ . The density matrix and the
pairing tensor are further represented through a reference state
|�〉

ρij ≡ 〈�|c†j ci |�〉
〈�|�〉 , (1)

κij ≡ 〈�|cj ci |�〉
〈�|�〉 , (2)

which takes the form of a quasiparticle vacuum and which
reduces to a standard Slater determinant if no explicit κ

dependence of the EDF (E) is considered. Such a product
state reads

|�〉 = C
∏
ν

βν |0〉, (3)

where C is a complex normalization number, whereas the
quasiparticle operators (β†

ν , βν) are obtained through the
Bogoliubov transformation (U,V ) of the creation and anni-
hilation operators (c†i , ci) defining an arbitrary single-particle
basis

β†
ν ≡

∑
i

Uiνc
†
i + Viνci . (4)

The equations of motion, the so-called HFB equations, are
obtained by minimizing the energy E[ρ, κ, κ∗] with respect
to the degrees of freedom (ρij , ρ

∗
ij , κij , κ

∗
ij )i � j , under the

constraint that the neutron and proton numbers are fixed on
the average in the reference state |�〉. This leads to solving the
eigenvalue problem[

h − λ 	

−	∗ −(h∗ − λ)

] (
U

V

)
ν

= Eν

(
U

V

)
ν

, (5)

where the one-body field h and the pairing field 	 are defined
as

hij ≡ ∂E
∂ρji

, 	ij ≡ ∂E
∂κ∗

ij

, (6)

λ < 0 being the chemical potential. Solutions of Eq. (5) are
the quasiparticle eigenstates (U,V )ν whose occupations Nν

are defined through the norm of the lower components Vν

Nν ≡
∑

k

|Vνk|2 =
∫

|Vν(�r)|2 d�r. (7)
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To analyze the properties of the many-body system, it is
convenient to introduce the canonical basis1 {|φi〉} [40,60]. In
this basis, individual states can be grouped in conjugated pairs
(i, ı̄). The one-body density ρ is diagonal, whereas the pairing
tensor κ takes its canonical form

ρij ≡ vi
2δij , (8)

κij ≡ uiviδı̄j , (9)

where ui = uı̄ > 0 and vi = −vı̄ play the role of BCS-like
coefficients; v2

i being the canonical occupation number. Even
though the EDF method is not an independent particle theory, it
is convenient to use the canonical basis for analysis purposes
as it provides the most intuitive single-particle picture and
allows one to define individual “energies” and “pairing gaps”
through

ei ≡ hii, (10)

	i ≡ 	iı̄ . (11)

B. Importance of low-angular-momentum orbits

We first discuss the impact of low-angular-momentum
orbitals2 on the density profile of halo nuclei. To do so, we first
use the realization of the EDF method in which the reference
state is taken as a Slater determinant. This corresponds to
eliminating the dependence of the EDF on anomalous densities
and thus the explicit treatment of pairing correlations. It is
important to stress that, at least in principle, this does not
mean that the effect of superfluidity could not be accounted
for in such a realization of the EDF method. It would, however,
certainly require the design of more involve energy functionals
E[ρ] that those used traditionally; i.e., Skyrme [43] and Gogny
[44] EDFs.

Within such a realization of the EDF method, the HFB
equations reduce to a standard one-body eigenvalue problem
that provides the orbitals ϕν(�r) from which the auxiliary Slater
determinant |�〉 is constructed. Such a basis coincides in
this case with both the canonical basis and the quasiparticle
basis introduced in Sec. II A. Restricting the description to
spherical systems, considering for simplicity a multiplicative
local potential U (r) and forgetting about the spin degree of
freedom, it can be proven [61] that the density ρ(r) behaves
asymptotically as e−2κ0 r/(κ0 r)2, where the decay constant
κ0 =

√
−2mε0/h̄

2 is related to the eigenenergy ε0 of the least
bound occupied orbital in the reference Slater determinant. As
the density used in the SR-EDF method is meant to reproduce
the internal local density (see Appendix A2), an analog of
Koopmans’ theorem [62] holds, that is ε0 is equal to minus the
one-nucleon separation energy Sn = EN−1

0 − EN
0 , where EN

0
is the ground-state internal energy of the N -body system. As a

1The canonical basis is the name given to the natural basis in the
context of HFB calculations.

2Although the notion of orbital often refers to an independent-
particle picture or a Hartree-Fock approximation, it is important
to note that the EDF method includes correlations beyond such
approximations. In fact, and as discussed in Sec. IV, the notion of
orbital should rather be replaced by the one of overlap function in
the present discussion.

result, long density tails arise for weakly bound systems; i.e.,
in the limit Sn = |ε0| → 0.

A more quantitative characterization of the density is
provided by its radial moments 〈rn〉. Such moments are of
special interest in the case of halo systems. At long distances,
the dominant contribution to 〈rn〉 comes from ϕ0. In the limit of
weak binding ε0 → 0, the individual moment 〈rn〉0 (i) diverges

as ε
2�−1−n

2
0 for n > 2� − 1, (ii) diverges as ln(ε0) for n = 2� − 1,

or (iii) remains finite for n < 2� − 1 [61]. In particular, one
finds that the wave function normalization 〈r0〉0 diverges for s

waves, whereas the second moment 〈r2〉0 diverges for both s

and p waves. As a result, the root-mean-square (r.m.s.) radius,
defined as

Rr.m.s. ≡
√

〈r2〉
〈r0〉 , (12)

diverges as ε0 → 0 if ϕ0 corresponds to a s or a p wave. It

diverges as ε
− 1

2
0 for a s wave and as ε

− 1
4

0 for a p wave. The
centrifugal barrier confines wave functions with higher orbital-
angular momenta, in such a way that Rr.m.s. remains finite
as ε0 → 0 if ϕ0 has an angular momentum � � 2. Equivalent
arguments are found in the case of three-body systems [38].

According to the above analysis, only low-lying s or p

waves near the threshold are able to extend significantly
outside the classically forbidden region. The consequences of
such patterns are that (i) one usually focuses on the evolution
of the neutron r.m.s radius as a function of neutron number,
looking for a sudden increase as a signature of the building
of a halo, (ii) the presence and occupation of low-lying s or
p waves are often seen as a prerequisite for the formation
of neutron halos, (iii) orbitals with � � 2 are not believed to
contribute to halos. However, it is important to notice that
〈r2〉 is only the leading moment in the representation of the
density. The complete expansion of ρ(r) involves moments
of higher orders that probe the nuclear density at increasing
distances. Even if those higher-order moments weight usually
little in the expansion, one cannot rule out � � 2-type halo
structures, as 〈rn〉0 with n � 2 diverges in the limit ε0 → 0
for such angular momenta: 〈r4〉 diverges for � = 0, 1, 2, 〈r6〉
diverges for � = 0, 1, 2, 3 . . . and so on [63].

C. Role of pairing correlations

Theoretical investigations of nuclei far from stability, either
within nonrelativistic [64–66] or relativistic [67–69] EDF
frameworks, have pointed out the importance of pairing
correlations. This makes the implementation of the SR-EDF
method in terms of a quasiparticle vacuum more successful in
practice than the one based on a reference Slater determinant.

The explicit treatment of pairing correlations through
dependencies of the nuclear EDF on the anomalous density
changes qualitatively the density profile in loosely bound
systems. By studying the asymptotic form of the quasiparticle
wave functions solution of Eq. (5), it is easy to show that
the decay constant κ0 at play is now κ0 =

√
−2mε0/h̄

2,
where |ε0| ≡ E0 − λ and E0 ≡ minν[Eν] is the lowest quasi-
particle energy solution of Eq. (5). Considering the most
extreme case of a canonical state lying at the Fermi level at
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the drip-line (e0 ≈ λ ≈ 0), one sees that |ε0| ≈ E0 ≈ 	0 � 0.
Therefore, everything else being equal, paired densities de-
crease faster than unpaired ones at long distances. Because the
decay constant does not go to zero as e0 ≈ λ ≈ 0, the second
moment of the density cannot diverge, whatever the angular
momentum of the least bound quasiparticle. In other words,
the effect of pairing correlations is to induce a generic antihalo
effect by localizing the density [70,71].

Two additional effects may, however, blur such a picture.
First, recent HFB calculations performed in terms of a fixed
one-body Wood-Saxon potential have shown that such a
pairing antihalo effect could be ineffective under extreme
conditions [72,73]. Indeed, very weakly bound s1/2 states
(bound by a few keVs) tend to decouple from the pairing
field because of their abnormal extension. As a consequence,
E0 = minν[Eν] tends toward zero again as e0 ≈ λ ≈ 0 and
the r.m.s. radius of such an unpaired orbital may diverge,
contributing strongly to the formation of a halo. Although
this possibility is to be considered in principle, the depicted
situation of a � = 0 orbit bound by a few keVs right at the
drip-line is rather improbable and would be highly accidental
in realistic nuclei. Second, the pair scattering distributes
particles over several canonical orbitals located around the
Fermi level. As compared to the implementation of the EDF
based on a Slater determinant, this might lead to the pro-
motion of particles from low-/high-angular-momentum states
to high-/low-angular-momentum orbitals [74]. Depending on
the situation, this will favor or inhibit the formation of halos.
As opposed to the antihalo effect discussed above, the way
this process impacts halos depends on the system and on the
particular distribution of orbitals around the Fermi energy at
the drip-line.

III. EXISTING INVESTIGATIONS AND ANALYSIS
METHODS

Halo properties of medium-mass drip-line nuclei have
been studied for various isotopic chains using relativistic
or nonrelativistic EDF methods [59,74–81]. Owing to the
discussion provided above, the evolution of the r.m.s radii
along isotopic chains is often used to characterize halos in
a qualitative manner. One needs, however, more quantitative
characterizations of the halo itself. For example, the concept
of giant halo was recently introduced on the basis of summing
up the occupations of low-lying orbitals with large r.m.s.
radii [75]. Such halo structures, supposedly composed of six
to eight neutrons, have been characterized through relativistic
and nonrelativistic methods [74,78–81], mainly for Zr and
Ca isotopes, and were related to the presence of � = 1 states
close to the Fermi level at the drip-line. Finding giant halos in
medium-mass nuclei is intuitively surprising. Indeed, spatially
decorrelated neutrons seem less likely to appear as the mass of
the system increases and their behavior tends to become more
collective. We will come back to this point.

The present section is devoted to discussing observables
and analysis tools that are usually used to identify and quantify
halo signatures in nuclear systems. The purpose is to introduce
generic features that turn out to be useful later on and, above
all to demonstrate the limitations of existing analysis tools.
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FIG. 1. (Color online) Neutron canonical energies en
i along the

Cr isotopic chain, obtained through spherical HFB calculations with
the {SLy4+REG-M} functional.

Chromium and tin isotopic chains are chosen as testing
cases throughout this work. Calculations are performed using
the nonrelativistic HFB spherical code HFBRAD [82]. In
HFBRAD, the space is discretized within a sphere using van-
ishing boundary conditions for the wave functions (Dirichlet
conditions). Convergence of the calculations as a function of
numerical parameters has been checked for all results pre-
sented here. The Skyrme SLy4 functional [83,84] is employed
in the particle-hole channel. The particle-particle effective
vertex is a density-dependent delta interaction corresponding
to a “mixed-type” pairing. Its density-dependent form factor
is a compromise between a pairing that is constant over
the nucleus volume (“volume-type”) and one that is peaked
at the nucleus surface (“surface-type”) [85–89]. To avoid
the ultraviolet divergence associated with the local nature
of the pairing functional, a phenomenological regularization
scheme corresponding to a smooth cutoff at 60 MeV in the
single-particle equivalent spectrum is used [65]. Such a pairing
scheme is referred to as REG-M.

The HFB problem is solved self-consistently. Thus, the
shape of the central potential cannot be manually adjusted to
reduce the binding energy of weakly bound orbitals and halo
candidates can only be identified a posteriori.

A. First characterizations

1. Chromium isotopes

Among all medium-mass nuclei predicted to be spherical
[90,91], Chromium isotopes (Z = 24) located at the neutron
drip-line are good halo candidates. In Fig. 1, neutron canonical
energies en

i in the vicinity of the positive energy threshold are
plotted along the chromium chain, 80Cr being the predicted
drip-line nucleus.3 The presence of low-lying 3s1/2 and 2d5/2

orbitals at the drip-line provides ideal conditions for the
formation of halo structures.

As discussed in Sec. II B, the abnormal extension of the
one-body neutron density is usually characterized through the

3Conventions used in all the figures of the article are given in
Fig. 2.
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l=0 s 1/2

l=1 p 1/2 p 3/2

l=2 d 3/2 d 5/2

l=3 f 5/2 f 7/2

l=4 g 7/2 g 9/2

l=5 h 9/2 h11/2

l=6 i11/2 i13/2

F

FIG. 2. (Color online) Conventions used in all the figures for the
labeling of individual states and of the chemical potential.

evolution of the neutron r.m.s. radius as one approaches the
drip-line, as presented in Fig. 3. A significant kink in the
neutron r.m.s. radius is seen at the N = 50 shell closure. Such
a kink is usually interpreted as a signature of the emergence
of a neutron halo [59,75]. However, this could equally be due
to a simple shell effect. Indeed, as the N = 50 gap is crossed,
the two-neutron separation energy S2n drops, as seen in Fig. 4.
As a result, the decay constant κ0 of the one-body density is
largely reduced. However, a genuine halo phenomenon relates
more specifically to the presence of nucleons that are spatially
decorrelated from a core. Even though the case of drip-line
Cr isotopes seems favorable, as the S2n drops to almost zero
at N = 50, the occurrence of a halo cannot be thoroughly
addressed by only looking at the evolution of the neutron r.m.s.
radius.

2. Tin isotopes

Sn isotopes (Z = 50) are considered as a milestone for
EDF methods and are rather easy to produce in radioactive-
beam experiments because of their magic proton number. In
particular, the fact that it is a long isotopic chain is conve-
nient for systematic studies. At the neutron drip-line, which
corresponds to 174Sn for the {SLy4+REG-M} parameter set,
the least-bound orbitals are mostly odd-parity states. Among

30 34 38 42 46 50 54
N

54 58 62 66 70 74 78
A
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R
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m
.s

.
 [

fm
]

Cr

FIG. 3. (Color online) Same as Fig. 1 for proton (�), neutron
(�), and charge (�) r.m.s. radii. Experimental values for charge r.m.s.
radii are indicated when available (�), along with experimental error
bars [92].
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 [
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]

Cr

FIG. 4. (Color online) Same as Fig. 1 for two-neutron separation
energies S2n (�). Experimental values are indicated when available
[93] (� when both masses are known, � when at least one comes
from mass extrapolation), along with experimental error bars.

them, 3p3/2 and 3p1/2 states might contribute significantly to
the formation of a halo (Fig. 5).

However, whereas those � = 1 states are relatively well
bound, the least bound orbital is the 1i13/2 (� = 6) intruder state
that is strongly affected by the confining centrifugal barrier.
Nevertheless, the neutron r.m.s. radius (Fig. 6) exhibits a weak
kink at the N = 82 shell closure, which has been interpreted
as a halo signature [59].

As pointed out previously, an analysis based only on r.m.s.
radii is incomplete and can even be misleading. Indeed, al-
though the shell effect at the N = 82 magic number generates
a sudden decrease of the S2n, the latter does not drop to zero,
as seen in Fig. 7. A direct connection between the kink of
the r.m.s. radius and the formation of a neutron halo is thus
dubious. This point will be further discussed below.

In any case, the analysis based on neutron r.m.s. radii
is useful but insufficient to characterize halo in a manner
that allows the extraction of information useful to nuclear
structure and theoretical models. The characterization of halos
through the definition of the neutron matter thickness and
the one-neutron region thickness is possible [77] but remains
arbitrary and correlated to a one-neutron halo hypothesis.
Another way is to extract so-called halo factors from the
individual spectrum through antiproton annihilation probing
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FIG. 5. (Color online) Same as Fig. 1 for Sn isotopes.
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FIG. 6. (Color online) Same as Fig. 3 for Sn isotopes.

the nuclear density extension [76,94]. However, such tools
do not allow the extraction of quantitative properties, such as
the actual number of nucleons participating in the halo. They
also define the halo as the region where the neutron density
dominates the proton one, which is an admixture of the neutron
skin and the (potential) halo.

B. The Helm model

1. Introduction

The Helm model has recently been exploited to remedy
to the lack of quantitative measure of halo existence and
properties [59]. Originally, the purpose of the Helm model
Refs. [95–97] was to fit experimental charge densities, using a
few-parameter anzatz, in view of analyzing electron-scattering
data. The normalized nuclear charge density is approximated
by the convolution of a sharp-sphere density of radius R0

defining the nuclear extension and of a Gaussian of width σ

describing the surface thickness. The r.m.s. radius of the Helm
density solely depends on R0 and σ and reads as

RH
r.m.s. =

√∫
ρH (r) r4 dr∫
ρH (r) r2 dr

=
√

3

5

(
R2

0 + 5σ 2
)
. (13)

This model has been used to study neutron skins and halos
in medium-mass nuclei close to the neutron drip-line [59].
Proton and neutron densities were defined as a superposition
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FIG. 7. (Color online) Same as Fig. 4 for Sn isotopes.

of a core density ρ
q
core plus a tail density ρ

q

tail describing, when
appropriate, the halo. The idea was to reproduce the core part
ρ

q
core using the Helm anzatz ρ

q

H , normalized to the nucleon
number Nq (Nq = N or Z). Thus, the two free parameters
(Rq

0 , σ q) were adjusted on the high-momentum part of the
realistic form factor

Fq(k) = 4π

∫
ρq(r) r2 j0(k r) dr, (14)

where ρq(r) is the density coming out of the many-body
calculations. It was suggested in Ref. [59] to evaluate
(i) R

q

0 through the first zero k
q

1 of the realistic form factor:
R

q

0 = z1
1/k

q

1 , where z1
1 is the first zero of the Bessel function

j1(z1
1 ≈ 4.49341) and (ii) σq by comparing the model and

realistic form factors at their first extremum k
q

M (a minimum
in the present case). Then, the following radii are defined
(i) Rgeom(q) = √

5/3 Rr.m.s.(q) (geometric radius) for realis-
tic densities and (ii) RHelm(q) = √

5/3 RH
r.m.s.(q) =

√
R

q

0
2+5 σq 2

(Helm radius) for model densities.
Adjusting the Helm parameters to the high-momentum

part of the realistic form factor was meant to make the
fitting procedure as independent of the asymptotic tail of
ρq(r) as possible. Constructed in this way, RHelm(n) should
not incorporate the growth of Rgeom(n) when the neutron
separation energy drops to zero and the spatial extension of
weakly bound neutrons increases dramatically. In addition,
it was checked that the difference between RHelm(p) and
Rgeom(p) was negligible near the neutron drip-line. From these
observations, the neutron skin and neutron halo contributions
to the geometric radius were defined as4{

	Rskin ≡ RHelm(n) − RHelm(p),

	Rhalo ≡ Rgeom(n) − RHelm(n).
(15)

2. Limitations of the Helm model

Proton and neutron Helm radii are compared to geometric
ones on Fig. 8 for chromium and tin isotopes. The behavior
of Rgeom(q) and RHelm(q) for Sn isotopes is the same as in
Ref. [59].5 For both isotopic chains, the sudden increase of
the neutron geometric radius beyond the last neutron shell
closure might be interpreted as a signature of a halo formation.
However, 	Rhalo is nonzero along the entire Cr isotopic chain,
even on the proton-rich side. The latter result is problematic
as neutron halos can only be expected to exist at the neutron
drip-line.

Such nonzero values for 	Rhalo can be understood as a
direct consequence of the gaussian folding in the definition of
the Helm density. The asymptotic decay of the Helm density is
roughly quadratic in logarithmic scale, instead of being linear
[64,65,98]. To illustrate this point, Fig. 9 displays the realistic

4Similar definitions could be applied to nuclei close to the proton
drip-line, where a proton halo is expected instead of a neutron one.

5Results differ slightly from Ref. [59] because of the different
pairing functional and regularization scheme used, as well as
the larger number of j shells taken into account in the present
calculations.
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FIG. 8. (Color online) Geometric and Helm radii for Cr and
Sn isotopes calculated in the spherical HFB approach with the
{SLy4+REG-M} functional.

0. 0 4.0 8. 0 12.0
r [fm]

10 -8

10 -6

10 -4

10 -2

10 0

(r
) 

[f
m

-3
]

54  Cr
n

n
Helm
p

p
Helm

0. 0 4.0 8. 0 12.0
r [fm]

10 -8

10 -6

10 -4

10 -2

10 0

(r
) 

[f
m

-3
]

80  Cr
n

n
Helm
p

p
Helm

FIG. 9. (Color online) Realistic and Helm densities of 54Cr and
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FIG. 10. (Color online) Halo parameter 	Rhalo for chromium
isotopes using different fitting procedures for the Helm parameters
(Rq

0 , σ q ) (see text).

and Helm densities of 54Cr (in the valley of stability) and 80Cr
(drip-line nucleus). The difference in the asymptotic behaviors
is obvious. In particular, the Helm densities are unable to
reproduce the correct long-range part of the nonhalo proton
density or the neutron density of nuclei in the valley of stability.

Such features lead to unsafe predictions for the halo
parameter 	Rhalo as the neutron skin and the potential halo
are not properly separated. Such problems, as well as a lack
of flexibility to account for finer details of the nuclear density
had already been pointed out [99].

One might thus question the fitting procedure introduced
in Ref. [59]. The method naturally requires R

q

0 and σq to be
adjusted on the form factor at sufficiently large k so that the
Helm density relates to the core part of the density only. Of
course, some flexibility remains, e.g., one could use the second
zero k

q

2 of Fq(k) to adjust R
q

0 . Following such arguments,
four slightly different adjustment procedures Ai, i = 1, 4, all
consistent with the general requirement exposed above, have
been tested to check the stability of the Helm model

A1 : (i) F
q

H

(
k

q

1

) = F
(
k

q

1

)
(ii) F

q

H

(
k

q

M

) = Fq
(
k

q

M

)
,

A2 : (i) F
q

H

(
k

q

1

) = Fq
(
k

q

1

)
(ii) F

q′
H

(
k

q

1

) = Fq ′(
k

q

1

)
,

A3 : (i) F
q

H

(
k

q

2

) = Fq
(
k

q

2

)
(ii) F

q′
H

(
k

q

2

) = Fq ′(
k

q

2

)
,

A4 : (i) F
q

H

(
k

q

1

) = Fq
(
k

q

1

)
(ii) F

q′
H

(
0.4 k

q

1

) = Fq ′(
0.4 k

q

1

)
.

Figure 10 shows the halo parameter 	Rhalo obtained for
Cr isotopes using protocols A1 to A4. Note that protocol A1

is the one proposed in Ref. [59] and used earlier, whereas
the weight of the long-distance part of the realistic density is
more important in protocol A4. Although the general pattern
remains unchanged, the halo parameter significantly depends
on the fitting procedure used to determine (Rq

0 , σ q). Because of
the wrong asymptotic behavior of the Helm density discussed
above, one cannot make 	Rhalo to be zero for magic and
proton-rich nuclei (see protocol A4), keeping unchanged its
values for halo candidates at the neutron drip-line.6 Such a

6Helm densities obtained with the A4 protocol still do not match
the realistic ones, even for protons.
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fine tuning of the fitting procedure that would make use of
an a priori knowledge of nonhalo nuclei is impractical and
unsatisfactory.

As a next step, we tried to use other trial densities to
improve on the standard Helm model. A key feature is to
obtain an analytical expression of the associated model form
factor to adjust easily its free parameters. We could not find
any form leading to both an analytical expression of F

q

H and
good asymptotic, with only two free parameters.7

Although the Helm model looked promising at first, we
have shown the versatility of its predictions. The inability of
the model to describe the correct asymptotic of the nuclear
density in the valley of stability, as well as the too large
freedom in the fitting procedure, limit very much its predictive
power. Therefore a more robust analysis method is needed to
characterize medium-mass halo nuclei.

IV. NEW CRITERION FOR A QUANTITATIVE ANALYSIS
OF HALO SYSTEMS

Although deceiving, the previous attempts have underlined
the following point: a useful method to study halos must be
able to characterize a spatially decorrelated component in the
nucleon density in a model-independent fashion. We propose
in the following a method that allows the identification of
such a contribution to the internal one-body density. Our
starting point is a thorough analysis of medium-range and
large-distance properties of the one-body internal density in
Sec. IV A. Based on such an analysis, new quantitative criteria
to identify and characterize halos are defined in Sec. IV B. We
already outline at this point that the analysis and the associated
criteria are applicable to any finite many-fermion system, as
long as the interfermion interaction is negligible beyond a
certain relative distance. As done throughout the article, atomic
nuclei are used as typical examples in the present section.

A. Properties of the one-body density

1. Definitions and notations

Let us start from the nonrelativistic N -body Hamiltonian8

HN ≡
N∑

i=1

p2
i

2m
+

N∑
i,j=1i<j

V (rij ), (16)

where pi is the single-particle momentum, rij ≡ |�ri − �rj |
and V denotes the vacuum nucleon-nucleon interaction. The
nuclear Hamiltonian HN is invariant under translation and
can be written as a sum of a center-of-mass part HN

c.m. and
an internal part HN

int. Thus, eigenstates of HN , denoted by

7Using model densities depending on three parameters would make
the Helm model even more dependent on the fitting procedure.

8The Coulomb interaction is omitted here, as the focus is on neutron
halos. The spin degrees of freedom are also not explicitly included
as their introduction would not change the final results. Finally, the
Hamiltonian is restricted to a two-body interaction. The conclusions
would not change either with the introduction of the three-body force.

�N

i, �K (�r1 . . . �rN ), can be factorized into the center-of-mass part
(plane wave) times the internal wave function

�N

i, �K (�r1 . . . �rN ) = ei �K· �RN �N
i (�ξ1 . . . �ξN−1), (17)

where �K is the total momentum and �RN the center-of-mass
position

�RN ≡ 1

N

N∑
i=1

�ri . (18)

The word internal relates to the fact that the wave function �N
i

can be expressed in terms of relative coordinates only, such as
the (N − 1) independent Jacobi variables

�ξi ≡ �ri+1 − 1

i

i∑
j=1

�rj , (19)

and is associated with the internal energy EN
i . A consequence

is that �N
i is invariant under translation of the system in the

laboratory frame.
The ground-state internal wave function �N

0 can be ex-
panded in terms of the complete orthonormal set of internal
(N − 1)-body wave functions {�N−1

ν }, which are eigenstates
of the (N − 1)-body internal Hamiltonian [100–103]

HN−1
int �N−1

ν (�r1 . . . �rN−1) = EN−1
ν �N−1

ν (�r1 . . . �rN−1), (20)

such that

�N
0 (�r1 . . . �rN ) = 1√

N

∑
ν

�N−1
ν (�r1 . . . �rN−1)

×ϕν(�rN − �RN−1). (21)

The states �N−1
ν are ordered by increasing energies, ν = 0

corresponding to the ground state of the (N − 1)-body system.
The norm of the overlap functions ϕν(�r) provides the so-called
spectroscopic factors [104,105]

Sν =
∫

d�r |ϕν(�r)|2. (22)

Finally, the relevant object to be defined for self-bound
systems is the internal one-body density matrix [102,106,107]

ρ[1](�r, �r ′) ≡
∑

ν

ϕ∗
ν (�r ′)ϕν(�r), (23)

which is completely determined by the overlap functions
[106]. The actual internal one-body density ρ[1](�r) = ρ[1](r) is
extracted as the local part of the internal density matrix

ρ[1](r) ≡
∑

ν

|ϕν(�r)|2 =
∑

ν

2�ν + 1

4π
|ϕ̄ν(r)|2, (24)

where the energy degeneracy associated with the orbital
momentum has been resolved through the summation over
the spherical harmonics.
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2. Long-distance behavior and ordering of the ϕν(�r)

For large distance, i.e., r > R, the nuclear interaction
vanishes and the asymptotic radial part ϕ̄ν

9 of the overlap
function is solution of the free Schrödinger equation with a
reduced mass mred = m(N − 1)/N{[

d2

dr2
+ 2

r

d

dr
− �ν(�ν + 1)

r2

]
− κ2

ν

}
ϕ̄∞

ν (r) = 0, (25)

with κν =
√

−2mredεν/h̄
2 and εν = (EN

0 − EN−1
ν ) is minus

the one-nucleon separation energy to reach �N−1
ν . Solutions

of the free Shrödinger equation take the form

ϕ∞
ν (�r) = Bν h�ν

(i κν r) Y
mν

�ν
(θ, ϕ). (26)

As a result, the internal one-body density behaves at long
distances as10

ρ∞
[1](r) =

∑
ν

B2
ν

4π
(2�ν + 1)|h�ν

(i κνr)|2. (27)

For very large arguments, the squared modulus of a
Hankel function behaves as e−2κi r/(κir)2 [110]. Thus the
ν = 0 component dominates and provides the usual asymptotic
behavior [64,65,98]11

ρ∞
[1](r) −→

r→+∞
B2

0

4π
(2�0 + 1)

e−2κ0 r

(κ0 r)2
. (28)

The asymptotic form of the Hankel function is independent
of the angular momentum, which explains why high-order
moments 〈rn〉 of the density diverge when high-� states
are loosely bound, as discussed in Sec. II B. Thus, the
contributions of the overlap functions to ρ∞

[1] at very large
distances are ordered according to their associated separation
energies |εν |, independently of �ν . Corrections to this ordering
at smaller distances come from (i) the � dependence of
the Hankel functions due to the centrifugal barrier, which
favors low-angular-momentum states, and (ii) the (2� + 1)
degeneracy factor that favors high-angular-momentum states.
In any case, for extremely large distances the least bound
component will always prevail, although this may happen
beyond simulation reach.

To characterize the net effect of corrections (i) and (ii) on the
relative positioning of overlap functions at long distances, the
contributions (2�ν + 1)|ϕ̄ν(r)|2, for a fixed energy but different
angular momenta, are compared in Fig. 11 for the solutions
of a simple finite spherical well. Outside the well, Hankel
functions are exact solutions of the problem. The potential

9In the following, the radial part of a wave function f (�r) is noted
f̄ (r).
10Rigorously, this is true only if the convergence of the overlap

functions to their asymptotic regime is uniform in the mathematical
sense, i.e., if they reach the asymptotic regime at a common distance
R [106]. This is not actually proven in nuclear physics, but it has
been shown to be true for the electron charge density in atomic
physics [108,109].
11Note that the asymptotic of ρp and ρn are different because of the

charge factor (Hankel functions for neutrons, Whittaker functions for
protons).
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FIG. 11. (Color online) Squared components of the solutions
of a finite spherical well of fixed radius a = 4 fm, multiplied by
the degeneracy factor (2�ν + 1), for various angular momenta and
fixed energy εν = −100 keV. The first state for each �ν (nodeless
component corresponding to a primary quantum number equal to
zero) is represented.

depth is adjusted to obtain identical eigenenergies for all
�ν . Although the (2�ν + 1) factor reduces the gap between
s and p components, the effect of the centrifugal barrier is
always the strongest at large r , where states are clearly ordered
according to �ν , favoring low angular momenta. In any case,
the separation energy remains the leading factor as far as the
ordering of overlap functions at long distances is concerned.

3. Crossing pattern in ρ∞
[1](r)

The (model-independent) ordering at long distances of indi-
vidual components entering ρ∞

[1] has interesting consequences
on the properties of the density as a whole. As discussed
below, this ordering induces a typical crossing pattern between
the individual components that will eventually be used to
characterize halo nuclei.

Introducing normalized overlap functions ψν(�r), Eq. (24)
becomes

ρ[1](r) =
∑

ν

2�ν + 1

4π
Sν |ψ̄ν(r)|2 ≡

∑
ν

Cν(r). (29)

Let us take all spectroscopic factors equal to one for
now. The ν = 0 component, corresponding to the smallest
separation energy, dominates at large distances. Because of
continuity and normalization conditions, this implies that
ψ̄0(r) has to cross all the other overlap functions as r

goes inward from +∞ to zero. The position at which ψ0

crosses each ψν depends on the difference of their separation
energies and on their angular momenta. In particular, there
will exist a crossing between |ψ̄0(r)|2 and the remaining
density [ρ[1](r) − C0(r)]. The same is true about |ψ̄1(r)|2:
it must cross the remaining density [ρ[1](r) − C0(r) − C1(r)]
. . .. As a result, any given individual component must cross the
sum of those that are more bound. Of course, the centrifugal
barrier influences the position of such crossings but not their
occurrence because of the robustness of the (very) asymptotic
ordering pattern discussed in the previous section.
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Let us now incorporate the role of spectroscopic factors. In
practice, Sν is known to increase with the excitation energy
of the corresponding eigenstate of the (N − 1)-body system.
Thus, the norm of ϕ0 is smaller than those of the excited
components ϕν , which mechanically ensures the existence of
the crossings discussed previously. A similar reasoning holds
when going from ϕ0 to ϕ1, and so on.

One should finally pay attention to the number of nodes
of the overlap function ϕ̄ν . This feature actually favors low-
angular-momentum states as far as the asymptotic positioning
is concerned. If two components have the same energy but
different angular momenta, the one with the lowest � will have
a greater number of nodes. This will reduce the amplitude
of the wave function in the nuclear interior. That is, the
weight of the asymptotic tail is increased, which favors its
dominance at long distance. However, this effect is expected
to have a small impact in comparison with the other corrections
discussed above. As a result, the crossing pattern between the
components of the density is not jeopardized by the existence
of nodes in the overlap functions.

B. Halo characterization

1. Definition

The discussion of Sec. IV A3 demonstrates how individual
contributions to the one-body density (i) are positioned with
respect to each other and (ii) display a typical crossing pattern.
Such features are now used to characterize halo systems.

As pointed out, one general and model-independent def-
inition of a halo relates to the existence of nucleons that
are spatially decorrelated from others, constituting the core.
This can be achieved only if some contributions to the
internal density exhibit very long tails. Most importantly, the
delocalization from the core requires the latter to exist and to
remain well localized. To achieve such a spatial decorrelation
between a core and a tail part, it is necessary to have a
crossing between two well-identified groups of orbitals with
significantly different asymptotic slopes. This translates into
a sharp crossing between those two groups of orbitals and
thus to a pronounced curvature in the density. Note that this
explains the empirical observation that the first logarithmic
derivative of the density invariably displays a minimum at
some radius [111]. How much this feature is pronounced
or not is key and will be used in the following to design
model-independent criteria to characterize halo systems.

A pronounced crossing is illustrated in Fig. 12 for a simple
model where the halo is due to a single orbital. Of course,
more complex situations have to be considered where multiple
states contribute to the core and the halo. Indeed, the presence
of collective motions in medium-mass systems implies that
one hardly expects a single orbital to be well separated from
the others.

2. Relevant energy scales

The need for the existence of two groups of orbitals
characterized by significantly different asymptotic slopes
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FIG. 12. (Color online) “Core+tail” simplified model. The total
density is the superposition of a well-bound component and a loosely
bound one. A semiphenomenological density (see Appendix B) is
used for the core density, whereas the halo part is the realistic 31/2

state of 80Cr obtained from spherical HFB calculations with the
{SLy4+REG-M} functional.

provides critical conditions for the appearance of a halo: (i) the
least bound component ϕ0 must have a very small separation
energy to extend far out; (ii) several components ϕ1, ϕ2 . . . ϕm

may contribute significantly to the density tail if, and only
if, they all have separation energies of the same order as
that of ϕ0; and (iii) for this tail to be spatially decorrelated
from the rest of the density (the “core”), the components with
ν > νm have to be much more localized than those with ν � νm.
This third condition is fulfilled when the crossing between
the mth and (m + 1)th components in the density is sharp,
which corresponds to significantly different decay constants
κm � κm+1 at the crossing point.

The later situation translates eventually into specific pat-
terns in the excitation energy spectrum of the (N − 1)-body
system. It suggests that a halo appears when (i) the one-neutron
separation energy Sn = |ε0| is close to zero, (ii) a bunch of
low-energy states in the (N − 1)-body system have separation
energies |εν | close to zero, and (iii) a significant gap in the
spectrum of the (N − 1)-body system exists, which separates
the latter bunch of states ϕν from higher excitations.

A similar discussion was given in the context of designing
an effective field theory (EFT) for weakly bound nuclei [112],
where two energy scales (E,E′) were found to be relevant:
(i) the nucleon separation energy E = Sn that drives the
asymptotic behavior of the one-body density and (ii) the
core excitation energy E′ = |εm+1| that needs to be such as
E′ � E for the tail orbitals to be well decorrelated from the
remaining core. The additional energy scale that we presently
identify is the energy spread 	E of the low-lying states in
the (N − 1)-body system, which becomes relevant when more
than one component is involved in the halo. The corresponding
picture is displayed in the bottom panel of Fig. 13 and is also
translated in terms of canonical energies ei in the upper panel
of the same figure.

More quantitatively, the ideal situation for the formation
of a halo is obtained for (i) a very small separation energy,
in orders of a few hundred keVs, the empirical value of
2 MeV/A2/3 from Refs. [36,37] giving a good approximation
of expected values; (ii) a narrow bunch of low-lying states,
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FIG. 13. (Color online) Schematic display of the energy scales
relevant for the appearance of halos (right-hand side). The realistic
spectra obtained through HFB calculations of the four last bound
chromium isotopes are shown on the left-hand sides.

whose spread 	E should not exceed about one MeV; and
(iii) a large gap E′ with the remaining states, at least four or
five times the separation energy E. Those are only indicative
values, knowing that there is no sharp limit between halo and
nonhalo domains.

3. Halo region

As discussed in the previous section, a halo can be identified
through a pronounced ankle in the density, due to the sharp
crossing between the aggregated low-lying components and
the upper-lying ones. Such a large curvature translates into
a peak in the second derivative of the (base-10) logarithmic
profile (log10) of the one-body density, as seen in Fig. 14 for a
schematic calculation.

At the radius r = rmax corresponding to the maximum of
that peak, core and tail contributions cross; i.e., they contribute
equally to the total density. At larger radii, the halo, if it exists,
dominates. Therefore, we define the spatially decorrelated
region as the region beyond the radius r0 where the core
density is one order of magnitude smaller than the halo one.
In practice, the previous definition poses two problems. First,
in realistic calculations, one only accesses the total density.
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FIG. 14. (Color online) Ankle in the (base-10) log-density due to
the presence of a low-lying state well separated from the remaining
ones: log-density (bottom panel), first (middle panel), and second
(top panel) log-derivatives. The conventions are the same as in
Fig. 12.

Second, the choice of one order of magnitude is somewhat
arbitrary.

Extensive simulations have been performed to characterize
r0 unambiguously, using either one or several contributions to
the halo density and covering large energy ranges for E,E′,
and 	E. More details on the method used to find the best
approximation to r0, as well as the corresponding theoretical
uncertainty, are given in Appendix B. Given rmax, which can
be extracted from the total density, it has been found that r0

can be reliably defined through⎧⎪⎨
⎪⎩

r0 > rmax,

∂2 log10 ρ(r)

∂r2

∣∣∣∣
r=r0

≡ 2

5

∂2 log10 ρ(r)

∂r2

∣∣∣∣
r=rmax

,
(30)

as exemplified in Fig. 15. Also, theoretical uncertainties on the
determination of r0 are introduced, such that

0.35 �
log′′

10[ρ(r0)]

log′′
10[ρ(rmax)]

� 0.50, (31)

where ′ denotes a compact notation for ∂/∂r .
Once validated by simulations, the method to isolate the

halo region only relies on the density as an input and does
not require an a priori separation of the one-body density into
core and halo parts. Figure 16 illustrates the extraction of the
radius r0, together with its uncertainty, for the same model as
in Fig. 14. Finally, one may note that our definition of the halo
region does not a priori exclude contributions from individual
components with angular momenta greater than 1.
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FIG. 15. (Color online) Definition of r0 through the second
derivative of the log-density, using the same model density as in
Fig. 14. r0 is represented by the central vertical line. The shaded area
corresponds to the tolerance margin on r0 (see text).

4. Halo criteria

We now introduce several criteria to characterize the halo
in a quantitative way by applying the previous analysis to
the neutron one-body density.12 First, the average number of
nucleons in the halo region can be extracted through

Nhalo ≡ 4π

∫ +∞

r0

ρn(r) r2 dr. (32)

An important information is the effect of the halo region
on the radial moments of the density. By definition, the
contribution of the core to any moment 〈rn〉 is negligible for
r � r0. It has been checked in the case of the r.m.s. radius and
is all the more true as n increases. Thus, one can evaluate
the effect of the decorrelated region on the nuclear extension

12For neutron-rich medium-mass nuclei, protons are well confined
in the nuclear interior, thus do not participate in the long-range part of
the total density ρ. The two densities ρ and ρn can be used regardless
to evaluate Nhalo and δRhalo.
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FIG. 16. (Color online) Consequences of the definition of r0

(vertical lines for the values of r0 and the tolerance margin; see text)
in the same model as in Fig. 14. The halo density dominates the core
part by around one order of magnitude.
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FIG. 17. (Color online) Evolution of r0 along the Cr iso-
topic chain, obtained through spherical HFB calculations with the
{SLy4+REG-M} functional.

through

δRhalo ≡ Rn
r.m.s.,tot − Rn

r.m.s.,inner

=
√√√√∫ +∞

0 ρn(r)r4 dr∫ +∞
0 ρn(r)r2 dr

−
√∫ r0

0 ρn(r)r4 dr∫ r0

0 ρn(r)r2 dr
. (33)

The quantity δRhalo is similar to 	Rhalo defined within the
Helm model [Eq. (15)]. However, the former does not rely on
any a priori decomposition of the density into core and halo
components. That is of critical importance. Extensions to all
radial moments of the density can be envisioned.13

The quantities Nhalo and δRhalo are of course correlated,
but they do not carry exactly the same information. Note
that tolerance margins on r0 from Eq. (31) propagate into
theoretical uncertainties on Nhalo and δRhalo.

In the case of stable/nonhalo nuclei, both quantities will be
extremely small. There is still a slight curvature in the density
profile that provides a radius r0 but the computed criteria
will be consistent with zero. In the particular case of magic
neutron number, the curvature becomes particularly weak and
translates into a broad peak in the second log-derivative. As a
result, the radius r0 value is large and defines a region where
the density is particularly low. This is illustrated by Fig. 17,
where r0 is plotted for chromium isotopes as a function of A.
The maximum of r0 is attained for the magic shell N = 50.

Finally, further characterization of the halo can be achieved
by looking at the individual contributions of each overlap
function

Nhalo,ν ≡ 4π
(
2jn

ν + 1
) ∫ +∞

r0

∣∣ϕ̄n
ν (r)

∣∣2
r2 dr. (34)

Nhalo,ν provides a decomposition of the halo in terms of single-
particle-like states. Note that the inner part of an overlap func-
tion, i.e., for r < r0, does not contribute to halo observables.

13Numerical issues appear when going to high-order moments.
Indeed, 〈rn〉 is more and more sensitive to the upper limit of
integration as n increases. Thus, the result may significantly depend
on the box size used to discretize the continuum or on the size
of the basis used to expand quasiparticle wave functions in HFB
calculations.
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By analogy with the criterion used for light halo systems,
the probability of each individual overlap function ϕν to be in
the r � r0 region can be defined through

Pν ≡
∫ +∞
r0

|ϕ̄ν(r)|2 r2 dr∫ +∞
0 |ϕ̄ν(r)|2 r2 dr

. (35)

V. APPLICATION TO EDF CALCULATIONS

We apply the analysis method introduced in Sec. IV to
results obtained from self-consistent HFB calculations of
chromium and tin isotopes. In Sec. IV, the energies ε

q
ν that

characterize internal overlap functions denote exact nucleon
separation energies. No approximation to the nuclear many-
body problem was involved in the analysis conducted in
Sec. IV. The patterns of the internal one-body density thus
extracted are fully general and model independent.

In practice, of course, one uses an approximate treatment of
the quantum many-body problem. This raises critical questions
in the case of EDF calculations as discussed in Appendix A2.
Indeed, the one-body density at play in single-reference EDF
calculations is an intrinsic density rather than the internal
density, i.e., it is the laboratory density computed from a
symmetry-breaking state. As is customary in EDF methods
though, one uses such an intrinsic density to approximate the
internal density; e.g., when analyzing electron-scattering data.
Of course, such an identification is not rigourously justified
and formulations of EDF methods directly in terms of the
internal density are currently being considered [113]. Still,
the asymptotic part of the lower component V

q
ν (�r) of the

HFB quasiparticle wave function satisfies the free Schrödinger
equation [82] [Eq. (25)], just as the true internal overlap
function ϕν(�r) does. Considering in addition that the intrinsic
HFB one-body density reads as

ρq(r) ≡
∑

ν

2j
q
ν + 1

4π
|V̄ q

ν (r)|2, (36)

one realizes that the analysis performed in Sec. IV, including
the existence of the crossing pattern, applies directly to it.14

A. Implementation of the criteria

In the code HFBRAD, the HFB problem is solved in a
spherical box up to a distance Rbox from the center of
the nucleus on a radial mesh of step size 	r = 0.25 fm.
For Rbox = 40 fm, the mesh has 160 points in the radial
direction, for both the individual wave functions and the
densities. To obtain a satisfactory precision, the second-order
log-derivative is computed using a 5-point difference formula
[110]. The precision of the formula is the same as the
intrinsic precision of the Numerov algorithm used for the
integration of second-order differential equations [which is
O(	r6)] [82,114]. Approximate positions of the maximum

14The method was developed in Sec. IV for the exact internal density
to demonstrate its generality and to eventually apply it to the results
of other many-body methods dealing with a variety of finite many-
fermion systems [58].
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FIG. 18. (Color online) Neutron separation energies |εn
ν | = En

ν −
λn along the Cr isotopic chain, obtained through spherical HFB
calculations with the {SLy4+REG-M} functional. Only relevant
quasiparticle energies (Nn

ν > 0.01) are displayed. Conventions for
labeling individual states are found in Fig. 2.

of the second-order log-derivative of ρn(r) and of r0 are first
determined with a simple comparison algorithm. To increase
the precision, an 11-point polynomial spline approximation to
the density and its second log-derivative around the two points
of interest is performed. Because the functions involved are
regular enough, a spline approximation provides the radii rmax

and r0 with a good precision, as they are obtained using a
dichotomy procedure up to a (arbitrary) precision of 10−5.
Finally, the integrations necessary to compute Nhalo and δRhalo

are performed with 6-point Gaussian integration.
In the definition of δRhalo, the core contribution to the

total r.m.s. radius is approximated as the root-mean-square
radius of the density distribution truncated to its r < r0

component. To check the influence of this cut, the core density
was extrapolated beyond the point where the second-order
log-derivative crosses zero15 using Eq. (28) and enforcing
continuity of ρn and ρn′. No difference was seen for δRhalo.

The individual contributions Nhalo,i, as well as the individual
probabilities Pi , are evaluated in the canonical basis. Equiv-
alently, Nhalo,ν and Pν can be calculated in the quasiparticle
basis. Quasiparticle states are the best approximation to the
overlap functions, but canonical and quasiparticle basis really
constitute two equivalent pictures. Indeed, each canonical
state is, roughly speaking, split into quasiparticle solutions
of similar energies. A summation over quasiparticles having
the same quantum numbers in an appropriate energy window
would recover the single-particle canonical approximation.
The latter is preferred here, as it is more intuitive to work
in the natural basis.

B. Cr isotopes

According to the analysis of Sec. IV B2, drip-line chromium
isotopes appear to be ideal halo candidates. The separation
energy spectrum |εn

ν | = En
ν − λn to the states in the (N − 1)-

body system is shown in Fig. 18.

15This is the point where the halo contribution effect becomes
significant.
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TABLE I. Neutron canonical energies en
i in 80Cr and separation

energies |εn
ν | = En

ν − λn, as predicted by the {SLy4+REG-M}
functional. Quasiparticle states with a spectroscopic factor smaller
than 10−2 are not included.

Can. spectrum 80Cr Exc. spectrum 79Cr

eni (MeV) En
v − λn (MeV)

———— > 0 > 10

E f5/2 8.694

∆E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3s1/2 −0.178 p1/2 8.960

2d5/2 −0.670 g9/2 4.103

E

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

E

⏐⏐⏐⏐⏐⏐⏐⏐

∆E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d5/2 0.893

1g9/2 −4.062 d5/2 0.832

1f5/2 −8.676 s1/2 0.728

1f5/2 −8.676 s1/2 0.427

2p1/2 −8.942 E

< −10 ———— 0

Table I displays the canonical and quasiparticle spectra for
the drip-line nucleus 80Cr. In the canonical basis, |en

0 | is associ-
ated with a 3s1/2 state and is about 180 keV. The next low-lying
state (2d5/2) is within an energy interval of 	E ≈ 500 keV.
Those two states are separated from a core of orbitals by E′ ≈
3.5 MeV. Equivalently, the separation energy in the quasi-
particle basis is |εn

0 | ≈ 430 keV, whereas four quasiparticle
states (s1/2 and d5/2) are with an energy spread of 	E ≈
470 keV and are further separated from higher-excited states by
E′ ≈ 3.2 MeV. The separation energy Sn for 80Cr is compatible
with the phenomenological binding energy necessary for
the appearance of light halo nuclei, namely 2 MeV/A2/3 ≈
137 keV. According to the discussion of Sec. IV B2, the energy
scales at play in the three last bound Cr isotopes correspond
to ideal halo candidates.

The criteria introduced in Sec. IV B4 are now applied.
Figure 19 shows the average number of nucleons participating
in the potential halo. Whereas Nhalo is consistent with zero for
N � 50, a sudden increase is seen beyond the N = 50 shell
closure. The existence of a decorrelated region in the density
of the last three Cr isotopes is consistent with the evolution
of the neutron densities along the isotopic chain in Fig. 20.
For N > 50, such a behavior translates into a nonzero value of
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FIG. 19. (Color online) Average number of nucleons participat-
ing in the halo along the Cr isotopic chain, as a function of the nuclear
mass, as predicted by the {SLy4+REG-M} functional. Theoretical
uncertainties are included (see text).

Nhalo. The value of Nhalo remains small in comparison to the
total neutron number, as the decorrelated region is populated
by ∼0.45 nucleons on the average in 80Cr. In absolute value,
however, Nhalo is comparable to what is found in light s-wave
halo nuclei like 11Be, where roughly 0.3 nucleons constitute
the decorrelated part of the density [115]. The halo factor
δRhalo is shown in Fig. 21 as a function of A/N . The halo
contributes significantly to the total neutron r.m.s. radius (up
to ∼0.13 fm) beyond the N = 50 shell closure.

The latter result can be recast as a splitting of the total
r.m.s. radius into a core and a halo contributions, as displayed
in Fig. 22. In contrast to the Helm model, shell effects are here
properly separated from halo ones, e.g., the core r.m.s. radius
includes a kink at N = 50 that is due to the filling of least bound
states and not to the halo per se. Only the physics related to the
existence of truly decorrelated neutrons is extracted by Nhalo

and δRhalo. The kink of the neutron r.m.s radius (i) was not
assumed as a halo signature a priori [75,116] but recovered a
posteriori (ii) must be corroborated using finer tools such as
Nhalo and δRhalo to extract quantitatively the contribution of
the halo to that kink.

To characterize further this halo region, individual contri-
butions Nhalo,i are evaluated. The results are summarized in
Table II. As expected, the main contributions to the halo
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FIG. 20. (Color online) Neutron densities for even-even Cr
isotopes from 54Cr to 80Cr. The proton density of 54Cr is given
(dashed-dotted line) as a reference for the neutron skin.
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FIG. 21. (Color online) Halo factor parameter δRhalo in the Cr
isotopic chain.

come from the most weakly bound states, whereas for nonhalo
nuclei, like 74Cr, all contributions are consistent with zero. At
the neutron drip-line, important contributions are found from
both 3s1/2 and 2d5/2 states. The latter � = 2 states contribute for
almost 50% of the total number of nucleons in the decorrelated
region, although this state is more localized than the 3s1/2

because of its binding energy and of the effect of the centrifugal
barrier. Such hindrance effects are compensated by the larger
canonical occupation of the d5/2 states and the larger intrinsic
degeneracy of the shell. The significant contribution of the
� = 2 states could not be expected from the standard qualitative
analysis presented in Sec. II B or, with a few exceptions [10],
from the experience acquired in light nuclei. Finally, the
probability Pi for nucleons occupying the canonical state φn

i

to be in the outer region r � r0 in 80Cr is typical of s-wave halo
systems; i.e., 49% for the 3s1/2 state and a little bit lower for
the 2d5/2 state, around 26%.

The analysis method applied to neutron-rich Cr isotopes
demonstrates unambiguously that a halo is predicted for
the last three bound isotopes. We have indeed been able
to characterize the existence of a decorrelated region in the
density profile for isotopes beyond the N = 50 shell closure.
Such a region contains a small fraction of neutrons that impact
significantly the extension of the nucleus. It is generated by an
admixture of s1/2 and d5/2 states, whose probabilities to be in
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FIG. 22. (Color online) Total neutron root-mean-square radius
(solid line) and core contribution (dashed line) for chromium isotopes,
as predicted by the {SLy4+REG-M} functional.

TABLE II. Contributions of the least bound canonical orbitals to
the number of nucleons in the decorrelated region, and probabilities
for those states to be in the outer region r � r0. The data are provided
for the four last (predicted) bound Cr isotopes.

74Cr

Nhalo 1.7 × 10−4

en
i (MeV) vn 2

i Nhalo,i Pi

3s1/2 +0.036 0.000 0.000 0.0%
2d5/2 −0.024 0.000 0.000 0.0%
1g9/2 −3.618 1.000 0.001 0.1%
2p1/2 −8.100 1.000 0.000 0.0%
1f5/2 −8.400 1.000 0.000 0.0%
Other <−10.0 – ∼1.7.10−4 –

76Cr

Nhalo 5.2 × 10−2

en
i (MeV) vn 2

i Nhalo,i Pi

3s1/2 +0.356 0.050 0.007 14.8%
2d5/2 −0.209 0.311 0.039 12.6%
1g9/2 −3.764 0.991 0.002 0.2%
2p1/2 −8.416 0.998 0.000 0.0%
1f5/2 −8.477 0.998 0.000 0.0%
Other <−10.0 – ∼2.2 × 10−3 –

78Cr

Nhalo 0.186

en
i (MeV) vn 2

i Nhalo,i Pi

3s1/2 +0.052 0.147 0.045 30.4%
2d5/2 −0.450 0.604 0.128 21.2%
1g9/2 −3.919 0.991 0.005 0.5%
1f5/2 −8.576 0.998 0.001 0.1%
2p1/2 −8.714 0.998 0.001 0.1%
Other <−10.0 – ∼6.2 × 10−3 –

80Cr

Nhalo 0.450

en
i (MeV) vn 2

i Nhalo,i Pi

3s1/2 −0.178 0.421 0.207 49.3%
2d5/2 −0.670 0.843 0.223 26.4%
1g9/2 −4.062 0.995 0.008 0.8%
1f5/2 −8.676 0.999 0.001 0.1%
2p1/2 −8.942 0.999 0.002 0.2%
Other <−10.0 – ∼9.4 × 10−2 –

the halo region r � r0 are compatible with what is seen in light
halo nuclei. This provides the picture of a rather collective halo
building up at the neutron drip-line for Cr isotopes.

C. Sn isotopes

So far, the prediction of halos in tin isotopes beyond the
N = 82 shell closure [59] have been based on the Helm
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FIG. 23. (Color online) Same as Fig. 20 for the Sn isotopes. The
“separation” between the two groups of neutron densities occurs for
N = 82. Proton density of 100Sn is given as a reference in dashed-
dotted line.

model, whose limitations have been pointed out in Sec. III B2.
The robust analysis tools introduced in the present work are
expected to give more reliable results. Neutron densities of Sn
isotopes do exhibit a qualitative change for N > 82, as seen
in Fig. 23. However, the transition is smoother than in the case
of chromium isotopes (Fig. 20). This is partly due the increase
of collectivity associated with the higher mass. There are also
specific nuclear-structure features that explain the absence of
halo in drip-line Sn isotopes.

Table III displays the canonical and quasiparticle spectra
for the drip-line nucleus 174Sn. The energy scales at play are
not compliant with the definition of a halo, as can also be seen
from Fig. 24. In the canonical basis, the separation energy E

is roughly 1.2 MeV, whereas six states with an energy spread
	E ≈ 3.8 MeV are separated from a core of orbitals by a gap
E′ ≈ 5.5 MeV. Equivalently in the quasiparticle basis one has
(i) Sn = E ≈ 1.5 MeV, (ii) four low-lying quasiparticles with a
spread 	E ≈ 3.4 MeV (iii) separated from higher excitations
by E′ ≈ 5.6 MeV. The energy spread of the low-lying states
	E is too large to favor the formation of a halo. Also,
according to the phenomenological criterion extracted for light
halo nuclei, the separation energy of 174Sn should have been
of the order of 2 MeV/A2/3 ≈ 64 keV for a halo to emerge.

The Nhalo parameter is displayed in Fig. 25. The maximum
value of Nhalo, around 0.18, is very small compared to the total
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FIG. 24. (Color online) Same as Fig. 18 for neutron separation
energies of Sn isotopes.

TABLE III. Same as Table I for the neutron canonical energies of
174Sn and associated separation energies |εn

ν | of 173Sn.

Can. spectrum 174 Exc. spectrum 173Sn

eni (MeV) En
v − λn (MeV)

———— > 0 > 15

E

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

d5/2 14.169

d3/2 12.026

s1/2 11.967

∆E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1i13/2 −1.208 1h11/2 10.603

3p1/2 −1.855

E

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

2d5/2 −2.227

3p3/2 −2.665

1h9/2 −3.823

2f7/2 −5.014

∆E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f7/2 4.937

E

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

f7/2 4.463

h9/2 3.890

p3/2 2.722

p1/2 2.648

p3/2 2.559

f5/2 2.290

f5/2 2.082

p1/2 1.905

1h11/2 −10.575 p1/2 1.610

2d3/2 −12.581 i13/2 1.502

3s1/2 −12.747
E

⏐⏐⏐⏐⏐⏐⏐⏐2d5/2 −14.944

< −15 ———— 0
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FIG. 25. (Color online) Average number of nucleons in the spa-
tially decorrelated region for Sn isotopes. For comparison, Nhalo(80Cr)
is shown as a horizontal dashed-dotted line.

number of nucleons. The absolute numbers are also smaller
than the ones obtained in (lighter) Cr halos. We may add that
the value of Nhalo found here is of the same order of magnitude
as those encountered for a nonhalo p-wave nucleus such as
13N, where around 0.12 neutrons of 6 reside in average in
the classically forbidden region [115]. An interesting feature
is the decrease of Nhalo for N > 166. This is a consequence
of the filling of the highly degenerate 1i13/2 state right at the
drip-line (see Fig. 5). As the number of neutrons occupying
the 1i13/2 shell increases, the depth of the one-body potential
also increases and the shells become more bound, thus more
localized. As this happens over a significant number of
neutrons, the effect on Nhalo is visible. This constitutes an
additional hindrance to the formation of halos from low-lying
high angular-momentum states.

The second halo parameter δRhalo displayed in Fig. 26
shows that the decorrelated region has little influence on the
nuclear extension of the order of 0.02 fm. Its contribution is
found to be much less than predicted by the Helm model. The
heavy mass of tin isotopes hinders the possibility of a sharp
separation of core and tail contributions in the total density
and, thus, of the formation of a halo (see Fig. 27).
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FIG. 26. (Color online) Halo factor parameter δRhalo in the
Sn isotopic chain. For comparison purposes, the maximum value
of δRhalo obtained for Cr isotopes is represented as a horizontal
dashed-dotted line.

TABLE IV. Same as Table II for Sn isotopes.

132Sn

Nhalo 0.13 × 10−2

en
i (MeV) vn 2

i Nhalo,i Pi

1i13/2 +2.648 0.000 0.000 0.0%
3p1/2 +2.489 0.000 0.000 0.0%
2f5/2 +1.661 0.000 0.000 0.0%
3p3/2 +1.240 0.000 0.000 0.0%
1h9/2 +1.141 0.000 0.000 0.0%
2f7/2 −1.785 0.000 0.000 0.0%
Other <−7.0 – ∼0.13 × 10−2 –

146Sn

Nhalo 0.71.10−1

en
i (MeV) vn 2

i Nhalo,i Pi

1i13/2 +1.435 0.064 0.000 0.2%
2f5/2 −0.056 0.155 0.004 2.4%
3p1/2 −0.202 0.143 0.005 3.8%
1h9/2 −0.401 0.262 0.001 0.3%
3p3/2 −1.050 0.442 0.040 9.0%
2f7/2 −3.037 0.923 0.017 1.9%
Other <−7.0 – ∼3.1 × 10−3 –

164Sn

Nhalo 0.179

en
i (MeV) vn 2

i Nhalo,i Pi

1i13/2 −0.216 0.349 0.002 0.5%
3p1/2 −1.347 0.804 0.052 6.6%
2f5/2 −1.481 0.155 0.032 4.0%
3p3/2 −2.143 0.923 0.072 7.8%
1h9/2 −2.503 0.894 0.003 0.4%
2f7/2 −4.301 0.975 0.014 1.4%
Other <−7.0 – ∼4.7 × 10−3 –

174Sn

Nhalo 0.149

en
i (MeV) vn 2

i Nhalo,i Pi

1i13/2 −1.208 0.872 0.005 0.5%
3p1/2 −1.854 0.979 0.049 5.0%
2f5/2 −2.227 0.977 0.028 2.9%
3p3/2 −2.665 0.989 0.054 5.5%
1h9/2 −3.823 0.989 0.002 0.2%
2f7/2 −5.014 0.996 0.009 0.9%
Other <−7.0 – ∼2.3 × 10−3 –

The analysis of single-particle contributions, summarized
in Table IV, confirms the latter analysis. First, 3p1/2, 3p3/2,
and 2f7/2 (� = 3) states contribute roughly the same to
Nhalo. For higher-angular-momentum orbitals, the effect of
the centrifugal barrier is seen: the 1h9/2 and 1i13/2 orbitals,
the latter being the least bound orbital, do not contribute
significantly to the decorrelated region. Finally, individual
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FIG. 27. (Color online) Same as Fig. 22 for Sn isotopes.

probabilities Pi remain very small and do not exceed a few
percentages.

For all the reasons exposed above, only a neutron skin
effect is seen in tin isotopes, and no significant halo formation
is envisioned. Of course, all results presented here have been
obtained with a particular EDF and it is of interest to probe the
sensitivity of the predictions to the different ingredients of the
method [58].

In any case, the two previous examples already provide a
coherent picture regarding the properties of halo or nonhalo
medium-mass nuclei. In particular, it is rather obvious that the
notion of giant halo [74,75,78–81] constituted of six to eight
neutrons is misleading. Indeed, such a picture was obtained by
summing up the total occupations of loosely bound orbitals.
Although loosely bound orbitals are indeed responsible for the
formation of the halo, nucleons occupying them still reside
mostly inside the nuclear volume. It is thus unappropriate
to simply sum up their occupations to characterize the halo.
The identification of the halo region in the presently proposed
method led us to define the more meaningful quantity Nhalo.

VI. CONCLUSIONS

The formation of halo in finite many-fermion systems is a
quantum phenomenon caused by the possibility for nonclassi-
cal systems to expand in the classically forbidden region. One
difficulty to further understand this phenomenon resides in the
absence of tools to characterize halo properties in a quantitative
way. Light nuclei constitute an exception considering that the
quantification of halo properties in terms of the dominance of
a cluster configuration and of the probability of the weakly
bound clusters to extend beyond the classical turning point is
well acknowledged [34–37]. Several attempts to characterize
halos in systems constituted of tens of fermions have been
made but were based on loose definitions and quantitative
criteria. Such a situation is unsatisfactory because important
questions, such as the very existence of halos at the neutron
drip-line of medium-mass nuclei, are still open.

After demonstrating the inability of the Helm model to pro-
vide reliable predictions, a new quantitative analysis method
has been developed to identify and characterize halos in finite
many-fermion systems in a model-independent fashion. It is
based on the decomposition of the internal one-body density
in terms of overlap functions. The definition of the halo, as

a region where nucleons are spatially decorrelated from the
others, has been shown to be connected to specific patterns of
the internal one-body density and of the energy spectrum of the
(N − 1)-body system. In particular, halos can be characterized
by the existence of a small nucleon separation energy E, a
small energy spread 	E of low-lying excitations, and a large
excitation energy E′ of the upper-lying states, with respect
to low-lying bunched ones, in the excitation spectrum of the
(N − 1)-body system.

Based on the new analysis method, it is possible to extract
the radius r0 beyond which the halo, if it exists, dominates over
the core. Such an identification of r0 has been validated by
extensive simulations. It is important to stress that the method
does not rely on an a priori separation of the density into
core and halo components. The latter are extracted from the
analysis itself, using the total matter density as the only input.
Several quantitative observables are then introduced, namely
(i) the average number of fermions participating in the halo,
(ii) the influence of the halo region on the total extension of
the system, and (iii) the contributions of individual overlap
functions to the halo.

The new analysis method has been applied to the re-
sults obtained from energy-density functional calculations
of chromium and tin isotopes using the code HFBRAD [82].
Drip-line Cr isotopes appear as ideal halo candidates, whereas
tin isotopes do not.

For drip-line Cr isotopes, the average fraction of nucleon
participating in the halo is of the order of ∼0.5. Such a value
is compliant with those found for light halo systems [115].
The halo region was also found to influence significantly the
nuclear extension. Contributions from several individual com-
ponents, including � = 2 ones, were identified, contradicting
the standard picture arising from few-body models. The notion
of collective halos in medium-mass nuclei has been introduced.

In the case of Sn isotopes, the average number of
nucleons participating in the halo is very small and has
no influence on the nuclear extension. Thus, the drip-line
phenomenon discussed previously for tin isotopes [59] is
rather a pronounced neutron skin effect. Such skin effects
are of course of interest as they emphasize the isovector
dependence of the energy-density functionals. However, they
should not be confused with halo systems that display an
additional long tail of low density matter.

This preliminary study on two isotopic series gives promis-
ing results and validates the theoretical grounds of the analysis.
With upcoming new radioactive-beam facilities, interaction
cross sections are expected to be measurable in the drip-line
region of Z ≈ 26 elements [117]. This would constitute a giant
leap toward an extensive comparison between theoretical and
experimental works on drip-line physics.
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APPENDIX A: INTERNAL ONE-BODY DENSITY

1. Definition

In the laboratory frame, the one-body density is the
expectation value of the operator

ρ̂(�r) =
N∑

i=1

δ(�r − �̂ri), (A1)

which leads for the N -body ground state to

ρ(�r)=N

∫
d�r1 . . . d�rN−1 |�N

0 (�r1 . . . �rN−1, �r)|2

=N

∫
d�ξ1 . . . d�ξN−2 d �RN−1

× |�̃N
0 (�ξ1 . . . �ξN−2, �r − �RN−1)|2 (A2)

where �N
i (�r1 . . . �rN ) ≡ �̃N

i (�ξ1 . . . �ξN−1). Using that �̃N
i is

invariant under translation of the system, one easily proves
that the one-body density in the laboratory frame is also
translationally invariant, ρ(�r + �a) = ρ(�r), and thus is uniform.
This is a general property of translationally invariant systems
that underlines that the density in the laboratory frame is not
the proper tool to study self-bound systems.

The relevant object for self-bound systems is the internal
one-body density matrix, defined as the expectation value of
the operator

ρ̂[1](�r, �r ′) = δ( �RN )
N∑

i=1

δ
(�r − �̂ri + �̂R

i

N−1

)

× δ( �R′
N )

N∑
j=1

δ
(�r ′ − �̂r ′

j + �̂R
j ′

N−1

)

×
∏

k,l=1..Nk,l �=i,j

δ
(�̂rk − �̂rl

)
, (A3)

where

�̂R
i

N−1 = 1

N − 1

N∑
j=1
j �=i

�̂rj . (A4)

The internal density defined with respect to the center-of-
mass of the remaining (N − 1)-body16 is of direct relevance
to knockout reactions [104,105,118]. Using the orthogonality
relationship [100]∫

d�r1 . . . d�rN�N
i

∗
(�r1 . . . �rN )δ( �RN )�N

j (�r1 . . . �rN ) = δij , (A5)

16One could define another internal one-body density taking the
center-of-mass of the N -body system as a pivot point. This is a more
relevant choice to analyze electron-scattering data.

and Eq. (21), one obtains [102,106,107]

ρ[1](�r, �r ′) = N

∫
d�r1 . . . d�rN−1 �N

0
∗
(�r1 . . . �rN−1, �r ′)

× δ( �RN−1)�N
0 (�r1 . . . �rN−1, �r)

=
∑

ν

ϕ∗
ν (�r ′)ϕν(�r), (A6)

which shows that the internal one-body density matrix is
completely determined by internal overlap functions [106].

The internal one-body density ρ[1](�r) is the local part of
the internal density matrix and is the expectation value of the
operator

ρ̂[1](�r) = δ( �RN )
N∑

i=1

δ
(�r − �̂ri + �̂R

i

N−1

)
. (A7)

According to Eq. (A6), one has

ρ[1](�r) =
∑

ν

|ϕν(�r)|2 =
∑

ν

2�ν + 1

4π
|ϕ̄ν(r)|2. (A8)

2. Nuclear EDF calculations

The behavior of the internal one-body density highlighted
in Sec. IV is general and model-independent. It is valid for
any finite many-fermion system, as long as the interfermion
interaction is negligible beyond a certain relative distance. Of
course, when an approximate treatment of the N -body system
is used, a certain deterioration of the properties of the density
can be observed. In the case of EDF calculations, however,
some more profound issues are raised.

First, an important clarification regarding the physical
interpretation of the quantities at play in the calculations must
be carried out. In single-reference implementations of the
nuclear EDF method, one manipulates the so-called intrinsic
one-body density, in the sense that it is built from an auxiliary
state that breaks symmetries of the nuclear Hamiltonian, e.g.,
translational, rotational, and gauge invariance. The intrinsic
density is associated with a wave packet from which true
eigenstates, and their laboratory and internal densities, can
be recovered by restoring broken symmetries through multi-
reference EDF calculations [41]. In practice, the intrinsic
density is used as a good approximation to the internal density,
e.g., when analyzing electron-scattering data. Still, the intrinsic
density of a symmetry breaking state and the internal density
associated with the true eigenstate of interest are different
[119].17 As a result, EDF methods [113]18 expressed directly
in terms of the internal density are currently being considered
[113].

As explained, the EDF intrinsic density has been shown in
many cases to be a good approximation of the internal density
extracted through electron scattering. In practice, one identifies

17In shell model, the internal wave function is explicitly computed
when the center-of-mass part of the N body wave function can be
mapped onto a 0s state.
18The SR-EDF method, as it is currently applied to self-bound nuclei,

is not related to an existence theorem à la Hohenberg-Kohn.
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the lower component of the intrinsic HFB wave function
V

q
ν (�r) with the internal overlap function ϕ

q
ν (�r) leading from

the ground state of the N -body system to the corresponding
excited state of the (N − 1)-body system.19 In particular, and
this is key to the present discussion, the asymptotic part of
V n

ν (�r) satisfies the free Schrödinger equation [82], just as
the asymptotic part of ϕn

ν (�r) does. The smallest energy |εn
0 |

thus extracted relates to the exact separation energy, i.e., an
analog to Koopmans’ theorem derived originally in the case of
Hartree-Fock approximation applies. Given that the intrinsic
density [Eq. (36)] expressed in terms of the lower component
of HFB quasiparticle wave functions reads the same as
the internal density expressed in terms of overlap functions
[Eq. (A8)], the analysis method developed in Sec. IV, including
the occurrence of crossing patterns, applies directly to the
former.

a. Slater determinant as an auxiliary state

In the implementation of the EDF method based on a Slater
determinant, explicit spectroscopic factors are either zero or 1
and behave according to a step function S

q
ν = �(εq

F − e
q
ν ). The

single-particle orbitals ϕ
q
ν are identified with overlap functions

and the density takes the form given by Eq. (A8).

b. Quasiparticle vacuum as an auxiliary state

In the implementation of the EDF method based on a
quasiparticle vacuum, the one-body density can be evaluated
using either the canonical states φ

q

i or the lower components
V

q
ν of the quasiparticle states

ρq(r) =
∑

i

2j
q
ν + 1

4π
v

q2
i

∣∣φ̄q

i (r)
∣∣2 =

∑
ν

2j
q
ν + 1

4π

∣∣V̄ q
ν (r)

∣∣2
,

(A9)

where jq relates to the total angular momentum. In the
present case, the spectroscopic factor S

q
ν identifies with

the quasiparticle occupation N
q
ν defined by Eq. (7). This

underlines that implementation of the EDF approach based
on a quasiparticle vacuum incorporates explicitly parts of the
spreading of the single-particle strength [122].

The function Sn
ν = f (|εn

ν |), whose typical behavior is
presented in Fig. 28 for 80Cr, takes values between zero and
1. The difference between holelike quasiparticle excitations

19It can be shown that the perturbative one-quasiparticle state
ηi

†|�〉 contains N + ui
2 − vi

2 particles on the average if |�〉 is
constrained to N particles on the average. It is only for deep-hole
quasiparticle excitations (v2

i ≈ 1) that the final state will be a good
approximation of the (N − 1)-body system. The correct procedure,
that also contains some of the rearrangement terms alluded to above,
consists of constructing each one-quasiparticle state self-consistently
by breaking time-reversal invariance and requiring (N − 1) particles
in average, or of creating the quasiparticle excitation on top of a fully
paired vacuum designed such that the final state has the right average
particle number [120,121]. The overlap functions and spectroscopic
factors can be computed explicitly in such a context.

0 1 2 3 4 5 6 7
| n|= E n- n [MeV]
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FIG. 28. (Color online) Neutron quasiparticle occupation Nn
ν as

a function of the separation energy in 80Cr, calculated with the
{SLy4+REG-M} functional. Conventions from Fig. 2 are used
to label individual quasiparticle states. Only quasiparticles with
occupations greater than 10−3 are displayed.

and particle-like ones is visible. Indeed, Sn
ν increases with

excitation energy |εn
ν | for holelike excitations. This constitutes

the main branch that tends toward a step function when corre-
lations are not explicitly included into the auxiliary state; i.e.,
for the EDF approach based on an auxiliary Slater determinant.
Spectroscopic factors of particle-like quasiparticle excitations
remain small and go to zero for high-lying excitations.

APPENDIX B: DETERMINATION OF THE HALO REGION

Let us start with a very crude toy model, where everything is
analytical. The total density ρ is assumed to be a superposition
of a core ρc and a tail ρh, both taking the form

ρi(r) = Ai κi e
−κi r . (B1)

This amounts to considering that the asymptotic regime is
reached in the region of the crossing between ρc and ρh, and we
neglect for now the r−2 factor. In this model the second-order
(base-10) log-derivative of the total density is analytical, as
well as the exact positions of (i) its maximum rmax (ii) the
point r0 where the halo density is exactly equal to 10 times the
core one. Then, the ratio R(r0) = log′′

10 ρ(r0)/ log′′
10 ρ(rmax)

can be evaluated and becomes in the weak binding limit of
interest κh/κc → 0

R(r0) −→
κh/κc→0

40

121
+ O

[(
κh

κc

)2
]

. (B2)

This shows that the position where there is a factor of 10
between ρc and ρh is equivalently obtained by finding the
position where there is a given ratio between the value of
the second-order log-derivative of the density and its maximal
value. The critical value 40/121 ≈ 0.33 found in the toy model
is not believed to be accurate for complex nuclei, as (i) the
asymptotic regime is not reached at the crossing point and
is more complicated because of the r−2 factor and (ii) the
total density is a superposition of more than two components.
However, we expect the one-to-one correspondence between
ratios on the densities and ratios on log′′

10 ρ to hold in realistic
cases. Thus, the position where the halo dominates the core by

054308-20



NEW ANALYSIS METHOD OF THE HALO PHENOMENON IN . . . PHYSICAL REVIEW C 79, 054308 (2009)

one order of magnitude can be found using log′′
10 ρ as the only

input.
More realistic model calculations have been used to

characterize the position of r0. The total density is taken as
a linear combination of core and halo contributions. Their
relative normalization are free parameters in this simulation,
allowing us to artificially change the fraction of halo in the
total density

ρtot(r) = Ncρc(r) +
m∑

ν=1

Nνρν(r), (B3)

where Nc and Nh = ∑m
ν=1 Nν are the number of nucleons in

the core part and in the halo part, respectively. The densities ρc

and ρν are normalized to 1. We considered (i) simple models,
where the core and each halo components are defined as⎧⎪⎪⎨

⎪⎪⎩
ρi(r) = 1

Ni

r < R0,

ρi(r) = 1

Ni

e
R0−r

ai r > R0,

(B4)

where Ni is a normalization constant. This model accounts
only for the basic features of the nuclear density: a uniform
core of radius R0 and a spatial extension becoming larger as
ai → 0. We also considered (ii) double Fermi models, where
the unphysical sharp edge in the logarithmic representation of
the previous density is smoothed out

ρi(r) = ρ0

1 + e
r−R0

ai

, (B5)

and (iii) semiphenomenological models, which fulfill the
asymptotic behavior of Eq. (28). Core and tail densities vanish
at r = 0, as well as their derivatives with respect to x, y,
and z, to avoid singularities at the nucleus center [123]. In
Refs. [124–126], such densities were adjusted on experimental
data. The core part was defined as

ρc(r) = ρ0,c

1 +
[

1+
(

r
R0,c

)2

2

]α [
e

r−R0,c
ac + e

−r−R0,c
ac

] , (B6)

where α = 1 for neutrons and the halo density as

ρh(r) = ρ0,t

[
r2(

r2 + R2
0,t

)
]

e
− r

at . (B7)

We also considered (iv) more realistic models, where the core
density is still defined as in Eq. (B6), but the halo contributions
are realistic wave functions taken from self-consistent EDF
calculations of Cr and Sn isotopes.

The results from a wide panel of test cases are presented
in Fig. 29. We recall that r0 is defined as the radius for
which ρh(r0) = 10ρc(r0). The goal is to determine such a
radius through the value of another ratio: R(r0). For each
simulation, the position r0 and the ratio R(r0) are computed.
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FIG. 29. (Color online) (Main panel) Ratio between the second-
order log-density at r0 and its peak value log′′

10 ρ(rmax). (Top panels)
Distribution of r/r0 for which R(r) is equal to a given value [left
panel: R(r) = 0.35, middle panel: R(r) = 0.4, right panel: R(r) =
0.5], and r0.

The main panel of Fig. 29 shows the distribution of R(r0) that
is peaked around 0.4. This value is greater than in the toy model
case for the reasons detailed above. The distribution of R(r0)
is asymmetric, but the tail toward high values corresponds
precisely to nonhalo systems. In any case, we are going
to reflect such an asymmetry into the choice of theoretical
uncertainties in the determination of r0.

The inserts of Fig. 29 display the distribution of ratio r/r0

corresponding to a given value of R(r). The ratio R(r) = 2/5
(top-center panel) indeed picks out quite consistently the radius
r0. ForR(r) = 40/121 (top-left panel), the position r is in most
cases below r0. As a consequence, the average ratio between
tail and core components in the density will be consistently
below 10 in this case. On the contrary for R(r) = 1/2 (top-
right panel), r is systematically larger than r0, meaning that
the ρh/ρc larger than 10 on the average. In the end, it appears
that r0 is indeed well picked out through the condition

R(r0) = 2
5 . (B8)

For those reasons, we use those values of R(r) to set the error
bars on the determination of r0.

Of course, we need to account for the fact that a difference
by one order of magnitude between core and halo densities
to define the halo region is somewhat arbitrary and that the
corresponding radius r0 cannot be perfectly picked out in all
cases through Eq. (B8). As a result, we add a tolerance margin
to the definition of r0 by allowing R(r0) to vary between
40/121 ≈ 0.35 and 1/2. The upper margin is greater than
the lower one to account for the asymmetry of the peak in
Fig. 29. Note that the procedure chosen to determine r0

combined with that asymmetry put us on the safe side, i.e., the
radius found through that procedure, if not perfect, is likely
to be too large, leading to a slight underestimation of the halo
factors Nhalo and δRhalo.
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