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Quantum Monte Carlo calculation of the equation of state of neutron matter
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We calculated the equation of state of neutron matter at zero temperature by means of the auxiliary field
diffusion Monte Carlo (AFDMC) method combined with a fixed-phase approximation. The calculation of the
energy was carried out by simulating up to 114 neutrons in a periodic box. Special attention was given to reducing
finite-size effects at the energy evaluation by adding to the interaction the effect due to the truncation of the
simulation box, and by performing several simulations using different numbers of neutrons. The finite-size effects
due to kinetic energy were also checked by employing the twist-averaged boundary conditions. We considered
a realistic nuclear Hamiltonian containing modern two- and three-body interactions of the Argonne and Urbana
family. The equation of state can be used to compare and calibrate other many-body calculations and to predict
properties of neutron stars.
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I. INTRODUCTION

The equation of state of nuclear matter and its properties
plays a central role in the modeling of neutron stars [1].
The density in the star ranges from a small fraction of
the nuclear saturation density, ρ0 = 0.16 fm−3, to several
times its value, which is found in the center of heavy
nuclei. At such extreme conditions, no phenomenological data
determined from experiments are available, and because the
matter inside a neutron star is closer to neutron matter than to
symmetric nuclear matter, heavy-ion collision experiments do
not substantially constrain the equation of state [2]. A realistic
calculation of the equation of state of neutron matter is then
particularly challenging in both many-body nuclear physics
and astrophysics.

The equation of state of neutron matter can in principle
be computed in the framework of many-body theories using
a bare interaction. A common alternative is represented by
effective Skyrme forces. However, the resulting equation of
state strongly depends on the parameters of the effective
interaction used, even in the low-density regime [3]. At present,
there are a wide range and type of Skyrme interactions.
However, their nonrealistic character impairs their ability to
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reliably calculate the properties of neutron stars [4]. More
accurate many-body techniques are then needed to perform
predictive calculations.

A microscopic calculation of neutron matter starting from a
nonrelativistic nucleon-nucleon and three-nucleon interaction
is both challenging and of great relevance. Variational tech-
niques based on correlated basis functions are good candidates
for solving for the ground state of neutron matter. The
operatorial structure of the nuclear Hamiltonian and the strong
correlations induced by the high density make these techniques
hard to use. The energy evaluation using the correlated basis
function theory is usually performed by solving the Fermi
hyper-netted chain (FHNC) equations [5] neglecting many
elementary diagrams. In addition, the operatorial structure of
the Hamiltonian leads to additional approximations, such as
the single operator chain (SOC) approximation, because of the
noncommutativity of the terms entering in the variational wave
function. Therefore the resulting equation of state contains, in
principle, uncontrolled approximations which may be partially
corrected by computing the energy exactly up to a few first
orders in the cluster expansion [6].

Despite the progress of the last several years in the
determination of sophisticated two- and three-nucleon in-
teractions, large discrepancies among different calculations
of nuclear and neutron matter are still present. Quantum
Monte Carlo techniques based on projection can be very
accurate for calculating the ground state and low-lying excited
states of nuclei. In particular, the Green’s function Monte
Carlo (GFMC) method was employed to fit the three-nucleon
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interaction form in nuclei up to A = 8 [7] and then used to
test the nuclear Hamiltonian up to the 12C ground state [8]. At
present, the huge number of required numeric operations limits
the applicability of this method to only about 14 neutrons [9].

The auxiliary field diffusion Monte Carlo (AFDMC)
technique [10] combined with a fixed-phase approximation
was employed to predict properties of nuclei in very good
agreement with the GFMC [11] and stressed the important
limitations of other many-body theories used in nuclear matter
calculations [12].

In this work, we present an accurate evaluation of the
equation of state of neutron matter using realistic two- and
three-nucleon interactions (the Argonne v′

8 and Argonne v18

combined with Urbana-IX [13]). The computed equation
of state can be used as a benchmark for other many-body
techniques.

The plan of the paper is the following. In the next section,
we describe the structure of the nuclear Hamiltonian we used;
in Sec. III, we briefly review the AFDMC method and explain
the fixed-phase approximation. The results are presented in
Sec. IV, and some conclusions are given in the last section.

II. HAMILTONIAN

Properties of a generic nuclear system can be studied
starting from the nonrelativistic Hamiltonian

H = − h̄2

2m

∑
i

∇2
i +

∑
i<j

vij +
∑

i<j<k

Vijk, (1)

which includes the kinetic energy operator, a two-nucleon
interaction vij , and a three-nucleon interaction Vijk .

The nucleon-nucleon interactions are usually dependent
on the relative spin and isospin states of the nucleons and
therefore written as a sum of several operators. The coefficients
and radial functions that multiply each operator are adjusted
by fitting experimental scattering data, and the type and
number of these operators depends on the interaction. A
large amount of empirical information about the nucleon-
nucleon scattering problem has been accumulated. In 1993,
the Nijmegen group analyzed all nucleon-nucleon scattering
data below 350 MeV published in physics journals between
1955 and 1992 [14]. Nucleon-nucleon interaction models that
fit the Nijmegen database with a χ2/Ndata ∼ 1 are called
“modern” and include the Nijmegen models [15] (Nijm93,
Nijm I, Nijm II, and Reid-93), the Argonne models [16,17],
and the CD-Bonn [18]. However, all of these interactions,
when used alone, underestimate the triton binding energy,
suggesting that the contribution of a three-nucleon force is
essential to reproducing the physics of nuclei.

The most sophisticated Argonne interaction is the Argonne
v18 [16] potential, written as a sum of 18 operators. However,
we often consider another interaction, the Argonne v′

8 [17]
that is a simplified version of Argonne v18; it contains only
eight operators, and the prime symbol indicates that such
potential is not just a simple truncation of Argonne v18 but
also a reprojection, which preserves the isoscalar part in all S

and P partial waves as well as in the 3D1 wave and its coupling
to 3S1. The Argonne v′

8 is a bit more attractive than Argonne
v18 in light nuclei by about 0.5 MeV per nucleon [13], but its

contribution is very similar to Argonne v18 in neutron drops,
where the difference is about 0.06 MeV per neutron [7].

The Argonne potential between two nucleons i and j is
written in the coordinate space as a sum of operators

vij =
n∑

p=1

vp(rij )Op

ij , (2)

where n is the number of operators, which depends on the
potential, vp(r) are radial functions, and rij is the interparticle
distance.

The eight operators included in Argonne v′
8 give the largest

contributions to the nucleon-nucleon interaction. The first
six of them come from the one-meson exchange between
nucleons, while the last two terms depend on the velocity
of nucleons and give the spin-orbit contribution. These eight
operators are

O
p=1,8
ij = (1, σ i · σ j , Sij , Lij · Sij ) × (1, τ i · τ j ), (3)

where Sij is the tensor operator

Sij = 3(σ i · r̂ij )(σ j · r̂ij ) − σ i · σ j , (4)

Lij is the relative angular momentum of couple ij

Lij = 1

2i
(r i − rj ) × (∇i − ∇j ), (5)

and Sij is the total spin of the pair

Sij = 1
2 (σ i + σ j ), (6)

with both Lij and Sij divided by h̄ to make them unitless.
In modern interactions, these eight operators are the

standard ones required to fit S- and P -wave scattering data
in both triplet and singlet isospin states.

The three-nucleon interaction contribution is mainly at-
tributed to the possible � intermediate states that an excited
nucleon could assume after and before exchanging a pion with
other nucleons. This process can be written as an effective
three-nucleon interaction, and its parameters are fit to light
nuclei [7,19] and eventually to properties of nuclear matter,
such as the empirical equilibrium density and the energy at
saturation [20]. The three-nucleon interaction must accompany
the two-nucleon interaction and the total Hamiltonian studied.

The Urbana-IX three-nucleon interaction used in our
calculation has the form

Vijk = V2π + VR. (7)

The Fujita-Miyazawa term [21] is spin-isospin dependent:

V2π = A2π

∑
cyc

[
{Xij ,Xjk{τi · τj , τj · τk}

+ 1

4
[Xij ,Xjk][τi · τj , τj · τk]

]
, (8)

where

Xij = Y (mπrij )σ i · σ j + T (mπrij )Sij ,

Y (x) = e−x

x
ξY (r),
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T (x) =
(

1 + 3

x
+ 3

x2

)
Y (x)ξT (r),

ξY (r) = ξT (r) = 1 − e−cr2
. (9)

The phenomenological VR part is

V R
ijk = U0

∑
cyc

T 2(mπrij )T 2(mπrjk). (10)

For neutrons, the commutator terms in Eq. (8) are zero, and
each of the anticommutator terms has only spin operators for
two of the three neutrons.

The A2π term of Urbana-IX was originally fitted, along
with the Argonne v18 parameters, to reproduce the triton and α

particle binding energy, while the U0 strength was adjusted to
obtain the empirical equilibrium density of nuclear matter [22].
However, while the ground state of light nuclei can be exactly
solved with few-body techniques, the determination of the
equation of state of symmetric nuclear matter can be evaluated
only using many-body techniques that contain uncontrolled
approximations.

III. METHOD

A. Diffusion Monte Carlo

The auxiliary field diffusion Monte Carlo method is an
extension of the usual diffusion Monte Carlo to deal with
Hamiltonians that are spin-isospin dependent. The diffusion
Monte Carlo method [23,24] projects out the ground-state
properties by starting from a trial wave function not orthogonal
to the true ground state.

Consider a generic trial wave function ψT expanded over a
set {φn} of eigenstates of the Hamiltonian:

ψT (R) = ψ(R, 0) =
∑

n

cnφn(R). (11)

The propagation in imaginary time τ is given by

ψ(R, τ ) =
∑

n

cne
−(H−E0)τ φn(R), (12)

where E0 is a normalization factor, and R represent the
spatial coordinates of the system. In the limit τ → ∞, ψ(R, τ )
approaches the lowest eigenstate φ0 with the same symmetry as
ψ . The evolution can be done by solving the integral equation

ψ(R, τ ) =
∫

G(R, R′, τ )ψ(R′, 0)dR′, (13)

where the wave function is described with a set of Nw

configurations called “walkers” as follows:

〈R|ψ〉 = ψ(R) ∼=
Nw∑
k=1

〈R|Rk〉〈Rk|ψ〉 (14)

and

〈R|Rk〉 = δ(R − Rk). (15)

The kernel G(R, R′, τ ) is the Green’s function of the system
and can be expressed as the matrix element

G(R, R′, τ ) = 〈R|e−(H−E0)τ |R′〉. (16)

By considering a generic Hamiltonian and the Trotter de-
composition, the form of the Green’s function in the small
imaginary time-step limit �τ → 0 is

G(R,R′,�τ ) ≈ exp

[
−V (R) + V (R′)

2
�τ

]
G0(R,R′,�τ ),

(17)

where G0 is the Green’s function of the noninteracting system

G0(R, R′, τ ) =
(

m

2πh̄2τ

) 3A
2

exp

[
−m|R − R′|2

2h̄2τ

]
, (18)

and the factor due to the interaction plus the trial eigenvalue ET

is the normalization of the Green’s function factor computed
over the time interval τ :

w = exp

[
−

(
V (R) + V (R′)

2
− ET

)
�τ

]
. (19)

The integral of Eq. (13) can be solved in a Monte Carlo way.
At each time-step, all walkers are moved with the diffusion
term of the free Green’s function G0, so that for each walker,
a new set R′ of spatial coordinates are generated according to

R′ = R + η, (20)

where R is the old configuration, and η is a vector of random
numbers with probability density G0.

The normalization of Eq. (19), translated into a weight of
the walker, is sampled using the branching technique in which
w gives the probability of a configuration to multiply at the
next step. Computationally, this is implemented by weighting
estimators according to w, and generating from each single
walker a number of replicas

n = [w + ξ ], (21)

where ξ ∈ [0; 1] is a random number and [x] means the integer
part of x.

The infinite imaginary-time limit is reached by iterating this
process for a sufficient total time τ = n�τ .

B. Auxiliary field diffusion Monte Carlo

In nuclear Hamiltonians, the potential contains quadratic
spin and isospin and tensor operators, so the many-body wave
function cannot be written as a product of single-particle spin-
isospin states.

For instance, let us consider the generic quadratic spin
operator σ i · σ j where the σ are Pauli’s matrices operating
on particles. It is possible to write

σ i · σ j = 2P σ
ij − 1, (22)

where P σ
ij interchanges two spins, and this means that the wave

function of each spin-pair must contain both components in
the triplet and singlet spin state [25,26]. By considering all
possible nucleon pairs in the systems, the number of possible
spin states grows exponentially with the number of nucleons.

Thus, to perform a diffusion Monte Carlo calculation with
standard nuclear Hamiltonians, it is necessary to sum over all
the possible single-particle spin-isospin states of the system to
build the trial wave function used for propagation. This is the
standard approach in GFMC calculations for nuclear systems.
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The idea of AFDMC is to rewrite Green’s function in
order to change the quadratic dependence on spin and isospin
operators to a linear dependence by using the Hubbard-
Stratonovich transformation.

For neutrons τ i · τ j = 1, so that the isoscalar-spin opera-
tors of the Hamiltonian can be recast in a more convenient
form,

V =
∑
i<j

6∑
p=1

vp(rij )O(p)(i, j )VSI + VSD

= VSI + 1

2

∑
iα,jβ

σiαA
(σ )
iα,jβσjβ, (23)

where Latin indices label nucleons, Greek indices label
Cartesian components, and

VSI =
∑
i<j

[v1(rij ) + v2(rij )], (24)

is the spin-isospin independent part of the interaction. The 3A

by 3A matrix A(σ ) contains the interaction between nucleons
of other terms:

A
(σ )
iα,jβ = [v3(rij ) + v4(rij )]δαβ

+ [v5(rij ) + v6(rij )]
(
3r̂α

ij r̂
β

ij − δαβ

)
. (25)

The matrix A is zero along the diagonal (when i = j ), to
avoid self-interaction, and is real and symmetric, with real
eigenvalues and eigenvectors given by∑

jβ

A
(σ )
iα,jβψ

(σ )
n,jβ = λ(σ )

n ψ
(σ )
n,iα. (26)

The matrix A(σ ) has n = 1, . . . , 3A eigenvalues and eigenvec-
tors. We can then define a new set of operators written in terms
of eigenvectors of the matrix A:

O(σ )
n =

∑
jβ

σjβψ
(σ )
n,jβ . (27)

The spin-dependent part of Eq. (23) becomes

VSD = 1

2

3A∑
n=1

O(σ )2
n λ(σ )

n , (28)

and the corresponding propagator is then

exp

[
−1

2

∑
n

O(σ )2
n λ(σ )

n �τ

]
. (29)

At first order in �τ , this is equivalent to

∏
n

exp

[
−1

2
O(σ )2

n λ(σ )
n �τ

]
. (30)

Each factor can be linearized with respect to the operators O

by using the Hubbard-Stratonovich transformation

exp

[
−1

2
λÔ2

]
= 1√

2π

∫ ∞

−∞
dx exp

[
−x2

2
+ √−λxÔ

]
.

(31)

Green’s function then becomes

G(R, R′,�τ )

=
(

m

2πh̄2�τ

) 3A
2

exp

[
−m|R − R′|2

2h̄2�τ

]
exp [−VSI(R)�τ ]

×
3A∏
n=1

1√
2π

∫
dxn exp

[
−x2

n

2

]
exp[

√
−λn�τxnOn].

(32)

The newly introduced variables xn, called “auxiliary fields,”
are sampled to evaluate the integral of Eq. (32). For a spin
state given by a product of single-particle spin functions, the
linearized Green’s function has the effect of changing the spin
state by independently rotating the spin of each single nucleon.

The sampling of auxiliary fields to perform the integral of
Eq. (31) eventually gives the same effect as the propagator
with quadratic spin operators acting on a trial wave function
containing all the possible good spin states. The effect of the
Hubbard-Stratonovich is then to reduce the dependence of
the number of operations needed to evaluate the trial wave
function from exponential to linear in the number of nucleons.
The price to pay is the additional computational cost due to the
diagonalization of A matrices and the sampling of the integral
over auxiliary fields.

Sampling of auxiliary fields can be achieved in several
ways. The most intuitive one, in the spirit of Monte Carlo
sampling, is to consider the Gaussian in the integral of Eq. (31)
as a probability distribution. The sampled values are then used
to determine the action of the operators on the spin part of
the wave function. This is done exactly as in the diffusion
process. It is possible to use other techniques to evaluate the
integral (e.g., with the three-point Gaussian quadrature [27]),
but results must be equivalent after the integration.

The method used to include the spin-orbit and three-nucleon
interaction in the propagator and a detailed description of the
AFDMC method can be found in Refs. [28–30].

C. Importance sampling

To reduce the variance of estimators, importance sampling
is required. In practice, a diffusion Monte Carlo calculation is
performed using a Green’s function modified as follows:

G̃(R, R′,�τ ) = ψI (R′)
ψI (R)

G(R, R′,�τ ). (33)

The so-called importance function ψI in the above equation
is often the same as that used for the projection of the energy
and is evaluated at the walker configuration. More precisely,
we define

ψI (R) = 〈ψI |R〉. (34)

In this case, the distribution function that is sampled in the
imaginary time converges to the quantity

f (R, τ → ∞) = ψI (R)φ0(R). (35)
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The propagator becomes a shifted Gaussian with a modified
weight

G0(R, R′,�τ ) =
(

1

2πD�τ

) 3A
2

× exp

⎡
⎣−

∣∣R − R′ + D�τ
∇ψI (R)
ψI (R)

∣∣2

2D�τ

⎤
⎦ ,

w = exp

[
−

(
EL(R) + EL(R′)

2
− ET

)
�τ

]
,

(36)

where D = h̄2/m is the diffusion constant, and

EL(R) = − h̄2

2m

∇2ψI (R)

ψI (R)
+ V (R)ψI (R)

ψI (R)
(37)

is the local energy of the system. The additional term in the
Gaussian is often called “drift”, so each walker’s configuration
is diffused according to

R′ = R + D�τd + η, (38)

where the quantity

d = ∇ψI (R)

ψI (R)
(39)

is the drift term, and η is a Gaussian random vector.
Importance sampling can also be included in the Hubbard-

Stratonovich transformations that rotate nucleon spinors. For
auxiliary fields, importance sampling is achieved by “guiding”
the rotation given by each On operator. More precisely, one
can consider the following identity:

−x2
n

2
+

√
−λn�τxnOn

= −x2
n

2
+

√
−λn�τxn〈On〉 +

√
−λn�τxn(On − 〈On〉),

where the mixed expectation value of the operator (see the
next subsection for details) is evaluated in the old spin
configuration:

〈On〉 = 〈ψI |On|R, S〉
〈ψI |R, S〉 . (40)

This can be implemented by shifting the Gaussian used to
sample auxiliary fields and considering the extra terms in the
weight for branching, that is,

exp
[−x2

n/2 +
√

−λn�τxnOn

]
= exp[−(xn − x̄n)2/2] exp[

√
−λn�τxnOn]

× exp
[
x̄nxn − x̄2

n/2
]
, (41)

where

x̄ =
√

−λn�τ 〈On〉. (42)

The additional weight term in Eq. (41) can also be included as
a local potential, so it becomes

exp

[
−〈ψI |V |R, S〉

〈ψI |R, S〉 �τ

]
. (43)

By combining the diffusion, the rotation, and all the additional
factors, it is possible to write an explicit propagator

G(R,R′,�τ ) = G0(R,R′,�τ ) exp

[
−

(
− h̄2

2m

∇2|ψI (R,S)|
|ψI (R,S)|

+ 〈ψI |V |RS〉
〈ψI |RS〉 − E0

)
�t

]

× ψI (R′, S)

ψI (R, S)

|ψI (R, S)|
|ψI (R′, S)| , (44)

where the drift term is

d = ∇|ψI (R, S)|
|ψI (R, S)| . (45)

D. Computation of expectation values

The projected walker distribution obtained with the
AFDMC is used to compute expectation values. For a generic
operator O in the limit τ → ∞, the “mixed” expectation value
is computed as

〈O〉mix = 〈φ0(R)|O|ψT (R)〉
〈φ0(R)|ψT (R)〉 . (46)

We are interested in the expectation value over the ground state
φ0. Assuming that ψT is a good approximation of the ground
state, a better estimate of the ground-state expectation value
can be obtained by combining the variational Monte Carlo and
the diffusion Monte Carlo estimators in this way:

〈O〉 = 2〈O〉mix − 〈O〉v, (47)

where 〈O〉v is the expectation value computed over the
variational wave function ψT used as trial wave function.

The evaluation of the energy of the system is a particular
case and can be directly calculated from the projected distri-
bution. Since the propagator commutes with the Hamiltonian
(but this will change in the next section when we introduce a
constraint), we have

〈H 〉mix = 〈φ0(R)|H |ψT (R)〉
〈φ0(R)|ψT (R)〉 = 〈ψT (R)|H |φ0(R)〉

〈ψT (R)|φ0(R)〉 = E0.

(48)

The total energy is already the correct value, and since it does
not contain a linear error from the trial function, it does not
require the extrapolation of Eq. (47).

The propagator used in our AFDMC calculations is written
to include only the first eight operators of the Argonne
interactions. However, in some cases, we can also evaluate
the expectation value of the full Argonne v18 Hamiltonian. In
light nuclei, the expectation value of Argonne v′

8 is within few
percent of Argonne v18 [7]. It is then reasonable to propagate
the wave function using the Argonne v′

8 and evaluate the
difference between Argonne v′

8 and v18 using the extrapolation
of Eq. (47). This procedure was verified in GFMC calculations
[13], and we employed this technique in the case of low density
where Argonne v′

8 is a very good approximation to Argonne
v18.

More precisely, we evaluate the energy using Argonne v′
8 in

the propagator (in addition to the three-nucleon interaction),
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and we add to the total energy the value of 〈v18 − v′
8〉 evaluated

as in Eq. (47). We expect this approximation to be accurate if
this difference is small as in light nuclei.

E. Constrained path and fixed-phase approximation

As described in the above sections, the diffusion Monte
Carlo method projects out the ground state of a given Hamil-
tonian in terms of the distribution of the walkers. However,
the density of walkers must always be positive definite [31].
For walkers with positive weights, this condition restricts, in
principle, the use of the method to that class of problems where
the trial wave function is always positive or is node-less, such
as for a Bose system in the ground state. Algorithms that allow
negative weights, such as transient estimation [32], generally
have exponentially increasing variance.

One way to deal with fermionic systems is to set artificial
boundary conditions between the positive and negative regions
of the trial wave function. It is possible to define a nodal surface
where the trial wave function is zero and during the diffusion
process, a walker that crosses the nodal surface is dropped; this
is the fixed-node approximation [32,33], and its application in
the diffusion Monte Carlo algorithm always gives an upper
bound to the true fermionic ground-state energy.

In the case of nuclear Hamiltonians or for problems where
the trial wave function must be complex, a constrained-path
[34–36] approximation is usually applied to avoid the fermion
sign or phase problem. The constrained-path method was
originally proposed by Zhang et al. as a generalization of
the fixed-node approximation to complex wave functions. In
constrained-path, walkers are constrained to regions where
the real part of the overlap with the trial wave function is
positive. This constrained-path approximation was the original
method used to control the phase problem in the AFDMC
algorithm [10]. More precisely, we have to consider that even
for a complex wave function, the drift term for the coordinates
must be real. In the constrained-path approximation, a natural
choice for the drift is

d = ∇Re[ψI (R)]

Re[ψI (R)]
. (49)

Moreover, to eliminate the decay of the signal-to-noise ratio,
it is possible to impose the constrained-path approximation by
requiring that the real part of the overlap of each walker with
the trial wave function keeps the same sign. Thus, one can
impose

Re[ψI (R′)]
Re[ψI (R)]

> 0, (50)

where R and R′ denote the coordinates of the system after and
before the diffusion of a time step. If this condition is violated,
the walker is dropped. This form was found to give better
results and was employed in previous AFDMC calculations
[37,38].

An alternative way to control the sign problem is the fixed-
phase approximation. This method was originally proposed
by Carlson for nuclear systems [39] and also employed for
systems whose Hamiltonians contain a magnetic field [40].

We start with the same condition of the reality of the drift,
and we consider the following expression

d = ∇|ψI (R)|
|ψI (R)| . (51)

With this choice the weight for branching becomes

exp

[
−

(
− h̄2

2m

∇2|ψI (R)|
|ψI (R)| + V ψI (R)

ψI (R)

)
�τ

]

× |ψI (R)|
|ψI (R′)|

ψI (R′)
ψI (R)

. (52)

Note that in this expression there is the usual importance
sampling factor as in Eq. (33) and an additional factor that
corrects for the particular choice of the drift.

A generic complex wave function can be written as

ψ(R) = |ψ(R)|eiφ(R), (53)

where φ(R) is the phase of ψ(R); the factor appearing in
Eq. (52) can be rewritten as

|ψI (R)|
|ψI (R′)|

ψI (R′)
ψI (R)

= ei[φ(R′)−φ(R)]. (54)

The fixed-phase approximation constrains the walkers to
have the same phase as the importance function ψI . It can be
applied by keeping the real part of the last expression. To keep
fixed the normalization of the Green’s function, one has an
additional factor in the Green’s function that must be included
in the weight:

exp

[
− h̄2

2m
(∇φ)2 �τ

]
. (55)

This can be automatically included by keeping the real part of
the kinetic energy. In fact,

Re

[∇2ψI (R)

ψI (R)

]
= ∇2|ψI (R)|

|ψI (R)| − (∇φ(R))2 . (56)

The real part of the kinetic energy includes the additional
weight term given by the fixed-phase approximation.

A different derivation for introducing the fixed-phase
approximation is the following. Let us consider the evolution
of a complex trial wave function including the importance
sampling:

ψ∗
I (R)ψ(R, τ ) =

∫
G(R, R′, τ )ψ∗

I (R)ψ(R′, 0) dR′. (57)

The quantity ψ�
I (R)ψ(R, τ ) is not real and positive definite as

required, but it is possible to obtain another positive density as

|ψI (R)||ψ(R, τ )| =
∫

G(R, R′, τ )
|ψI (R)|
|ψI (R′)|e

i[φ(R′)−φ(R)]

× |ψI (R′)||ψ(R′, 0)|dR′. (58)

In this way, we impose that the phase of the trial wave function
is the same of that of ψI .

Both the constrained-path and the fixed-phase approxima-
tions deal with the fermion sign problem, and in principle they
should be equivalent if the importance function is close to the
correct ground state of the system.
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It is important to note that Carlson et al. [41] showed
that within the constrained-path approximation, the algorithm
does not necessarily give an upper bound in the calculation
of energy. This was also observed by Wiringa et al. in
some nuclear simulations using the GFMC technique [42].
It is not guaranteed that our fixed-phase calculations give an
upper bound. However, in diffusion Monte Carlo calculations
of the ground state of quantum dots, where either a real
or a complex trial wave function can be implemented, the
fixed-phase approximation gives a higher energy than the
fixed-node approximation [43].

F. Trial wave function

The trial wave function used as the importance and pro-
jection function for the AFDMC algorithm has the following
form:

ψI (R, S) = FJ (R)D(R, S), (59)

where R ≡ (r1, . . . , rN ) represent the spatial and S ≡
(s1, . . . , sN ) are the spin states of the system. The spin
assignments si consist of giving the two-spinor components
for each neutron, namely,

|si〉 = ai |↑〉 + bi |↓〉, (60)

where ai and bi are complex numbers, and {|↑〉, |↓〉} is the
neutron-up and neutron-down basis.

The Jastrow correlation function FJ (R) is symmetric under
the exchange of two particles and independent of spin. Its role
is to include the short-range pair correlations in the trial wave
function. The generic form for the Jastrow is

FJ (R) =
∏
i<j

f (rij ), (61)

where the function f (r) is the solution of a Schrödinger-like
equation for f (r < d),

− h̄2

m
∇2f (r) + v(r)f (r) = λf (r), (62)

where v(r) is the spin-independent part of the nucleon-nucleon
interaction, the healing distance d < L/2 is a variational
parameter, and L is the size of the box. For distances r � d, we
impose f (r) = 1. The Jastrow part of the trial wave function
in the AFDMC case has only the role of reducing the overlap
of neutrons, therefore reducing the energy variance. Since it
does not change the phase of the wave function, it does not
influence the computed energy value in projections methods.
In all the reported results, we then fixed d = 2 fm or d = L/2
if L/2 < 2 fm.

The antisymmetric part of the trial wave function is usually
given by the ground state of the noninteracting fermions, which
is written as a Slater determinant

D(R, S) = A
[

N∏
i=1

φα(ri , si)

]
= Det {φα(ri , si)} , (63)

where α is the set of quantum numbers of single-particle
orbitals, and A is the antisymmetrization operator.

For neutron matter calculations, we choose the antisym-
metric part as the ground state of the Fermi gas, built from a

set of plane waves. The infinite uniform system is simulated
with N nucleons in a cubic periodic box of volume L3. The
momentum vectors in this box are

kα = 2π

L
(nαx, nαy, nαz), (64)

where α labels the quantum state and nx, ny and nz are integer
numbers describing the state. The single-particle orbitals are
given by

φα(ri , si) = eikα ·ri 〈χs,ms,α|si〉. (65)

G. Twist-averaged boundary conditions

Aside from the effect of the phase of the importance
function employed during the projection in imaginary time,
the dependence of the energy on the number of neutrons is the
largest systematic error. Usually one uses periodic boundary
conditions to reduce finite-size effects, and simulations are
carried out by using a number of neutrons filling closed shells
of plane waves. There are still sizable errors in the kinetic
energy coming from the shell structure even at the closed
shell filling in momentum space (1, 7, 19, 27, 33, 57, . . .).
To establish the effect of the finite size of the system due
to the kinetic energy, we imposed twist-averaged boundary
conditions [44] on the trial wave function. Within periodic
boundary conditions, the phase, which is picked up by the
wave function as a particle makes a circuit across the unit
cell, can be chosen arbitrarily. These more general boundary
conditions for a wave function are

ψ(r1 + Lx̂, r2, . . .) = eiθx ψ(r1, r2, . . .), (66)

where L is the side of the simulation cell. The boundary
condition θ = 0 gives the usual periodic boundary conditions,
and the more general condition with θ �= 0 gives the twisted
boundary conditions. If the twist angle is integrated over, the
single-particle finite-size effects, arising from shell effects
in filling the plane wave orbitals, are substantially reduced.
Integrating over twists averages over the volume of k space
occupied by the first N Brillouin zones of the simulation cell.
The occupied region is a convex polyhedron that tends to the
Fermi surface in the limit of an infinite system size and has the
correct volume at all system sizes. The twist-averaged kinetic
energy must approach the exact energy always from above,
since the single-particle kinetic energy is a convex function
of k.

The integration over angles can be achieved in different
ways, either by modifying the trial wave function during the
simulation or by performing several simulations using different
wave functions [44]. In practice, once the density of the system
is fixed, we consider a grid of different ki vectors

kα,i = (2πnα + θi) /L (67)

within the radius corresponding to the Fermi energy; and for
each twist angle θi , a simulation is performed. The total energy
is given by averaging all the energies obtained for each wave
function.

054005-7



S. GANDOLFI et al. PHYSICAL REVIEW C 79, 054005 (2009)

H. Algorithm

The structure of the AFDMC algorithm consists of the
following procedures:

(i) Sample the positions and spins, to give |R, S〉 for the
initial walkers, from |〈�I |R, S〉|2 using the Metropolis
Monte Carlo method.

(ii) Propagate the spatial degrees of freedom as in the usual
diffusion Monte Carlo with a drifted Gaussian for a
time step. That is, each walker configuration is diffused
according to Eq. (38).

(iii) For each walker, build and diagonalize the potential
matrix A(σ ).

(iv) Loop over the eigenvectors, sampling the corresponding
shifted Hubbard-Stratonovich variable, and update the
spinors for a time step. Introduce approximate impor-
tance sampling of the Hubbard-Stratonovich variables,
as discussed in the previous sections.

(v) Propagate with the spin–orbit interaction, using impor-
tance sampling.

(vi) Evaluate the real part of the local energy to constrain each
walker to have a fixed phase as described above. This
quantity is also stored with the corresponding weight to
calculate the averaged mixed energy.

(vii) Iterate from 2 to 6 as long as necessary until convergence
of the energy is reached.

To evaluate the error bars, block averages are calculated
and the results combined over different block sizes until the
blocks become uncorrelated and the error bars independent of
block size within statistics.

IV. RESULTS

A. Test of the fixed-phase approximation

The AFDMC algorithm combined with the constrained-
path approximation was previously employed by Sarsa et al. to
study the neutron matter equation of state at zero temperature
[28]. In that paper, the Hamiltonian contained both a realistic
Argonne v′

8 two-nucleon and the Urbana-IX three-nucleon
interactions; this Hamiltonian is often used to calculate
properties of both symmetric nuclear matter and pure neutron
matter.

The constrained-path AFDMC proved to give very satisfac-
tory results for neutron matter calculations with two- and three-
nucleon interactions, but some problems were encountered in
the evaluation of the spin-orbit contribution. The inclusion
of spin-backflow correlations reduced the discrepancies. A
detailed study considering a pure nucleon-nucleon interaction
emphasized the problem of constrained-path AFDMC in
dealing with the spin-orbit interaction [45]. A similar behavior
was found by comparing the constrained-path AFDMC with
the GFMC evaluation for the energy of 14 neutrons in a
periodic box [9]. When using the same Hamiltonian with the
same box truncation used in GFMC calculations of Ref. [9],
the constrained-path AFDMC overestimated the energy of
14 neutrons with an Argonne v′

8 interaction.
The AFDMC with the fixed-phase approximation over-

comes the discrepancies previously observed in the estimates

TABLE I. Fixed-phase (FP-AFDMC) energies per particle of
14 neutrons interacting with the Argonne v′

8 interaction in a periodic
box without the inclusion of finite-size effects at various densities. The
constrained-path (CP-AFDMC) of Ref. [28], the constrained-path
(CP-GFMC) and the unconstrained (UC-GFMC) GFMC of Ref. [9]
are also reported for a comparison. All energies are expressed in MeV.

ρ (fm−3) FP-AFDMC CP-AFDMC CP-GFMC UC-GFMC

0.04 6.75(7) 6.43(01) 6.32(03)
0.08 10.29(1) 10.02(02) 9.591(06)
0.16 17.67(5) 20.32(6) 18.54(04) 17.00(27)
0.24 27.7(5) 30.04(04) 28.35(50)

of the spin-orbit contribution to the total energy, as shown in
Table I. Without tail corrections, the constrained-path AFDMC
energy of 14 neutrons at ρ = 0.16 fm−3 is 20.32(6) MeV com-
pared to 17.00(27) MeV given by the unconstrained GFMC [9],
while the fixed-phase AFDMC energy is 17.67(5) MeV, within
3%, and in much better agreement with unconstrained GFMC.

For the higher densities reported in Table I, it should be
noted that the constrained-path GFMC significantly differs
from unconstrained GFMC because the fermion sign problem
becomes more severe and the unconstrained energy estimation
has larger fluctuations. The convergence can be hard to reach
because the imaginary time evolution of the energy can be
carried out only for very small steps. These reasons could
introduce some spurious effects limiting the accuracy of
GFMC for the neutron matter calculation to densities below
0.08 fm−3 [9].

Preliminary results for the ground-state calculation of
neutron drops by means of the fixed-phase AFDMC show
that the spin-orbit contribution is now in agreement with the
GFMC results [30]. Using the same Hamiltonian, previous
constrained-path AFDMC calculations predicted a spin-orbit
splitting (SOS) in the 7n neutron drop of about half the GFMC
result [29]. Instead, the fixed-phase AFDMC estimate is in
excellent agreement with the GFMC one [30], also for neutron
drops containing up to 13 neutrons [46].

The improvement obtained by using the fixed-phase ap-
proximation rather than the constrained-path is also evident in
the comparison of the fixed-phase AFDMC with the available
constrained-path AFDMC using spin-backflow correlations.
In Table II, we report all the available calculations computed
within the constrained-path approximation compared to the
fixed-phase one. The corrections included are only due to the
truncation of the nucleon-nucleon interaction as in the old
calculations [28].

B. Equation of state of neutron matter

We employed the fixed-phase AFDMC method to study
neutron matter by simulating different numbers of neutrons
interacting with the Argonne v′

8 potential, including finite-
size corrections as described in Ref. [28]. All the fixed-phase
AFDMC results are reported in Table III, which shows the
energy per neutron of neutron matter for different densities by
varying the number of neutrons.
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TABLE II. Fixed-phase (FP-AFDMC) energies per particle of
14 and 66 neutrons interacting with the Argonne v′

8+Urbana-IX
interaction in a periodic box at various densities compared with
the available constrained-path (CP-AFDMC) ones of Ref. [28]. The
constrained-path AFDMC results using a Jastrow-Slater-backflow
(JSB) wave function [47] are also shown. To make the comparison
possible, the finite-size effect due to the truncation of nucleon-
nucleon interaction was included, while that of Urbana-IX was
omitted. All energies are expressed in MeV.

ρ (fm−3) FP-AFDMC(14) CP-AFDMC(14) JSB-AFDMC(14)

0.12 14.52(5) 14.80(9)
0.16 19.03(7) 19.76(6)
0.20 24.49(5) 25.23(8)
0.32 46.60(8) 48.4(1) 46.8(1)

ρ (fm−3) FP-AFDMC(66) CP-AFDMC(66) JSB-AFDMC(66)
0.12 15.04(8) 15.26(5)
0.16 20.14(5) 20.23(9)
0.20 26.21(5) 27.1(1)
0.32 52.47(4) 54.4(6) 52.9(2)

Some finite-size effects are present, as can be deduced
by observing the energies for different numbers of neutrons.
The same behavior is followed at each density, and E(38) <

E(14) < E(66). This trend directly follows the kinetic energy
oscillations of N free fermions, which for N = 38 is lower
than either N = 14 or N = 66.

For neutron matter, the Urbana-IX three-nucleon force
reduces to a pairwise spin interaction modulated by the
spectator neutron as explained in Refs. [29,30] which can
be easily included into the propagator. Finite-size corrections
due to the Urbana-IX can be included in the same way as for
the nucleon-nucleon interaction, although their contribution is
very small compared to the potential energy. Their effect is
appreciable only for a small number of particles and at large
density, i.e., if the size of the simulation box is small.

TABLE III. Fixed-phase AFDMC energies per particle of 14,
38, and 66 neutrons interacting by the Argonne v′

8 potential in a
periodic box at various densities. The finite-size effects due to the
nucleon-nucleon truncation are included. All energies are expressed
in MeV.

ρ (fm−3) E/N (14) E/N (38) E/N (66)

0.12 12.08(5) 11.18(4) 12.65(4)
0.16 14.87(9) 13.50(5) 15.43(3)
0.20 17.6(1) 16.10(4) 18.27(5)
0.24 21.56(5)
0.28 25.05(6)
0.32 27.2(1) 25.2(1) 28.93(7)
0.36 33.05(6)
0.40 37.15(8)
0.48 46.7(1)
0.56 57.64(9)
0.64 69.90(8)
0.80 91.5(2) 89.2(2) 97.4(1)

TABLE IV. Fixed-phase AFDMC energies per particle of 14,
38, 66, and 114 neutrons interacting by the Argonne v′

8+Urbana-IX
potential in a periodic box at various densities. Note the difference
from the values of Table II due to the different treatment of finite-
size effects, which, in this case, include two- and three-nucleon
interaction contributions. All energies are expressed in MeV.

ρ (fm−3) E/N (14) E/N (38) E/N (66) E/N (114)

0.12 14.77(7) 13.68(3) 15.18(2) 16.05(4)
0.16 19.41(7) 18.32(4) 20.04(2) 21.31(4)
0.20 25.05(7) 24.06(4) 26.13(4) 27.82(5)
0.24 31.74(6) 33.64(4)
0.28 39.79(3) 42.51(3)
0.32 48.61(5) 48.76(6) 51.84(2) 55.13(6)
0.36 60.03(5) 64.89(5)
0.40 72.38(5) 78.59(6)
0.48 102.74(5) 111.69(9)
0.56 139.8(1) 152.81(2)
0.64 202.19(9)
0.80 320.3(1) 328.19(6)

All the fixed-phase AFDMC results of 14, 38, 66, and 114
neutrons interacting with the Argonne v′

8 Urbana-IX Hamilto-
nian, including all the finite-size effects due to the truncation
of two- and three-nucleon interactions, are summarized in
Table IV. Important finite-size effects are still present. The
value closest to the thermodynamic limit is that for 66 neutrons,
because the free Fermi gas energy of this particular system is
very similar to that of the infinite one. However, the difference
of the energy of 66 and 114 neutrons is always within 6–7%.
This behavior was also observed in a study of finite-size effects
using the periodic box FHNC technique [48], and the analysis
of Sarsa et al. [28] suggests that the energy of the system in
the infinite limit is somewhere between the energies of 66 and
114 neutrons.

To better understand the finite-size effects due to the
kinetic energy, we repeated several simulations by imposing
twist-averaged boundary conditions in the trial wave function.
The results are displayed in Fig. 1, where we reported the
energy obtained by averaging all the results using sets of
ten twist angles in each dimension. The different behavior
of the energy as a function of the number of neutrons using
periodic or twist-averaged boundary conditions is well evident.
As expected the effect of twist averaging is to reduce the jumps
of the energy as a function of N given by periodic boundary
conditions. Then the extrapolation to the infinite limit of N is
better evident using twist averaging. However it is remarkable
that the energy of 66 neutrons computed using either twist
averaging or periodic boundary conditions is almost the same.
This essentially follows the fact that the kinetic energy of 66
fermions approaches the infinite limit very well. In addition,
the twist averaging could be very useful in simulating systems
for which an arbitrary number of fermions is needed [49].

In Fig. 2, we plot the fixed-phase AFDMC equation of state,
obtained with the energy of 66 neutrons, and the calculation of
Akmal et al. [50], where the Argonne v18 interaction combined
with the Urbana-IX three-nucleon interaction was considered.
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FIG. 1. (Color online) Convergence of the computed energy at
ρ = 0.32 fm−3 as a function of neutrons in a box within the grid twist-
averaging method (TABC) described in the text with ten twists: the
Argonne v′

8+Urbana-IX Hamiltonian were considered. The equation
of state is compared with the fixed-phase AFDMC calculations with
periodic boundary conditions (PBC) shown by solid lines.

As can be seen, both the Argonne v′
8 and v18 give an equation of

state showing essentially the same behavior, with a difference
in the energy that is similar throughout the considered range
of densities. The addition of the three-nucleon interaction
increases the differences between the AFDMC and the Akmal
et al., in particular at higher densities, implying a strong
difference in pressure and compressibility.

The Argonne v′
8 interaction should be more attractive than

Argonne v18 as shown in light nuclei and in neutron-drop
calculations [13]. The plots shown in Fig. 2, however, where we
compare Argonne v′

8 results with the v18 values of Akmal et al.,
do not show this. We believe this is indicative of systematic
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FIG. 2. (Color online) Fixed-phase AFDMC equation of state
evaluated by simulating 66 neutrons in a periodic box; the Argonne v′

8

(AV8′) and Argonne v′
8+Urbana-IX (AV8′+UIX) Hamiltonians were

considered. The equation of states are compared with the variational
calculations of Ref. [50] using the Argonne v18 (AV18) and the
Argonne v18+Urbana-IX (AV18-UIX) Hamiltonians. See the legend
for details.

errors in the FHNC/SOC calculations. The fixed-phase
AFDMC has proved to be in very good agreement with
the GFMC results for light nuclei [11] and also with the
GFMC results for 14 neutrons. On the other hand, the
fixed-phase AFDMC calculation of nuclear matter suggests
that the FHNC/SOC approximation could miss important
contributions, in particular those coming from the neglected
elementary diagrams in the FHNC summation [12]. In the
Akmal et al. calculations, the energy is computed by means of
a cluster expansion for which no evidence of convergence can
be provided. The addition of the Urbana-IX three-body inter-
action to the Hamiltonian increases the differences between
the AFDMC results and those of Akmal et al., and, again, this
confirms that the variational technique based on the cluster
expansion gives a lower energy because it neglects important
contributions. However, we stress the fact that in the case of
neutron matter, the contribution of the tensor-τ force is small
compared to the other channels of the interaction. For this rea-
son, the calculation of the energy within traditional variational
techniques based on FHNC/SOC or cluster expansion could be
more accurate for pure neutron matter without protons. This is
not true when dealing with nuclear matter in which the effect
of tensor-τ is most important, as confirmed in Ref. [12].

The AFDMC results have been fitted with the following
functional form:

E

N
(ρ) = aρβ + cργ , (68)

where E/N is the energy per neutron in MeV as a function of
density in fm−3. The parameters of the fit for both Argonne v′

8
and the full Argonne v′

8+Urbana-IX Hamiltonian are reported
in Table V. We also tried to use the functional form of Ref. [51],
where β = 1. We had a worse χ2, but the equation of state and
the pressure as a function of the density does not change in a
significant way.

C. Argonne v′
8 and v18 interactions

As described in the above sections, in most cases the
Argonne v18 result is evaluated as a perturbation of the Argonne
v′

8 [13]. The assumption is reasonable, since the Argonne v′
8

potential contains most of the contributions of v18 potential
and was obtained with a reprojection by keeping only the
most important terms. However, the operators appearing in
Argonne v18 and not in Argonne v′

8 are not exactly included in
the GFMC calculations. The imaginary-time GFMC evolution
is performed using Argonne v′

8, and the energy is calculated
perturbatively in the difference between v′

8 and v18, which for
nuclei is a fraction of an MeV.

TABLE V. Parameters of Eq. (68) fitting the equation of
state computed with the full Argonne v′

8+Urbana-IX (AV8′+UIX)
Hamiltonian and with the nucleon-nucleon interaction only (AV8′).
The parameters a and c are expressed in MeV/fm−3.

Hamiltonian a c β γ

AV8′ 23.0 115.7 0.37 1.87
AV8′+UIX 32.6 507.8 0.48 2.375
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This method is also used in the FHNC/SOC calculation,
where only the lowest order two-body nucleon-nucleon cor-
relations are included in the variational wave function [50].
However, there is no reason to believe that such a calculation
gives an upper bound to the true energy, and this approximation
may not be good, particularly for higher densities.

When using a propagator including the Argonne v′
8 po-

tential, the difference between the energies computed using
Argonne v′

8 and v18 is actually very small. For instance, for
14 neutrons at ρ � 0.12 fm−3, the difference between Argonne
v′

8 and v18 is less than 2 MeV per neutron and is 2.7 and
5.1 MeV for densities of 0.16 and 0.20 fm−3, respectively.
On the other hand, a plain truncation of Argonne v18 in
the propagator leads to huge energy differences in the two
estimates. At ρ = 0.12 fm−3, the energy of 14 neutrons with
the Argonne v′

8+Urbana-IX Hamiltonian is 14.12 MeV, while
it is 3.60 MeV for Argonne v18+Urbana-IX. This means that
the extra v18 terms cannot be thought of as a small correction
to Argonne v′

8, at least in this range of densities. However, at
ρ � 0.04 fm−3, the difference between Argonne v′

8 and v18 is a
few percent of the total energy, so we can safely evaluate this
difference as a perturbation using the v′

8 propagator.
In the very low-density regime, neutron matter is a

superfluid gas, and a trial wave function written in a BCS form
including explicitly the pairing between neutrons is needed
[52,53]. However, we expect that the expectation value of the
Argonne v′

8 interaction to be of the order of that of Argonne
v18 both in the superfluid and in the normal phase. Here we are
only interested in a qualitative study of the difference between
Argonne v′

8 and v18, thus a wave function as presented in
Sec. III F was used, rather then that of Ref. [38].

It is interesting to focus on the equation of state of neutron
matter in the low-density regime and in the normal phase.
The Argonne v18+Urbana-IX Hamiltonian as described was
used. The range of ρ � 0.04 fm−3 is particularly relevant in the
study of properties of the inner crust of neutron stars. The very
low-density neutron matter approaches a regime that is almost
universal and is analogous to, for instance, cold atoms [54].
In this regime, many-body techniques can be compared and
calibrated [55,56].

We report the energy of 66 neutrons in a periodic box in
Table VI. The Hamiltonian uses the Argonne v′

8+Urbana-IX
potential, and the potential is corrected for finite-size effects.

TABLE VI. Fixed-phase AFDMC energies per particle
of 66 neutrons interacting with the Argonne v′

8+Urbana-IX
interaction in a periodic box at various densities. The differ-
ence between the v′

8 and the v18 interactions (AV8′−AV18),
evaluated with an extrapolation as described in Sec. III D
is also reported. All energies are expressed in MeV.

ρ (fm−3) E/N 〈AV8′−AV18〉
3.377 × 10−5 0.089(1) −0.00197574
2.702 × 10−4 0.367(2) 0.0002776
0.002162 1.289(2) 0.002525
0.007295 2.606(4) 0.021712
0.01729 4.277(7) 0.082534
0.03377 6.197(2) 0.30802
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FIG. 3. (Color online) Equation of state of neutron matter in
the low-density regime. The Argonne v′

8 (AV8′) and v18 (AV18)
interactions combined with the Urbana-IX (UIX) three-nucleon
interaction were considered as indicated in the legend.

The difference between the Argonne v′
8 and the v18 interactions

was extrapolated as described in Sec. III D. As can be seen,
at such densities the Argonne v18 contribution is similar to v′

8,
of the order of a few percent with respect to the total energy.
We believe that such a difference would be even smaller if
the full Argonne v18 was implemented in the propagator and
then evaluated without the extrapolation described in the above
sections.

The equation of state of neutron matter in the low-density
regime is reported in Fig. 3, where the energy per neutron
as a function of the density is calculated both with the AV8′
and with the AV18 nucleon-nucleon interaction combined with
the Urbana-IX three-nucleon interaction. It can be seen that
the difference between the two Hamiltonians considered is
very small in this regime. The Argonne v′

8 and v18 combined
with the Urbana-IX essentially give the same energy, and only
small deviations are present when the density increases above
≈0.015 fm−3. This result is confirmed by the fact that in such
a regime the neutron-neutron interaction is dominated by the
S channel, which in the Argonne v′

8 is the same as in v18 [57].
There is a small trend that the energies are sensibly higher at
ρ � 0.015 fm−3. Other many-body calculations are in general
not in agreement and present very different behaviors in this
regime [58].

V. CONCLUSIONS

We accurately calculated the equation of state of neutron
matter using the auxiliary field diffusion Monte Carlo method.
We started from a nonrelativistic nuclear Hamiltonian contain-
ing two- and three-nucleon potentials. The AFDMC algorithm
suffers from the usual fermion sign problem present in all
fermionic Monte Carlo calculations, and we find that the fixed-
phase approximation used to control it to be more accurate
than the previously used constrained-path approximation. In
particular, in this work we demonstrated that the fixed-phase
AFDMC overcomes the problems encountered when dealing
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with the spin-orbit interaction. The Urbana-IX three-body
force is included in the fixed-phase AFDMC calculation
without any perturbative evaluation, because it is naturally
included in the Green’s function used for the propagation.
The fixed-phase AFDMC reveals some problems of the
variational cluster summation (or FHNC/SOC) technique just
highlighted in the nuclear matter calculation with a simple
v6-like interaction [12].

We computed the equation of state of neutron matter
using a modern, but still simplified, nucleon-nucleon inter-
action combined with a realistic three-nucleon interaction
in the regime of interest for predicting the properties of
neutron stars, and we found some deviations with respect
to past variational calculations based on cluster expansion,
in particular at high densities. The difference between the
Argonne v′

8+Urbana-IX Hamiltonian and that containing
the more sophisticated Argonne v18 interaction was per-
turbatively evaluated in the low-density regime, where the
equation of state is useful in constraining properties of the

inner crust of neutron stars. Our equation of state can also
be useful in comparing the wide range of Skyrme forces used
to study the neutron matter.

We are working to include the full Argonne v18 interaction
in the two-body part of the Hamiltonian, and we are investi-
gating the effect of the more complex Illinois three-nucleon
forces. The effect of those forces in neutron drops and in
neutron matter will be a subject of future work.
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