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Core polarization for the electric quadrupole moment of neutron-rich aluminum isotopes
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The core polarization effects for the electric quadrupole moments of the neutron-rich 31Al, 33Al, and 35Al
isotopes in the vicinity of the island of inversion are investigated by means of the microscopic particle-vibration
coupling model in which the Skyrme Hartee-Fock-Bogoliubov and quasiparticle random-phase approximations
are used to calculate the single-quasiparticle wave functions and the excitation modes. It is found that the
polarization charge for the proton 1d5/2 hole state in 33Al is quite sensitive to coupling to the neutrons in the
pf -shell associated with the pairing correlations and that the polarization charge in 35Al becomes larger due to
the stronger collectivity of the low-lying quadrupole vibrational mode in the neighboring 36Si nucleus.
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I. INTRODUCTION

The nuclear structure far from the β-stability line has
been studied very actively with the development of the new
generation radioactive-isotope beam techniques together with
the microscopic nuclear models applicable to drip-line nuclei
carried out by high performance computers.

The ground state properties and the dynamical properties
such as low-energy excitation modes and giant resonances
in the medium-mass nuclei to the heavier nuclei have been
successfully described by the self-consistent mean-field theory
or the nuclear density-functional theory (DFT) [1]. The nuclear
DFT has been applied to the exotic modes of excitation in
unstable nuclei [2,3] and developed toward description of
nuclei in the whole chart. Along this line, the self-consistent
random-phase approximation (RPA) including the pairing
correlation and the nuclear deformation has been recently
developed by several groups [4–6].

Presently, the small excitation energy of the 2+
1 state and

the large transition probability B(E2; 0+ → 2+
1 ) in 32Mg

have been discussed in connection with the breaking of
the spherical magic number N = 20 in neutron-rich systems
[7–9]. The recent gyromagnetic-factor measurement of 33Al
at GANIL [10] and the β-decay study of 33Mg at NSCL [11]
indicate that 33Al has a certain amount of 2p-2h intruder
configuration.

The electric quadrupole moment (Q moment) representing
the deviation from a sphere is directly related to the defor-
mation property of the nucleus, and thus its investigation
for neutron-rich nuclei at around N = 20 is strongly desired
both experimentally and theoretically [12]. Quite recently,
the Q-moment measurement of 33Al has been performed at
GANIL [13].

To investigate the ground-state Q moments of neutron-rich
Al isotopes in the vicinity of the “island of inversion” [14],
we carry out the particle-vibration coupling (PVC) calculation
based on the Skyrme energy-density functional, on top of the
self-consistent quasiparticle RPA (QRPA).

The article is organized as follows. In Sec. II, the method is
explained. In Sec. III, we perform the numerical calculations
and investigate the core polarization for the electric quadrupole
moments in 31,33,35Al. Section IV contains the conclusions.

II. METHOD

A. Microscopic particle-vibration coupling model

The nuclear Hamiltonian of a PVC model [15] on top of the
Skyrme Hartree-Fock-Bogoliubov (HFB) and QRPA is written
as

Ĥ =
∑

i

Eiβ̂
†
i β̂i +

∑
λ

h̄ωλB̂
†
λB̂λ + Ĥcouple. (1)

Here Ei is the quasiparticle energy obtained as a self-consistent
solution of the Skyrme HFB equation and β̂

†
i and β̂i are

the quasiparticle creation and annihilation operators. The
nucleon creation operator ψ̂†(r) is then represented, using the
quasiparticle wave functions, as

ψ̂†(r) =
∑

i

ϕ1,i(r)β̂†
i + ϕ∗

2,i(r)β̂i . (2)

The phonon energy h̄ωλ is a solution of the QRPA equation
on top of the Skyrme HFB, and B̂

†
λ and B̂λ are the phonon

creation and annihilation operators. We solve the Skyrme
HFB + QRPA equations in the m scheme. Details of the
calculation scheme are given in Ref. [6].

Let us now consider the change of the density �(r)
due to the collective vibrations as �(r) → �(r) + δ�(r, t).
The nuclear potential U [�(r)] is accordingly changed to
U [�(r)] → U [�(r) + δ�(r, t)]. To first order in the change of
the density, the difference of the nuclear potential is evaluated
to be

U [�(r) + δ�(r, t)] − U [�(r)] =
∫

dr′ δU [�(r)]

δ�(r′)
δ�(r′, t).

(3)

Then, the PVC Hamiltonian has the form

Ĥcouple =
∫

drdr′ δU [�(r)]

δ�(r′)
δ�(r′, t)ψ̂†(r)ψ̂(r). (4)

We introduce the vacuum defined by the product of the HFB
vacuum and the QRPA vacuum:

β̂i |0〉 = 0, B̂λ|0〉 = 0. (5)
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The density variation δ�(r, t) can be written in a second
quantized form, using the QRPA modes, as

δ�̂(r) =
∑

λ

[δ�λ(r)B̂†
λ + δ�∗

λ(r)B̂λ], (6)

where δ�λ(r) is a transition density to the QRPA state |λ〉 =
B̂

†
λ|0〉.

The β̂
†
i β̂

†
j and β̂j β̂i parts in ψ†(r′)ψ(r) are taken into

account in the QRPA phonons [16]. Consequently, the PVC
Hamiltonian in the leading order reads

Ĥcouple =
∑
λ,ij

∫
drdr′ δU [�(r)]

δ�(r′)
[δ�λ(r′)B̂†

λ + δ�∗
λ(r′)B̂λ]

× [ϕ1,i(r)ϕ∗
1,j (r) − ϕ2,i(r)ϕ∗

2,j (r)]β†
i βj . (7)

The higher order effects can be treated systematically in the
Nuclear Field Theory [17,18].

The coupling interaction in Eq. (7) is derived from the
Skyrme energy-density functional. In the present calcula-
tion, we approximate the momentum-dependent terms in the
Skyrme interaction by the Landau-Migdal (LM) form. This
approximation is made only for the construction of the PVC
Hamiltonian as in Refs. [19] and [20]. The isoscalar (IS) and
the isovector (IV) coupling interactions are expressed as

δU [�(r)]

δ�(r′)
δ�λ(r′) =

{
vτ=0(r)δ�IS

λ (r′)δ(r − r′)

vτ=1(r)δ�IV
λ (r′)δ(r − r′)τzτ

′
z.

(8)

The explicit expressions for vτ=0(r) = F0/N0 and vτ=1(r) =
F ′

0/N0 are given in Ref. [21].

B. Description of odd-A systems

To describe the odd-A nuclear systems, we diagonalize the
Hamiltonian (1) within the subspace {β̂†

i |0〉, B̂†
λβ̂

†
j |0〉}. Then,

the resulting state vector is written as

|φ〉 =
∑

i

c0
i β̂

†
i |0〉 +

∑
λj

c1
λj B̂

†
λβ̂

†
j |0〉. (9)

The operator for the quadrupole moment can be written as

Q̂ = 〈Q̂〉 +
∑
ij∈π

Qij β̂
†
i β̂j +

∑
λ

(QλB̂
†
λ + Q∗

λB̂λ), (10)

where

Qij = 〈0|β̂iQ̂β̂
†
j |0〉

=
∫

dr(3z2 − r2)[ϕ1,i(r)ϕ∗
1,j (r) − ϕ2,i(r)ϕ∗

2,j (r)],

(11a)

Qλ = 〈0|[B̂λ, Q̂]|0〉 =
∫

dr(3z2 − r2)δ�π
λ (r), (11b)

and 〈Q̂〉 is the vacuum expectation value.

The electric Q moment of the eigenstate |φ〉 is then
calculated as

〈φ|eQ̂|φ〉 = e

⎧⎨
⎩〈Q̂〉 +

∑
i

[(
c0
i

)2
Qii + 2c0

i

∑
λ

c1
λiQλ

]

+
∑
λ,jk

c1
λj c

1
λkQjk

⎫⎬
⎭ . (12)

We apply this model to odd-Z nuclei to calculate the proton
polarization charge of the state |i〉 for the Q moment, which
is defined as

eπ
pol = e

(
〈φ|Q̂|φ〉
〈i|Q̂|i〉 − 1

)
, (13)

where 〈i|Q̂|i〉 = 〈Q̂〉 + Qii .

C. Parameters

For the mean-field Hamiltonian, we employ the SkM∗
interaction [22] in the present numerical applications. We
use the lattice mesh size �ρ = �z = 0.6 fm and a box
boundary condition at (ρmax = 9.9 fm, zmax = 9.6 fm). The
quasiparticle energy cutoff is chosen at Eqp,cut = 60 MeV
and the quasiparticle states up to π = 15/2± are in-
cluded. The pairing strength parameter is determined so as
to reproduce the experimental pairing gap for neutrons in
34Mg(�exp,ν = 1.7 MeV) obtained by the three-point formula
[23]. The strength t ′0 = −295 MeV fm3 for the mixed-type
pairing interaction with the exponent of the density depen-
dence γ = 1 leads to the pairing gap 〈�ν〉 = 1.71 MeV in
34Mg [6]. On top of the Skyrme HFB, we solve the QRPA
equation within the space of the two-quasiparticle excitation
of Eα + Eβ � 60 MeV. The momentum-dependent terms in
the residual interaction are exactly treated.

The density-dependent Landau parameters F0 and F ′
0 for

the PVC interaction are determined by the parameters of the
SkM∗ interaction. As shown in Refs. [6] and [24], the attraction
of the LM interaction is stronger than that of the self-consistent
interaction in which the momentum-dependent terms are
treated exactly. In the case of 20O in Ref. [6], we needed an
overall factor fLM = 0.82 for the residual interaction to obtain
the spurious mode at zero energy. Therefore, we multiply the
overall factor fLM for the PVC interaction. We use fLM = 0.8
and 0.9 for comparison. Accordingly, the difference of the
results can be considered as a theoretical uncertainty.

III. RESULTS AND DISCUSSION

A. Properties of 32,34,36Si

We describe the odd-Z neutron-rich Al isotopes as a
proton single-hole state coupled to the neighboring Si isotopes
because the pairing gaps of protons in Si isotopes are zero. We
summarize here the ground state properties and the structure
of quadrupole excitations in 32,34,36Si.
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TABLE I. Ground state properties of 32,34,36Si obtained by the
deformed HFB calculation with the SkM∗ interaction and the mixed-
type pairing interaction. Chemical potentials, average pairing gaps,
and root-mean-square radii for neutrons and protons are listed. The
average pairing gap of protons is zero in these isotopes. The average
pairing gap is defined as 〈�〉q = − ∫

drh̃�̃/
∫

dr�̃.

32Si 34Si 36Si

λν (MeV) −7.76 −6.60 −5.51
λπ (MeV) −13.5 −15.9 −17.3
〈�〉ν (MeV) 1.56 1.67 1.94√

〈r2〉ν (fm) 3.22 3.32 3.39√
〈r2〉π (fm) 3.10 3.13 3.16

In Table I, the ground state properties are summarized.
The neutron-rich Si isotopes under investigation are spherical
although the calculated deformation parameters are not exactly
zero (β2 = 0.02 in 34Si). This is due to the artificial breaking of
the spherical symmetry associated with the finite mesh size and
the rectangular box, and thus it is considered as a numerical
error. The average pairing gaps of neutrons are finite, while
those of protons are zero. This indicates that the 34Si has a
neutron 2p-2h configuration in its ground state. The neutron
occupation numbers of the 1f7/2 orbital are 0.31, 0.78, and 2.21
in 32,34,36Si, respectively, and the neutron occupation number
of the 2p3/2 orbital is 0.10 in 36Si.

Figure 1 shows the response functions for the isoscalar
(IS), isovector (IV), and proton quadrupole excitations. We
can see a prominent peak at around 3 MeV in all of the
isotopes under investigation. The isoscalar transition strengths
are B(IS2; 0+ → 2+

1 ) = 626, 637, and 1137 fm4 in 32,34,36Si,
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FIG. 1. (Color online) Response functions for the isoscalar (IS),
isovector (IV), and proton quadrupole excitations in 32,34,36Si. The
transition strengths are smeared by a Lorentzian function with a width
of � = 1 MeV.
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FIG. 2. B(E2; 0+ → 2+
1 ) values of Si isotopes as functions of

neutron numbers. The calculated values (QRPA) are compared with
the MCSM results [25] (SM) and the experimental results [26] (Exp.).

corresponding to 104, 98, and 162 in Weisskopf units. In
addition to the low-lying collective 2+ state, we can see the
giant quadrupole resonances (GQR) at around 20 and 30 MeV
for the IS and IV excitations.

The calculated B(E2; 0+ → 2+
1 ) values are shown in

Fig. 2 and compared with the Monte-Carlo Shell Model
(MCSM) results [25] and the experimental values [26]. The
present results agree reasonably with the experimental results.
Furthermore, the shell model calculation in the full sdpf space
performed in Ref. [28] gives a larger B(E2) value of 118
e2 fm4 in 34Si, which is closer to the present result. And the
present calculation gives the same result as that obtained in
Ref. [29] employing the spherical HFB-QRPA model for 34Si.

The 2+
1 state in 32Si is mainly generated by the sd-shell

configurations of neutrons and protons. The microscopic
structure of the Kπ = 0+ component is given by the two-
quasiparticle excitations of (ν2s1/2 ⊗ 1d3/2) with a weight of
0.04, (ν1d3/2)2 with 0.61, and (π2s1/2 ⊗ 1d5/2) with 0.30. The
microscopic structure of the Kπ = 1+ and 2+ components is
the same within the numerical accuracy as that of the Kπ = 0+
component because of the spherical symmetry. The strength
in the energy region 15 � h̄ω � 25 MeV exhausts 79.4% of the
IS energy-weighted sum rule (EWSR) value. The IS strength
in the low-energy region up to 10 MeV exhausts 1.2% of
EWSR. The IV strength is distributed in a wider energy range,
20 � h̄ω � 40 MeV. The summed strength in this energy region
exhausts 75.2% of the IV-EWSR value.

In 34Si the neutron excitations into the pf -shell become
appreciable for the 2+

1 state. The microscopic structure of
the Kπ = 0+ component is given by the (ν1d3/2)2 excitation
with a weight of 0.21, the (ν1f7/2)2 excitation with 0.10,
and the (π2s1/2 ⊗ 1d5/2) excitation with 0.63. The strength
in the energy region 15 � h̄ω � 25 MeV exhausts 79.8% of
the IS-EWSR value, and the strength in the energy region
20 � h̄ω � 40 MeV exhausts 74.3% of the IV-EWSR value.

The Kπ = 0+ component of the 2+
1 state in 36Si is mainly

generated by the (ν1f7/2)2 excitation with a weight of 0.39,
the (ν2p3/2)2 excitation with 0.08, and the (π2s1/2 ⊗ 1d5/2)
excitation with 0.47. The strength in the energy region
15 � h̄ω � 25 MeV exhausts 77.6% of the IS-EWSR value, and
the strength in the energy region 20 � h̄ω � 40 MeV exhausts
72.9% of the IV-EWSR value. Because of the mixing of
the IS and IV modes in neutron-rich nuclei, we can see an
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appreciable IV strength in the lower energy region
10 � h̄ω � 20 MeV. The summed strength in this energy region
exhausts 10.4% of the IV-EWSR value.

B. Polarization charges in 31,33,35Al

For describing the Iπ = 5/2+ state of 31,33,35Al, we
diagonalize the Hamiltonian (1) in the model space of
the proton single-hole state of the 1d5/2 orbital |(π =
−5/2+)−1〉 and the coupled states of |(π = −5/2+)−1 ⊗
ωK=0〉, |(−3/2+)−1 ⊗ ωK=1〉, and |(−1/2+)−1 ⊗ ωK=2〉. We
take the QRPA states |ωλ〉 whose IS or IV quadrupole transition
strengths possess greater than 1 W.u.

The dimension of the Hamiltonian (1) is 225 for 31Al. The
Iπ = 5/2+ state of |31Al〉 is constructed mainly by the one-
hole state and the hole coupled to the 2+

1 state as

|31Al; Iπ = 5/2+,M = 5/2〉 = 0.93|(−5/2+)−1〉
+ 0.21|(−5/2+)−1 ⊗ 2+

1 (K = 0)〉
− 0.23|(−3/2+)−1 ⊗ 2+

1 (K = 1)〉
+ 0.16|(−1/2+)−1 ⊗ 2+

1 (K = 2)〉. (14)

The amplitudes associated with the other components are
smaller than 0.1. The coupled states in Eq. (14) correspond
to the |(π1d5/2)−1 ⊗ 2+

1 〉 state in the j -scheme represen-
tation. The ratios of the amplitudes are identical to those
of the Clebsch-Gordan coefficients 〈 5

2
5
2 20| 5

2
5
2 〉, 〈 5

2
3
2 21| 5

2
5
2 〉,

and 〈 5
2

1
2 22| 5

2
5
2 〉. The quadrupole moment of 31Al is then

calculated using Eq. (12) as 13.6(13.9)e fm2, where we use
fLM = 0.8 (0.9). From this value, the polarization charge of
Eq. (13) is calculated as eπ

pol = 1.03e (1.08e). The result of
the calculation overestimates slightly the experimental value
of the Q moment 11.2 ± 3.2e fm2 [12].

For 33Al, the dimension of the Hamiltonian (1) is 250. As
in 31Al, the wave function of 33Al is written mainly by the
one-hole state with a weight (the squared amplitude) of 0.90
and the hole coupled to the 2+

1 state with a weight of 0.08. The
calculated values of the Q moment and the polarization charge
are 13.0(13.4)e fm2 and eπ

pol = 0.89e (0.96e), respectively.
The quadrupole moments and polarization charges of 31Al
and 33Al are not very different.

The dimension of the Hamiltonian (1) is 285 for 35Al. As
in the case of 31Al and 33Al, the wave function of 35Al is
written by the one-hole state with a weight of 0.85 and the
hole coupled to the 2+

1 state with 0.14. The contribution of
the coupling to the 2+

1 state is larger than that in 31,33Al. The
calculated values of the Q moment and the polarization charge
are 14.7(15.1)e fm2 and eπ

pol = 1.12e (1.18e), respectively.
To see separately the effects of coupling to the low-lying

modes and to the giant resonances on the polarization charge,
we diagonalize the Hamiltonian (1) in the model space
containing only the RPA modes with energies larger than
10 MeV. The obtained polarization charges for the 1d5/2 orbital
are eπ

pol = 0.20e (0.22e), 0.21e (0.24e), and 0.18e (0.20e) in
31Al, 33Al, and 35Al, respectively. These values are close to
the systematic value obtained in Ref. [27] (0.21e, 0.18e, and
0.15e in 31,33,35Al), where the microscopic PVC calculations
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FIG. 3. (Color online) Same as Fig. 1 but for the RPA strengths
in 34Si.

were performed including only the giant resonances on top of
the self-consistent HF + RPA in light neutron-rich nuclei.

The enhancement of the polarization charge in 35Al is thus
due to the strong collectivity of the low-lying quadrupole
vibrational mode in the core nucleus 36Si because the effects
of coupling to the giant resonances are not sensitive to the
neutron number in the Al isotopes under investigation.

C. Effects of the pairing correlations in 33Al

We investigate the effects of coupling to the pf -shell in
33Al. The dominant correlation in the present case is the pairing
correlation because the core nucleus 34Si is calculated to be
spherical at the HFB level.

Figure 3 shows the IS, IV, and proton quadrupole transition
strengths in 34Si obtained by solving the Skyrme HF + RPA
equations without pairing correlations. The collectivity of low-
lying states are tremendously weakened, while the structure of
GQR is not very different from that obtained by solving the
Skyrme HFB + QRPA equations shown in Fig. 1.

The 2+
1 state is constructed dominantly by the (π2s1/2 ⊗

1d5/2) excitation with a weight of 0.98. The strength
B(IS2; 0+ → 2+

1 ) has only 237 fm4. Using the RPA transition
densities, we diagonalize the Hamiltonian (1) with a dimension
of 241. The calculated wave function is mainly generated by
the one-hole state with a weight of 0.97 and the hole coupled to
the 2+

1 state with a weight of 0.02. This state is thus dominantly
described by the proton sd-shell configurations because the
2+

1 state is generated by the proton excitation to the 2s1/2

orbital.
The resulting Q moment is 11.0(11.4)e fm2, and the

polarization charge is eπ
pol = 0.59e (0.65e).

The Q moment and the polarization charge in 33Al are quite
sensitive to the neutron pairing correlation at N = 20. This is
similar to the enhancement mechanism of the B(E2; 0+ →
2+

1 ) in 32Mg because the neutron pairing correlation is
indispensable for the strong collectivity of the 2+

1 state in
32Mg [29].

D. 32Mg as a core

The wave function |33Al〉 can also be constructed by the
quasiproton coupled to 32Mg. The pairing gaps of neutrons
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FIG. 4. (Color online) Same as Fig. 1 but in 32Mg.

and protons are 1.80 and 1.42 MeV in 32Mg. The ground state
is calculated to be spherical as in the other HFB calculations
[30,31]. Figure 4 shows the response functions for the IS, IV,
and proton quadrupole excitations. At 0.9 MeV, we can see a
prominent peak possessing 2414 fm4 and 430 e2 fm4 for the
IS quadrupole strength and B(E2), respectively. This result
agrees well with the experimental value [9]. The 2+

1 state is
constructed by the two-quasiparticle excitations of (ν1d3/2)2

with a weight of 0.10, (ν1f7/2)2 with 0.09, (π1d5/2 ⊗ 2s1/2)
with 0.11, and (π1d5/2)2 with 0.61.

We diagonalize the Hamiltonian (1) within the space of the
proton quasiparticle of the 1d5/2 orbital and the coupled states
of a sd-shell quasiproton to the quadrupole modes in 32Mg.
In the present calculation with a dimension of 276, |33Al〉 is
constructed by the quasiproton of the 1d5/2 level with a weight
of 0.85, |π1d5/2 ⊗ 2+

1 〉 with 0.10, |π2s1/2 ⊗ 2+
1 〉 with 0.04,

and |π1d3/2 ⊗ 2+
1 〉 with 0.01. The electric Q moment of 33Al

is then calculated as 12.4 (12.6) e fm2. This is consistent with
the calculation in Sec. III B.

IV. CONCLUSION

The polarization charges for the electric quadrupole mo-
ment of the neutron-rich Al isotopes at around N = 20 have
been investigated by carrying out the microscopic particle-
vibration coupling calculation in which the coordinate-space
Skyrme Hartree-Fock-Bogoliubov and quasiparticle random-
phase approximations are employed to calculate the single-
quasiparticle wave functions and the transition densities.

It has been found that the neutron pairing correlations are
crucial to generate the collectivity of the 2+

1 state in 34Si and
that the polarization charge of the proton hole state of the 1d5/2

orbital becomes small in the absence of the pairing correlation
in 33Al. The effect of the neutron pairing correlation at N = 20
on the enhancement of the polarization charge in 33Al is very
similar to the enhancement mechanism of the B(E2) in 32Mg
[29].

The effects of coupling to the giant resonances on the
polarization charge are not very different in a small region
of isotopes, and the low-lying collective modes have much
effect on the polarization charge. Therefore, the polarization
charge in 35Al is larger than that in 31,33Al as a consequence
of the stronger collectivity of the 2+

1 state in 36Si.

ACKNOWLEDGMENTS

The author acknowledges K. Matsuyanagi and
T. Nakatsukasa for valuable discussions and encouragement
and acknowledges T. Nagatomo and H. Ueno for stimulating
discussions. He is supported by the Special Postdoctoral
Researcher Program of RIKEN. The numerical calculations
were performed on the NEC SX-8 supercomputer at the
Yukawa Institute for Theoretical Physics, Kyoto University,
and the NEC SX-8R supercomputer at the Research Center
for Nuclear Physics, Osaka University.

[1] M. Bender and P.-H. Heenen, Rev. Mod. Phys. 75, 121
(2003).

[2] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,
Phys. Rep. 409, 101 (2005).

[3] N. Paar, D. Vretenar, E. Khan, and G. Colò, Rep. Prog. Phys.
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