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Three-body decays and R-matrix analyses
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The R-matrix simulation of three-body decays is investigated as function of available Q value and the energy
and width of the intermediate two-body resonance. We use three a-decaying unnatural parity states of >C for
illustration. The energy distributions are shown to be sensitive to the parameters when the two-body energy is
significantly smaller than Q and the width is smaller than about 0.5 MeV. The sequential decay inherent in
the R-matrix formalism can then be distinguished from direct decay. We provide conditions for the validity of
R-matrix analyses. We compare with full three-body computations of the same energy distributions where we also
attempt to distinguish between sequential and direct decays. The results give a good reproduction of available
experimental data and are consistent with the conclusions from R-matrix analyses. Nodes in the momentum
distributions arise from angular momentum and parity conservation. Combined with symmetry requirements this
constrains the momentum distributions significantly in some cases. Effects of interactions and decay mechanisms
can only be seen in the remaining behavior as, e.g., additional nodes related to nodes in the coordinate wave

function at large distance.
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I. INTRODUCTION

Precise and kinematically complete experimental
information is now available for a number of systems where
a resonance breaks up into three or more fragments. The
objectives for these activities are to uncover the structure of
various nuclear systems, often nuclei far from stability or
resonances close to cluster emission thresholds. The reaction,
or decay, mechanism of these states is also of interest, both in
itself as the dynamic behavior of the system and because the
initial structure cannot be extracted without this knowledge.
Due to the large binding energy of the « particle the threshold
for one or more « particles is often low in light nuclei
and therefore breakup to final states of three « particles or
nucleons is experimentally easy to reach, e.g. breakup of
2C(3a), Be(2an), BQRap), *He(a2n), SLi(apn), Be(a2p).

The number of such investigations is increasing due
to the many new and upgraded operating facilities using un-
stable beams. Due to improvements in detection technologies
these investigations often provide complete kinematics data.
The accumulating sets of data are almost in all cases analyzed
by R-matrix theory [1]. This method assumes two successive
two-body processes that are used to reproduce the measured
momentum distributions of the three fragments. The input is
the properties of the intermediate states, resonance energies
and widths, and initial population of the nuclear many-body
system approximated as a three-body system at the surface of
the nucleus. This implies that the results are information about
the initial state obtained through these specific two-body decay
or reaction channels.
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The intermediate two-body structures are then important
results of the analyses. They are expressed as branching ratios
of such sequential decays. However, these two-body structures
are unstable and together with the third cluster they are in
reality states within the three-body continuum. It is then
of both conceptual and practical interest to know whether
this procedure is too restrictive and perhaps missing decay
paths passing other configurations. After all, the paths via the
two-body intermediate states are not direct observables and
quantum mechanically a coherent sum of all possible paths
applies.

Traditionally the nonsequential decays are called direct
decays into the final states of the three-body continuum.
Decays with no visible effects similar to sequential decay
have also been called democratic decay [2,3]. The distinction
between sequential and direct decays is not unique. In fact
both descriptions can be correct as understood by expressing
that the intermediate states serve as a basis. If the basis of
two-body states multiplied by Coulomb waves for the third
cluster is as complete as the set of continuum three-body wave
functions then the choice of basis is a matter of convenience
for example due to fast convergence. The task of extracting
information about the initial structure requires at some point
model interpretation.

The breakup of the 17 state at 12.71 MeV in '>C provides a
good example of the problems discussed. Parity conservation
prevents the state from decaying sequentially by « emission to
the narrow 0% ground state of ®Be. In the literature, the three
characteristic peaks from the breakup of this state have been
described as signatures of both sequential [4—6] and direct [3,7]
breakup.

The use of R-matrix theory for calculating the width of
three-body decays has been discussed recently [8,9]. The
purpose of the present article is to establish validity conditions
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and predictive power for R-matrix calculations of decay
spectra of three-body decays, when can it be used, and that
predictions are reliable. Decay spectra is a more sensitive
observable than the width alone, and it is also needed to
separate possible sequential and direct contributions to the
total width in the cases where such a separation might be
possible.

We compare R-matrix calculations with a three-body model
based on the method of hyperspherical adiabatic expansion
combined with complex scaling. The discussion will be based
on three unnatural parity states in '>C. Section II gives the
pertinent background for the theoretical description of the
three-body model and the method of R-matrix simulation. In
Sec. III we discuss the constraints on the fragment momentum
distributions from fermion and boson symmetry and from
angular momentum and parity conservation. We give a number
of numerical results for '>C resonances from R-matrix analysis
in Sec. IV and from the three-body model in Sec. V. The
reliability of the interpretations is discussed in Sec. VI and
finally Sec. VII contains summary and conclusions.

II. THEORETICAL BACKGROUND

Experimental analyses of three-body decays employ the
R-matrix formalism that originally was developed for decays
into two particles. We describe the modification in recent
three-body applications and we sketch the physics content
and parameter interpretation of this method. The results
are structure parameters for the decaying systems and the
decay mechanism expressed in terms of branching ratios
of the decay via different known resonance properties of
intermediate two-body systems. The data for the analyses
leading to these results are momentum distributions of the
three fragments. To explore the validity of this approximation
we compare R-matrix calculations to proper three-body
calculations. We sketch in the next subsection the important
ingredients in this formalism that also sometimes allows dis-
tinction between different decaying initial structures and decay
mechanisms.

A. Three-body formulation

The aim is to compute the fragment momentum distri-
butions from three-body decaying resonances. We define a
resonance as a state with energy E3, — i[5, /2 corresponding
to a pole of the S matrix. This concept arises from an analytic
continuation of the scattering matrix into the plane of complex
energies. The pole can never be reached experimentally where
the total energy only assumes real values. The imaginary part
of the energy —I'3,/2 corresponds to a distribution of width
'3, of these real energies around a peak value close to E3,.
The resonance wave function then includes effects of this
distribution in total energy.

The resonances are calculated by the hyperspherical adia-
batic expansion method [10] combined with complex rotation
of the coordinates [11]. The adiabatic coordinate is the
hyperradius p defined by mo®> =3, _;mim;(ri —r;*/M,
where M = m; +my +m; and m is a normalization mass.
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The total wave function, W/, is expanded on the angular
eigenfunctions, &, s, for each hyperradius, i.e.,

1
V0. = 55 ) )Pl D ()

where the p-dependent expansion coefficients, f,(p), are
the hyperradial wave functions with the asymptotics
exp(—i—i/cp)(;% = E3, —iI'3,/2) obtained from the coupled
set of hyperradial equations. The necessary structures can be
described from Borromean systems to systems with bound
two-body states in one or more of the three two-body
subsystems. The difficulties are often related to large distances
(large p) that can be calculated accurately with a specific
choice of basis and partial waves [12].

The Fourier transform providing the observable momentum
distributions is almost entirely determined by the large-
distance structure of the resonance coordinate wave function.
The angular part is the same in momentum space and the
momentum distributions are determined by

|\IIJM(pmax’ Qk)lz
P x , 2)
(Ey, — B +T2/4
where €2; specify the directions of the relative momenta
in hyperspherical coordinates. The wave function has to be
evaluated at pp,x where the asymptotic p dependence of
fn(p) o exp(ikp) has been reached. The energy distributions
from the three-body decaying resonances are then obtained
from the large-distance asymptotic behavior of the three-
body resonance wave function [13]. The complex rotation
of the coordinates in the Faddeev equation is described by
p — pexp(if). In hyperspherical coordinates this means that
only the hyperradius p is scaled as p — pexp(i6) while
all hyperangles remain unchanged. The angle 6 has to be
larger than the angle 65, corresponding to the resonance, i.e.,
0 > 03, = 0.5 arctan(I'3, /2E3,), where E3, is the energy and
I'3, is the width. Then the resonance wave function falls off
exponentially at large distance precisely as a bound state.

The adiabatic expansion implies that the asymptotic large-
distance population of different adiabatic components are
available. Each of these components describes specific con-
tinuum structures of the three-body system. In particular,
one of these wave functions must asymptotically describe
one particle far away from the other two in the two-body
resonance structure. This happens as soon as 6 is larger than
0, = 0.5 arctan(I",, /2E>,), the angle corresponding to that
resonance of energy and width E,, and I',.. The fraction
populating this resonance is related to the size of the radial
wave function, f,(p), of that component. We define this
fraction as the part decaying sequentially through the cor-
responding two-body structure. Several such components may
be present in addition to the majority of adiabatic components
describing genuine three-body continuum properties with the
corresponding direct decay mechanism.

In contrast to the direct decays, momentum distributions
arising from the sequential components cannot be obtained
from the complex rotated wave function at large distance.
This is because these structures really are bound states in
the complex rotated basis. Rotation back to the real axis
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recreates a decaying two-body resonance of given energy and
width. Combined with energy and momentum conservation
including the third particle the decay can then be described as a
genuine two-body sequential decay where the third particle has
escaped and does not interact with the particles in the decaying
two-body resonance. In the lowest-order approximation this
means simply a Breit-Wigner distribution for the third particle
around the most probable energy and a width equal to the sum
of two and three-body resonance widths. If the third particle
and the particles forming the two-body resonance are identical,
corresponding amplitude contributions must be coherently
added and squared. Finally, the different contributions to the
momentum distributions from direct and sequential decays
should then be individually computed and added. It is not
clear whether this should be done coherently or incoherently
as discussed in detail in Refs. [8,9].

When the lowest-order Breit-Wigner approximation is in-
sufficient this procedure is inadequate, i.e., when I'y, becomes
too large. When I', is comparable to E3, (assumed larger than
E»,) the concept of three-body sequential decay through this
state looses its meaning because the energy of the first emitted
particle vary too much to allow a description in terms of one
energy and one potential (barrier). The separation of degrees
of freedom into sequential and direct decays is not possible.
This restriction in widths is less severe for I';, because the
distribution of particle momenta first of all is determined by
the resonance wave function while the smearing due to the
width either is of rather little significance or easily can be
accounted for.

When the two-body resonance energy is larger than the
three-body energy, E», > Ej3,, energy conservation does not
allow this sequential decay mechanism. However, the decay
may proceed by first establishing a similar intermediate
structure with one particle far away from two particles in a
resonance-like structure, and then at much larger distances
depopulating this component while reaching the true asymp-
totic behavior allowed by energy conservation. This is called
virtual sequential decay, which qualitatively resembles the
phenomenological description in analysis of decay via the
tail of a two-body resonance. The virtual sequential decay
also qualitatively resembles the results from calculations with
0 < 6, where the two-body resonance is spread out over
many three-body continuum states instead of appearing as
one state with bound state boundary condition. The complete
momentum distributions including direct and virtual sequen-
tial decays are obtained provided the asymptotic behavior can
be accurately computed.

B. R-matrix formulation

R-matrix theory [1] is the most frequently applied formal-
ism for a phenomenological description of data. For decay
to two-body final states the assumption is that space can be
divided into an inner region, where strong forces are active, and
an outer region, where only Coulomb and angular momentum
determine the wave function. The two regions of space are then
connected at the interface of the two regions by specifying
values of reduced width and energy parameters.
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For decay to three-body final states the assumption is that
such decays can be seen as a succession of two two-body
decays (sequential decay), i.e., emission of one particle leading
to population of an intermediate two-body structure that
subsequently decays. The total energy can then be shared
in different proportion between the three particles. If several
sequential decays are possible the total decay is described as
a sum of the individual channels. Lane and Thomas discuss
the validity conditions of R-matrix theory for such decays
[1], most notably the requirement is that the lifetime of
the intermediate state is sufficiently long to allow a correct
description of the outer region in the first decay in terms
of two-body asymptotics depending only on Coulomb and
angular momentum.

R-matrix theory can be adjusted to handle more complex
situations such as (i) several paths related to different angular
momentum couplings but the same intermediate state, (ii)
different interfering intermediate structures for the same two-
body system, and (iii) coherence of intermediate structures of
different two-body systems.

As our chosen example we consider three-a decays of 1>C
resonances of energy E3.. When the intermediate state is the
ground state of ®Be with a lifetime of the order 10~'®s (width
about 8 eV) the two successive two-body decays seem to
be appropriate, i.e., 2C > oy +%Be - o) + @y + a3. The
kinematics is fully determined by specifying the relative
energy of the 8Be system, E,, and the angle ® between the
directions of the first emitted « particle and the direction of
the subsequent breakup of 3Be. The distribution of E», or that
of tlllle first o particle Eq; = 3(E3, — E), is given by | f1 23/
wit

o/ Egi En
Ey — y31S0,(E2) — Se,(Eap)l — Ep — i3To,

3)

Sf123

where I' = 2P,(E)y? with P,(E) the penetrability for either
the a-8Be (I'y) or a-a(I"y,) breakup, y? is the reduced width
and S, is the shift function [5,6]. E,, is the formal resonance
energy in ®Be. The orbital angular momentum is £ y for the first
emission and £, for the 8Be state.

When 8Be is in its ground state the validity conditions
for successive emissions are obeyed to a high precision. In
contrast, these requirements seem to be violated when the
intermediate state is the 3Be(21) state at 3 MeV with a width of
Iy, =~ 1.5 MeV. Somewhat surprisingly, such decays have also
been successfully described by R-matrix theory. An example
of this is provided by the 17 state at 12.71 MeV in '>C [5,6]
where £, = 2 and £, = 2 in Eq. (3). The distribution of ® can
be calculated from Ref. [14] to be W(©) = sin*(2®). Then
three peaks results for the energy distribution with the central
peak dominated by the first emitted « particle while the other
two peaks originate from the secondary emitted « particles.
The angular correlation W(®) determines the shape of these
peaks.

The distribution given by Eq. (3) neglects the Bose
symmetry of the three « particles. The resulting interference
effects have to be taken into account. This was pointed out for
the decay spectrum of the 12.71-MeV state in Ref. [5] where a
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modified R-matrix expression was given (Eq. (3) in Ref. [5]),

f=) (M —myjum | IMY) (O, @)

myly

D S Y N ©)

where (©,, ®,) is the direction of emission of the first o«
particle in the 12C center-of-mass, (6,, ¢,) the direction of
one of the secondary emissions in the 8Be center-of-mass, J
and j, are the total angular momenta of the states in '>C and
8Be, and w; — ¢y is the Coulomb minus hard sphere phase
shift. The summation over £, is active when more than one
value is allowed by the coupling rules. The final amplitude is
obtained by symmetrizing in the coordinates of the three «
particles, then squaring and finally averaging over the initial
spin direction M. Due to this procedure interference effects
are introduced.

For the 17 state in '2C the effect of this interference is
to deepen the minima between the three peaks such that the
agreement with the data is significantly improved [5,6].

III. SYMMETRY CONSTRAINTS

The decaying structure may be a resonance or other
continuum stare at small distance evolving into three clusters
at large distance.

In any case the structure can be described by a linear
combination of a basis set of quantum numbers. When some
of the quantum numbers are conserved, as for a resonance
with given angular momentum and parity J”, the momentum
distributions are constrained accordingly. Furthermore, the
boson or fermion symmetry of the constituent clusters also
imposes constraints on the resulting momentum distributions
as already discussed in the R-matrix formulation.

For both data and the computed wave function the con-
straints from conservation laws and symmetry requirements
can be exhibited in Dalitz plots [15]. For the three-« decay of
12C knowledge of two « energies suffices to uniquely specify
the 3« final state. It can be visualized by points inside an
equilateral triangle, where the distances to the sides are the
energies of the three particles, see Fig. 1. The density of
the Dalitz plot is then proportional to the transition matrix
element squared. Pure phase-space decays, where the wave
function is independent of the momenta, result in a flat
distribution. Symmetries derived from angular momentum and
parity conservation as well as boson symmetry induce general
structures in the Dalitz plots. In addition, specific structures
arise due to interactions between the « particles, e.g., leading to
a 8Be resonance. These two types of structures are distinctly
different as the first is of static origin, whereas the second
carries information about the decay mechanism.

An early example of the effects of symmetries was found
in three-pion decays studied by C. Zemach [16]. Solely on the
grounds of Bose statistics and conservation of spin, isospin,
and parity, and assuming a nonpolarized initial state, he was
able to show that the transition matrix element takes on certain
general forms depending on the spin, isospin, and parity of the
system forcing the density to vanish in certain regions of the
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FIG. 1. (Color online) Density structures of the Dalitz plot for
sequential decays. The inscribed circle marks the boundary of the
kinematically allowed region.

Dalitz plot. No assumptions about the interactions involved
are needed except that they have to conserve isospin and
parity. Pions and « particles are both spin-zero bosons but
have opposite parities (negative and positive, respectively)
and, in contrast to o particles, pions possess a nonzero isospin
of I = 1. The formulations of Ref. [16] for three-pions can
readily be applied to 3« decays as long as we account for the
difference in parity and use the results for the totally symmetric
isospin state of I = 3.

The results are shown in Fig. 2. The natural parity states
[ = (=1)’] in the left column turn out to have rather few
nodes in the distributions due to symmetry constraints. In
contrast the unnatural parity states [ = (—1)’*!] in the right
column show many points and curves of vanishing probability.

These nodes and the conserved quantum numbers are
known to be present from population to detection. Obviously
many nodes and a characteristic pattern facilitate enormously
the spin-parity assignment of decaying resonances. Theoretical
predictions may also be deceivingly close to measurements
provided the correct symmetry constraints are obeyed.

It should be emphasized that other nodes in measured
distributions only signal structures of the decaying resonances
at intermediate or large distances. The relation to the small-
distance behavior, where the characteristic large amplitude
structure is present, can only be through models.

In this connection it is revealing to look at the free wave
functions obtained for three particles without interactions, but
with the correct symmetries [2,3] (referred to as democratic
decay in the literature). The hyperspherical angular solution
®(p, Q) for short-range potentials is identical for p = 0 and
p = oo. Thus, in this case the small- and large-distance struc-
ture cannot be distinguished and the measured distributions
would directly reflect the characteristic bulk structure at small
distance. If, furthermore, a number of nodes are present like
for the decay of '>C(17) this rather crude approximation is
successful although it basically only reflects the conserved
quantum numbers; see Fig. 3. This success is also to some
extent maintained for the >C(27, 47) decaying states where
the constraints are less severe than for 17, see Fig. 2.
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FIG. 2. Regions of the 3« Dalitz plot where the density must
vanish are shown in black. The vanishing is of higher order where
the black lines and dots overlap. The pattern for a spin J + 2n(n =
1,2,3,...) is identical to the pattern for spin J (provided J > 2)
except that the vanishing at the center is not required for spins >4.
The equilateral triangle of the Dalitz plots are not shown; see Fig. 1.

When only few constraints from symmetry are present the
effects of interactions and the related decay mechanisms are
more pronounced in the Dalitz plots.

IV. RESULTS FROM R MATRIX

We choose '?C states below the proton emission threshold
to illustrate the simulations obtained with the R-matrix
formalism. These states are only energetically allowed to decay
into three «-particles or by photon emission. For natural-parity
states the intermediate 8Be two-body state reached after
emission of one « particle can be any of the ®Be excited states.
The 07 state could then be expected to be the dominating decay
path with smaller contributions from 2*. The unnatural parity
states can in contrast not decay via the 3Be 0% state. The 2+
state is then expected to be the dominating decay path. The
47 state at much higher energy probably would be negligibly
small for the chosen low-lying '>C resonances. To have a
clean simulation we therefore select unnatural parity states
and ignore the 41 contribution. The structure and decays of
12C are recently investigated and described in [7,17-19]. The
2% energyis Ey, = 2.7 MeV above the threshold for separation
into two free o-particles and the width is I',, = 1.5 MeV.
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Qualitatively, the density of the Dalitz plot will have the
structure shown on Fig. 1. One « particle is emitted with
2/3 of the available energy E3;. — E,, while the energies of
the remaining two particles depend on the orientation of the
two-body decay relative to the trajectory of the first particle.
This gives rise to three straight lines running parallel to the
sides of the equilateral triangle at a distance of %(Eg, — Ey).
A finite width in the intermediate ®Be resonance will be
seen as a broadening of these lines into bands of finite
width. Their lateral structure depends on the resonance shape
and barrier penetration while the longitudinal structure is
determined by the angular correlations in the decay. Depending
on the position and width of the resonance the bands may
overlap leading to destructive or constructive interference in
accordance with the node structure discussed in Sec. III.

A. Dependence on R-matrix parameters

The 1" state in '>C appears at E3, = 5.43 MeV above the
threshold for three free a-particles with a partial width of
I'3, = 18.1 eV. This resonance is very narrow and represents
a successful example of an R-matrix analysis of a detailed and
accurate set of measured data. The small width implies that the
only important quantities are the two-body energy and width
measured in units of the three-body energy, i.e., E»,/E3, and
'y, / E3, that are known experimentally to be 0.497 and 0.276,
respectively.

We vary the two-body energy and width measured in units
of the three-body energy; see fig. 4. The Dalitz distribution
is then computed from Eq. (3) averaged over initial state
m states and squared, i.e., the probability for populating
different regions of the phase-space of three o particles. We
normalize the a-particle energies to the maximum allowed by
energy conservation. The picture is emission of one « particle
and occupation of the 2* state in ®Be that in turn decays
into two o particles. Then the relative angular momentum
between the first emitted o particle and ®Be is £, = 2. We also
give the single-o energy distribution obtained by projecting
on the vertical axis on the Dalitz plot. This distribution gets
contributions from all the three identical decay products.

In the lower left corner of Fig. 4 both the two-body energy
and width are rather small. The narrow peak at 0.55 arises
from emission of the first @ particle and the other broader

FIG. 3. (Color online) The computed dalitz distribution for decays of the '>C resonances with spin-parity 17,27, 4~, respectively. The
distributions are obtained with the lowest hyperspherical wave function with the correct angular momentum and parity. The coordinates are

y=E, and x =
distributions are shown as projections on the ordinate axis.

Eq1+2Ey) + 1-v3
7 2

with the energies normalized to the maximal possible o energy E, m.x = 2E3,/3. The single a-energy

054009-5



H. O. U. FYNBO et al.

PHYSICAL REVIEW C 79, 054009 (2009)

FIG. 4. (Color online) Dalitz

distributions from R-matrix analy-
sis for decay into three a-particles
of the 1% resonance in '>C at an
energy of E; = 5.43 MeV and a
partial width of about 18.1 eV. The
H i energies and widths of the interme-
! diate 2" resonance in ®Be are varied

in the simulations. E», / E3, is given

to the left and I",,/E3, to the right
in the panels. The single-« energy
distributions are shown as projec-
tions on the ordinate axis. The
coordinates are y = E,; and x =
Eat2ber 4 1oV3 with the energies

normalized to the maximal possible
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humps on both sides are from decay of ®Be. Increasing the
width and maintaining the two-body energy is shown in the
left panel of Fig. 4. The distribution of the first emitted
particle is now broadened but remaining at the same position
as the other two particles. The three-peak distribution becomes
rather pronounced. If we instead increase the energy of
the intermediate resonance by moving to the right in Fig. 4
the symmetric three-peak distribution emerges even when the
two-body width is small. Increasing the width with E,, ~ Ej3,
essentially leaves the distribution unchanged. The overall
conclusion is that the distribution is insensitive to the two-body
parameters when E,, /E3, is larger than about 0.5 depending
somewhat on I'3,/E3,.

The next unnatural parity state has J™ = 2~ with energy
E5;. =4.55 MeV above the threshold and a partial width
of I';; =260 keV. Then E,./E3 and I'./Es. are known
experimentally to be 0.60 and 0.33, respectively. For this
state complete kinematics data are still lacking. In this case
two relative angular momenta between the first emitted o-
particle and 8Be are possible, £, =1, 3. Again we vary the
two-body parameters in the R-matrix simulation and find
the distributions in Figs. 5 and 6 for £, = 1, 3, respectively.
There is a tendency for more oscillations for the highest
angular momentum. The lower left corner reveals the same
feature as for 1" of a narrow peak arising from emission
of the first o particle. This peak is smeared out as the

two-body width increases, and rather quickly traces of its
origin have disappeared. The distributions become insensitive
to the two-body parameters for all widths when E,, becomes
comparable to E3, and for smaller values of E», as soon as the
width is moderate compared to E3,.

We also investigated the unnatural parity state with J” =
4~ with energy E3, = 6.08 MeV and width I';, = 375 keV.
This state comes out naturally in three-body computations
but the experimental assignment is tentative. The values of
E»./Es3. and T'./E3. are 0.45 and 0.25, respectively. In
this case the two possible relative angular momenta between
the first emitted o particle and 8Be are ¢ y=3,5. The
corresponding distributions again display the tendency of more
oscillations for the highest angular momentum. The results of
varying the two-body parameters in the R-matrix simulation
are shown in Figs. 7 and 8 for the two values of the angular
momentum. These distributions quantitatively resemble those
of the 27 state with the same features of insensitivity when
either Ey, or I'p, are sufficiently large.

For all three cases Bose symmetry has a significant effect
on the distributions as discussed in detail for the 1T state
in Refs. [5,6]. This is also clear from Fig. 2 where each of
these states have nodes in significant parts of the Dalitz plot.
When either E;, or I',, are sufficiently large the Dalitz plots
are insensitive to E,, and I'p, and they are instead mainly
determined by the symmetry requirements.
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FIG. 5. (Color online) Dalitz

distributions from R-matrix analy-
sis for decay into three « particles
of the 2~ resonance in '>C at an
energy of E3 =4.55 MeV. The
energies and widths of the inter-
mediate 2% resonance in $Be are
varied. E,,/Es, is given to the left

and I',,/ E3, to the right in the pan-

els. The relative angular momenta
between the first a particle and ®Be
is £, = 1. The coordinates are y =
Eyiand x = E”‘LiE‘” + % with
the energies normalized to the max-
imal possible « energy E,max =
2E5, /3. The single-o energy dis-

tributions are shown as projections

on the ordinate axis.

B. The consistency of the concept of sequential decay

The R-matrix formalism applied to three-body decaying
systems inherently uses intermediate two-body structures
parametrized by energies and widths. Intuitively this is
appealing for narrow structures accessible by ordinary particle
emission. However, it becomes suspicious in two parameter
regions. First, when the width of the intermediate structure
corresponds to a short lifetime comparable to the time the first
emitted particle needs to move outside the interaction range
of the remaining two particles, then the second decay has
taken place before or during the first emission populating the
intermediate structure and the assumptions of R-matrix theory
break down as discussed in Sec. I B.

Second, when energy conservation prohibits population
of the intermediate structures, then explanations in terms
of tails of these resonances are invoked to maintain energy
conservation, but it does not explain the concept where an
inaccessible state is populated and subsequently decays. This
is the description independent of the width of the intermediate
state that as well could approach zero. Then it is obvious
that such a decay mechanism requires the concept of virtual
population but this is not employed in the rather classical R-
matrix formulation of two independent consecutive processes.

Interestingly our results in the previous subsection also
indicate when the R-matrix analysis is lacking sensitivity.
The insensitivity of the energy distributions toward parameter

variations immediately demonstrates that accurate parameter
values only can be deduced with care. Let us assume that the
resonance energy E;,. is attempted extracted from the data
set where E,, and I';, are known. If either E,, or I'p, are
too large the simulated distributions would match the data for
a large interval of Ej3, values. These two conditions are in
perfect agreement with the two suspicious parameter regions
mentioned above.

However, the insensitivity is only on the plots of probability
against single-o energy measured relative to the maximum
allowed. Because this maximum energy simply is two-thirds
of Ej, the largest measured single-« energy gives directly E3,
with corresponding accuracy. Thus an attempt to determine
E5, and I'y, from the R-matrix analysis and this measured
value of E3, could easily be very inaccurate. Fortunately such
determination is usually not attempted.

The condition of large E,, or I';, can be expressed quanti-
tatively by comparing the interaction range and the distance s,
the first emitted particles move before the remaining two-body
system decays. To estimate s, we multiply the velocity of the
emitted particle relative to the remaining two-body system and
the lifetime 7/ I',,. This gives

h 4(E3r — E2r) 7 fm E3r — E2r 1 MeV (5)
s, N — oA s
S 3m, VAN 1MeV Ty,
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FIG. 6. (Color online) Dalitz

distributions from R-matrix analy-
sis for decay into three « particles
of the 2~ resonance in '2C at an
energy of Es =4.55 MeV. The
energies and widths of the inter-
mediate 2% resonance in ®Be are
varied. E,,/Ej3, is given to the left

and I',, / E3, to the right in the pan-

ot 3 AF it 4t .

els. The relative angular momenta
between the first o particle and *Be
is £, = 3. The coordinates are y =
E,iandx = E‘XL?E‘” + 1%/5 with
the energies normalized to the max-
: imal possible « energy E,max =
. 2E5, /3. The single-o energy dis-

tributions are shown as projections

53 '

_0.1(')‘:
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on the ordinate axis.

where m, ~ A,m, is the mass of the first emitted particle
expressed in terms of neutron mass m, and nucleon number
A,. For low-lying resonances for light nuclei a rough estimate
is s, & 2/ Ty, that shows that the most decisive factor is
the value of the width of the intermediate resonance I',,. If
the criterion is s, > 4-10 fm (the radius of the constituent
particle plus the interaction range plus distance between
particles) we as a rule of thumb find must require at least that
Iy, < 0.2-0.5 MeV. For larger values of I',, the sequential de-
cay mechanism is ill defined. This is consistent with the above
conclusions found by variation of the R-matrix simulations.
When this condition is violated, direct and sequential
decays cannot be distinguished. This can be expressed by
saying that all decays are direct because the intermediate
structure has decayed before the first particle has left the
interaction region. Similar considerations were formulated
in an early article using 7-matrix calculations [20]. When
the condition is fulfilled this division is meaningful both
theoretically and experimentally. The analysis can be carried
out and the decay products can be kinematically selected
to come from an intermediate structure. More than one
sequential path may be possible for example through two-body
resonances in different subsystems. Each of these paths should
first fulfill the criterion. Second, it is necessary that the paths
are mutually orthogonal for the deduction of branching ratios
to be meaningful. The second condition is not obvious because

the angular-momentum coupling schemes can be very different
in different Jacobi systems, even when the total wave function
is the same. Orthogonality is then only assured by other
quantum numbers than angular momenta that almost inevitably
implies that the spatial extension prevent any overlap. We then
come back to the condition of sufficiently long lifetime.

V. RESULTS FROM THREE-BODY COMPUTATIONS

Breakup energy distributions for the three !>C resonances
are also computed in the three-body model described in
Sec. IT A. Details of the procedure and systematic results can
be found in Ref. [19]. The basic input is the two-body a-«
potential for each of the contributing partial waves. These
interactions are designed to reproduce the low-energy phase
shifts or the two-body resonances for the angular momenta
of the corresponding partial waves. In particular the 27
parameters reproduce roughly the energy and width of the
8Be resonance that has been used as the intermediate state in
the above R-matrix analyses.

A. Dependence on resonance parameters

Variations of the two-body energy and width and sub-
sequent computations of three-body decay require major
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FIG. 7. (Color online) Dalitz

distributions from R-matrix analy-
sis for decay into three a-particles
of the 4~ resonance in '?C at an
energy of E3 = 6.08 MeV and a
partial width of about 375 keV.
The energies and widths of the
intermediate 2* resonance in ®Be

are varied. E,,/E;, is shown the
left and Iy, /E5, in the right pan-

els. The relative angular momenta
between the first o particle and
8Beis ¢, = 3. The coordinates are
y=FEyandx = L‘j?“ + %
with the energies normalized to
the maximal possible o energy

E4 max = 2E5,/3. The single-« en-

ergy distributions are shown as
projections on the ordinate axis.

numerical work. To investigate the influence of the intermedi-
ate two-body structure with much less effort we varied instead
the three-body resonance parameters. This is possible within a
range of three-body energies by use of a three-body potential
of varying strength. Then an increasing energy implies that
the width also increases and the resonance condition cannot
be fulfilled at some point when the energy exceeds the effective
barrier height. These variations also imply that the changes of
the relative energy E,, / E3,- and width I, / E3, of the two-body
resonance are fully correlated as scaled by the same three-body
energy.

The method of complex rotation provides a rigorous
definition of sequential decay, i.e., stable population at large
distances of the adiabatic potential corresponding to the
intermediate two-body resonance. This state separates from all
other potentials by approaching the resonance energy, whereas
all other potentials converge toward zero. This state only
separates out for a rotation angle larger than 6,, as discussed in
Sec. II A. We show the breakup energy distributions in Figs. 9
and 10 for two rotation angles where the largest angle isolates
the population of the $Be(2*) resonance in a single adiabatic
potential. This contribution can then be excluded in contrast
to the small angle where this two-body resonance contribution
is distributed over many adiabatic potentials. Hence, for the
large rotation angle we include only the direct decay into the

three-body continuum. The fractions of sequential decay at
large distance are given in Table I for the different values of
Ej5, shown in Fig. 9.

For all three resonances the variations, amounting to about a
factor of two on both energy and width, produce only relatively
small but visible changes in the energy distributions. As for
the R-matrix simulations large width and large energy both
lead to less sensitivity of the distributions. With the realistic
resonance parameters the distributions reproduce the measured
results for the 17 state; see Refs. [7,19,21].

We next attempt to investigate the connection to the basic
assumption in the R-matrix formalism, i.e., the two-step
process of two consecutive sequential decays. For the 1T
state only one intermediate angular momentum coupling is
allowed (£, = 2) while two £, values are possible for both
2~ and 4~ For the same ®Be structure each ¢, corresponds
to one sequential decay possibility seen as two adiabatic
potentials with those quantum numbers remaining finite at
large distances. The three-body energy increases as we move
down in the Table I and the sequential decay probability
increases from essentially zero to almost 100% for all three
resonances. The three-body widths increase strongly with
three-body energy that indicates that the numerical accuracy
could be less than desired. The increasing fraction of sequential
decay is intuitively expected when the first particle can be
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TABLE 1. The probability Py, for populating the component
£, (relative angular momentum between one « particle and the
center-of-mass of the other two) at large distances in computations of
resonances with J” for >C for a complex rotation of angle § = 0.25.
The three-body resonance energy Es. and width I" are varied by
adjusting the strength of the Gaussian three-body potential. The
two-body energy E,. = 2.7 MeV of the *Be(2") is maintained.

JT  Ey/Es Ty /E; E; (MeV) I';(MeV) [, Pyeq
0.86 0.43 3.5 0.005 2 0.001
0.56 0.28 5.4 0.09 2 0.12
1+
0.39 0.19 7.8 1.15 2 0.89
0.35 0.17 8.6 1.85 2 0.96
1 0.5 3.0 0.02 1 0.03
3 0.0005
0.75 0.38 4.0 0.11 1 0.19
3 0.001
’-
0.67 0.33 4.5 0.57 1 0.36
3 0.06
0.6 0.30 5.0 1.16 1 0.76
3 0.1
0.6 0.30 5.0 0.21 3 0.03
5 0.0003
0.5 0.25 6.0 1.04 3 0.71
5 0.01
4
046 023 6.5 1.83 3 097
5 0.02
0.43 0.21 6.9 3.38 3 0.85
5 0.007

emitted with a sufficiently large kinetic energy compared to
the height of the corresponding barrier.

In Fig. 10 the results omitting these, sometimes large,
contributions from sequential decay are shown for the large
rotation angle. The distributions are qualitatively very similar
to the results for the small rotation angle where the sequential
decay is distributed over many adiabatic potentials. The
explanation within model quantities is that essentially only
one adiabatic potential contributes to the direct decay. The
asymptotic large-distance angular wave function correspond-
ing to this potential is almost independent of rotation angle.
Because large distances determine the Fourier transform the
energy distribution is independent of rotation angle.

That one angular wave function dominates at large distances
is rigorously seen for short-range interactions where the
decoupled hyperspherical wave functions asymptotically are
approached. Including the repulsive Coulomb interaction
could lead to strong coupling at large distance between
the adiabatic potentials. However, the diagonal part of the
Coulomb interactions are included in the adiabatic potentials.
Furthermore, we try to use a sufficiently large basis to have a
stable region of hyperradii where the asymptotics is correctly
reproduced. The basis size refers to both the number of
adiabatic potentials and the basis used for each of the Faddeev

PHYSICAL REVIEW C 79, 054009 (2009)

components. This means that an even larger hyperradius would
require a larger basis to reproduce the same result. To be
economic we search for a minimum basis and a stable range
of hyperradii outside the interaction region [22]. Therefore
we believe that the result of one adiabatic potential is at
least semiquantitatively correct, but more contributions could
modify the shape of the direct part of the decay. This is possible
but not easily tested because level crossings are present in the
critical region where the two-body resonance still couples to
the other adiabatic potentials.

B. The concept of sequential decay in three-body computations

In principle the procedure should be to compute the direct
decay distribution from the complex scaled wave function and
add the sequential contribution treated separately. Comparison
of the results of the two rotation angles in Figs. 9 and 10
combined with the sequential decay probability in Table I
immediately allows the conclusion that sequential and direct
decays must be rather similar when a substantial part can
be classified as sequential. Otherwise the energy distributions
would depend much more on the rotation angle. The procedure
could also be formulated as rotating the coordinates in the
resonance wave function back to the real axis, then using
Fourier transform and getting the momentum distributions
that, after suitable integration over nonobserved quantities,
provide the observable energy distributions. This involves
numerical rotation across the singularities of the two- and
three-body resonance poles, and is in general not possible
without analytic expressions for the wave functions. However,
when asymptotic large-distance stability is reached the total
wave functions are found as hyperradial-independent linear
combinations of the angular wave functions corresponding to
the adiabatic potentials. Because the rotation involves only the
hyperradius we have directly rotated back to the real axis for
large distances. The Fourier transform depends only on the
large-distance properties and we have with these assumptions
in principle found the energy distributions.

However, the asymptotic two-body resonance substructure
is only easily rotated back to the real axis and Fourier
transformed when the Breit-Wigner expansion is used. The
Breit-Wigner approximation is often much too inaccurate
as seen in all the above R-matrix simulations. The same
difficulty is not present for the other three-body wave functions
corresponding to direct decay. Here the energy distributions
arise almost entirely from the angular wave functions dis-
tributing the available energy between the three particles. The
Breit-Wigner smearing can easily be included but has only
marginal influence. Improving the treatment of the two-body
sequential part necessarily must account for the asymmetries
introduced by considering energies away from the resonance
center. This involves detailed probabilities for populating the
intermediate decaying structure as function of energy. In
turn this involves the shorter distances where the couplings
between the two-body resonance substructure and the other
three-body states are strong. Then we are back to attempts to
separate different degrees of freedom at short distances that is
impossible when I',, is too large, as seen from Eq. (5).
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FIG. 8. (Color online) Dalitz

distributions from R-matrix analy-

sis for decay into three o-particles
of the 4~ resonance in '*C at an
energy of E; = 6.08 MeV and a
partial width of about 375 keV. The
energies and widths of the inter-
mediate 2% resonance in ®Be are
varied in the simulations. E»,/E3,

is given to the left and 5, /E3, to

the right in the panels. The relative
angular momenta between the first
o particle and ®Be is ¢, = 5. The
coordinates are y = E,; and x =
Eart2bap % with the energies
normalized to the maximal pos-

sible o energy Eymiwx = 2E5./3.

The single-o energy distributions

are shown as projections on the
ordinate axis.

Thus, to sum up, separation of the degrees of freedom
related to sequential and direct decays is in principle possible
when Ej, is large compared to I'p.. Then the Breit-Wigner
approximation for the sequential part is fairly accurate.
Examples of this are rather abundant among the natural
parity states of '>C. We have in earlier publications discussed
prominent examples like the Hoyle state and the second 0
resonance in '2C [7,19]. When Ej, is too small compared to
I',, distinction is meaningless because the degrees of freedom
are completely entangled. All the resonance decay should
simply be computed as direct three-body decay. This is most
efficiently and accurately achieved by choosing the smallest
possible rotation angle larger than 6s,. Larger rotation angles,
in principle allowing for separation of the sequential decay
branch, should not be used because a proper treatment would
look like direct decay for these large widths.

VI. RELIABILITY OF INTERPRETATIONS

Let us assume we have data from measurements and
results from model computations; this is presently the case
for the 17 state discussed earlier. We want to extract as much
information as possible about the decaying system, i.e., about
initial structure and reaction or decay mechanisms. The data
are first analyzed using the R-matrix formulations. When

the two-body parameters (resonance energies, widths, and
penetrabilities) are known the three-body resonance energies
and widths are deduced along with the initial population as
function of energy. This may be a difficult or impossible
task with broad overlapping three-body resonances. There
may not be a unique solution but only constraints on the
parameters.

One of the deduced set of quantities is the branching
ratios for the different decay paths defined by the two-body
channel. This is only possible in some limits. Special care is
necessary, and even when a set of parameters match the data
the solution may be rather meaningless. To understand this
we can vary one of the two-body resonance energies E,, and
the related width I',,. As seen from Eq. (5) and demonstrated
in Figs. 4, 5, and 7, the resulting energy distributions remain
essentially unchanged when E,, or I'y, are too large. Thus it is
impossible to distinguish between decay paths characterized
by too large but different values of E,, and I';,. Such branching
ratios are therefore meaningless and so is the deduced decay
mechanism. In general it is most likely that the decay is much
better described as direct decay into the three-body continuum.
This does not mean that the data cannot be described by
sets of two-body parameters. The meaning is rather that
many sets of two-body parameters are equally good and the
two-body channels are effectively smeared out over three-body
continuum states.
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FIG. 9. (Color online) Dalitz
distributions from full computa-

tion for direct decay into three

a-particles of the 17,27, 47 res-
onances in '2C at the mea-
sured energies of E£3, = 5.43, 6.08,
4.55 MeV, respectively (left to right
columns). These energies are var-
ied by change of the strength of the
three-body potential that induces

changes in the ratios E»,/Es3, and

Iy, /E5.. Values of E,./E; are
given to the left and I'p./E3, to
the right in the panels. The rotation
angle is 6 = 0.1. The coordinates
are y=E, and x = L‘\%Eﬂ +

=5 with the energies normalized

to the maximal possible o energy

Ey max = 2E3, /3. The single-o en-
ergy distributions are shown as
projections on the ordinate axis.

This ambiguity in the data analysis is parallel to the distinc-
tion of decay mechanisms attempted by use of models. The
complex scaling method provides in principle a mathematical
definition of sequential and direct decay. However, the closer
inspection in the previous sections reveals the same type of
ambiguity as seen for data analysis. If E,, is comparable to
or larger than the three-body resonance energy only virtual
sequential decay is possible. This means that the three-body
resonance structure at intermediate distances resembles two
particles in a resonance while the third particle is farther away.
When approaching the edge of the barrier the two particle
must separate to conserve energy in the decay. The decay then
resembles direct decay at these relatively large distances but the
preferred path exploited the two-body attraction to minimize
the barrier and hence maximize the decay probability. The
decay products are usually better described as direct decay
provided the necessary large distance properties can be
accurately computed.

If I'y, is relatively large it may still be possible to define
a sequential decay probability through population at large
distance of the complex scaled two-body resonance. However,
this structure is defined as one pole of the Hamiltonian at
a complex energy. Any deviation from this Breit-Wigner
shape would be very difficult to account for. Furthermore,
the large width implies a substantial extrapolation in the

analytical continuation from the known properties on the
real axis of the Hamiltonian. This is a major source of
uncertainty for phenomenologically derived potentials as the
strong interaction. In any case the large width also implies that
the two-body structure is smeared out and the decay would
resemble direct decay. It is then conceptually better, much
simpler, and more accurate to describe as direct decay into the
three-body continuum.

We have separated the process into population of a reso-
nance, and its subsequent decay independent of the preceding
history. This presupposes that a resonance is defined. Using
complex scaling again assumes the one-pole approximation
for each resonance, i.e., it would be difficult to improve
on the Breit-Wigner approximation for the three-body reso-
nance. That goal could be pursued without complex scaling
but then the resonance definition has to be reconsidered and
in addition the numerical treatment would be much more
difficult already because many energies individually must be
treated.

The goal for data analysis of measurements is to extract
information about the decaying structure and the decay mech-
anism. The computations should provide matching results
and derived model interpretation. This can be complicated
by interference between different decay paths. The observable
large-distance properties result from the dynamic evolution
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FIG. 10. (Color online) Dalitz
distributions from full computation

for direct decay into three o parti-

cles of the 17,27, 4~ resonances
in '2C at the measured energies
of E3. = 5.43,6.08, 4.55 MeV, re-
spectively (left to right columns).
These energies are varied by
change of the strength of the three-
body potential that induces changes

in the ratios E,,/E5, and ', /E5,.

Values of E,./E; are given to
the left and I'p,/Es, to the right
in the panels. The rotation angle
is 8 = 0.25. Only direct decay is
shown. The coordinates are y =
Eqand x = fef2be 4 1243 yigh
the energies normalized to the max-

imal possible o energy E,mix =

2E5. /3. The single-a energy dis-
tributions are shown as projections
on the ordinate axis.

that may have reorganized the small-distance structure. This
evolution has to maintain the conserved quantum numbers
but otherwise the small-distance structure is not directly
observable.

VII. SUMMARY AND CONCLUSIONS

The observable momentum distributions from decay of
three-body resonances are analyzed by use of R-matrix
simulations. The inherent assumptions are that the decays
can be described by two successive two-body emissions.
The intermediate two-body structures reached after the first
emission are characterized by their energies, E,,, and widths,
I",. We briefly sketch the method exemplified by 3o emission
from various resonances of '>C. Because « particles are bosons
all these states must be symmetric with respect to interchange
of pairs of « particles. This symmetry leading to interference
effects is important and accounted for in present day R-matrix
applications.

The momentum distributions after three-body decay are
calculated by R-matrix simulation as functions of the two-body
resonance parameters. When I',, is small and E5, less than the
energy of the three-body resonance the first emitted particle
exhibit the corresponding Breit-Wigner distribution while the
secondary emission produce broader distributions depending

on the angular-momentum quantum numbers. As either [,
or E,, increase the distributions become less sensitive to their
specific values.

Genuine three-body calculations are also carried out for
the same systems by use of the hyperspherical adiabatic
expansion method. The essential assumption is that both two-
and three-body resonances are defined as complex poles in
the corresponding S matrices. In practice it is then difficult
to go beyond the Breit-Wigner approximation for these
resonances. The rigorous distinction between sequential decay
via intermediate two-body states and direct decay into the
three-body continuum becomes less and less meaningful both
when I',, increases and when E,, increases toward and above
Ej5,. This precisely matches the insensitivity of the R-matrix
analysis to these two-body parameters. The decays are then
both conceptually and in practice much better described as
direct decay.

We emphasize that the correct quantum statistics must be
employed in R-matrix simulations, i.e., fermion or boson
(anti-) symmetry. These symmetries are automatically in-
cluded in the quantum mechanical three-body computations.
We show that conserved quantum numbers as total angular
momentum and parity directly are reflected in the Dalitz plots.
This is most clearly seen in the probability distributions as
nodes that turn out to be more abundant for unnatural than
for natural parity states. These nodes are maintained from

054009-13



H. O. U. FYNBO et al.

small to large distance in the coordinate wave function and
can therefore be characterized as static properties.

In general the measured momentum distributions reveal
information about the initial structure of the decaying system
that is tempting but misleading to interpret as a small-distance
structure. It is misleading because a resonance is a quantum
state where small and large distances inherently are linked
together. Furthermore, the measurements reveal more directly
the large-distance asymptotic structure. Extracting information
of both structure and decay mechanism then require model
interpretations. The R-matrix simulation may indicate specific
branching ratios between several decay paths. Such results are
reliable only when the energies and widths of the intermediate
states are relatively small. Otherwise the results are insensitive
to which decay path is chosen.

The pattern of nodes in the momentum distributions is
strongly indicative of which angular momentum and parity
should be attached to the decaying state. When many such
nodes are present the corresponding symmetries control quali-
tatively the behavior of the measured distributions. Achieving
better quantitative reproduction then requires substantially
improved computations. The effects of interactions or the
decay mechanism are not easily detected. This seems to be

PHYSICAL REVIEW C 79, 054009 (2009)

more frequent for unnatural parity states. When only very
few or no nodes are present the Dalitz plots are much more
indicative of the decay mechanism. This seems to be relevant
for decays of natural parity states.

In summary, we compare R-matrix simulations with results
from three-body computations. The R-matrix formulation
inherently assumes two successive two-body emissions ex-
pressed as sequential decays. The corresponding interpreta-
tions in terms of sequential decays are meaningful only when
energies and widths of the intermediate structures are small.
This is also seen from three-body calculations that show that
the large-distance asymptotic structures are decisive for the
momentum distributions after decay. Thus, except for effects
of conserved quantum numbers, small-distance many-body
structure and dynamic evolution are both crucial for reliable
computations. In conclusion, not all that fits make sense;
parameter sensitivity combined with meaningful physical
interpretation is also indispensable.
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