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Low-momentum N N interactions and all-order summation of
ring diagrams of symmetric nuclear matter
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We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the
particle-particle hole-hole (pphh) ring diagrams within a momentum model space of decimation scale � are
summed to all orders. The calculation is carried out using the renormalized low-momentum nucleon-nucleon
(NN ) interaction Vlow-k , which is obtained from a bare NN potential by integrating out the high-momentum
components beyond �. The bare NN potentials of CD-Bonn, Nijmegen, and Idaho have been employed.
The choice of � and its influence on the single particle spectrum are discussed. Ring-diagram correlations at
intermediate momenta (k � 2 fm−1) are found to be particularly important for nuclear saturation, suggesting
the necessity of using a sufficiently large decimation scale so that the above momentum region is not integrated
out. Using Vlow-k with � ∼ 3 fm−1, we perform a ring-diagram computation with the above potentials, which
all yield saturation energies E/A and Fermi momenta k

(0)
F considerably larger than the empirical values. On the

other hand, similar computations with the medium-dependent Brown-Rho scaled NN potentials give satisfactory
results of E/A � −15 MeV and k

(0)
F � 1.4 fm−1. The effect of this medium dependence is well reproduced by

an empirical three-body force of the Skyrme type.
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I. INTRODUCTION

Obtaining the energy per nucleon (E/A) as a function
of the Fermi momentum (kF ) for symmetric nuclear matter
is one of the most important problems in nuclear physics.
Empirically, nuclear matter saturates at E/A � −16 MeV and
kF � 1.36 fm−1. A great amount of effort has been put into
computing the above quantities starting from a microscopic
many-body theory. For many years, the Brueckner-Hartree-
Fock (BHF) theory [1–3] was the primary framework for
nuclear matter calculations. However, BHF represents only the
first-order approximation in the general hole-line expansion
[4]. Conclusive studies [5–7] have shown that the hole-line
expansion converges at the third order (or the second order
with a continuous single-particle spectrum) and that such
results are in good agreement with variational calculations [8]
of the binding energy per nucleon. Nonetheless, all such
calculations have shown that it is very difficult to obtain
both the empirical saturation energy and the saturation Fermi
momentum simultaneously. In fact, such calculations using
various models of the nucleon-nucleon interaction result in a
series of saturation points that actually lie along a band, often
referred to as the Coester band [9], which deviates significantly
from the empirical saturation point. For this reason it is
now widely believed that free-space two-nucleon interactions
alone are insufficient to describe the properties of nuclear
systems close to saturation density and that accurate results
can only be achieved by introducing higher-order effects, e.g.,
three-nucleon forces [10] or relativistic effects [11].

In the present work, we carry out calculations of the
nuclear binding energy for symmetric nuclear matter us-
ing a framework based on a combination of the recently

*thomas.kuo@stonybrook.edu

developed low-momentum NN interaction Vlow-k [12–17]
and the ring-diagram method for nuclear matter of Song,
Yang, and Kuo [18], which is a model-space approach where
the particle-particle hole-hole (pphh) ring diagrams for the
potential energy of nuclear matter are summed to all orders.
In previous studies a model space of size � ∼ 3 fm−1 was
used to obtain improved results compared with those from
the BHF method. Such an improvement can be attributed to
the following desirable features in the ring-diagram approach.
First, the ground-state energy shift �E0 in the BHF approach
is given by just the lowest-order reaction matrix (G matrix)
diagram (corresponding to Fig. 1(b) with the dashed vertex
representing G). It does not include diagrams corresponding to
the particle-hole excitations of the Fermi sea. Such excitations
represent the effect of long-range correlations. In contrast, the
pphh ring diagrams, such as those in Figs. 1(c) and 1(d), are
included to all orders in the ring-diagram approach. Second,
the single-particle (s.p.) spectrum used in the ring-diagram
approach is different from that in early BHF calculations,
where one typically employed a self-consistent s.p. spectrum
for momenta k � kF and a free-particle spectrum otherwise.
Thus the s.p. spectrum had a large artificial discontinuity
at kF . The s.p. spectrum used in the ring-diagram approach
is a continuous one. The importance of using a continuous
s.p. spectrum in nuclear matter theory has been discussed
and emphasized in Refs. [6] and [7]. Within the above ring-
diagram framework, previous calculations [19] using G-matrix
effective interactions and � ∼ 3 fm−1 have yielded saturated
nuclear matter that is slightly overbound (E/A � −18 MeV)
and that saturates at too high a density (kF � 1.6 fm−1)
compared to empirical data. These results are consistent,
within theoretical errors, with calculations based on the
third-order hole-line expansion and variational methods (see
Refs. [5,6,8]).
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FIG. 1. Diagrams included in the pphh ring-diagram summation
for the ground-state energy shift of symmetric nuclear matter. In-
cluded are (a) self-energy insertions on the single-particle propagator
and (b)–(d) pphh correlations.

In the past, the above ring-diagram approach [18,19]
employed the G-matrix interaction, which is energy depen-
dent, meaning that the whole calculation must be done in
a “self-consistent” way. The calculation would be greatly
simplified if this energy dependence, and thus the self-
consistency procedure, were removed. Such an improvement
has occurred in the past several years with the development
of a low-momentum NN interaction, Vlow-k , constructed from
renormalization group techniques [12–17]. As discussed in
these references, the Vlow-k interaction has a number of
desirable properties, such as being nearly unique as well as
being a smooth potential suitable for perturbative many-body
calculations [20]. Furthermore, Vlow-k is energy independent,
making it a convenient choice for the interaction used in
ring-diagram calculations of nuclear matter.

The Vlow-k interaction has been extensively used in nuclear
shell-model calculations for nuclei with a few valence nucleons
outside a closed shell. As reviewed recently by Coraggio et al.
[21], the results obtained from such shell-model calculations
are in very good agreement with experiments. However,
applications of the Vlow-k interaction to nuclear matter have
been relatively few [20,22–24]. A main purpose of the present
work is to study the suitability of describing symmetric nuclear
matter using Vlow-k . A concern about such applications is
that the use of Vlow-k alone may not provide satisfactory
nuclear saturation. As illustrated in Ref. [22], Hartree-Fock
(HF) calculations of nuclear matter using Vlow-k with a cutoff
momentum of � ∼ 2.0 fm−1 do not yield nuclear saturation—
the calculated E/A decreases monotonically with kF up to the
decimation scale �.

In this work, we carry out a ring-diagram calculation of
symmetric nuclear matter with Vlow-k . We show in detail that
satisfactory results for the saturation energy and saturation
Fermi momentum can be obtained when one takes into
account the following two factors: a suitable choice of
the cutoff momentum and the in-medium modification of
meson masses. As we discuss, ring-diagram correlations at
intermediate momenta (k ∼ 2.0 fm−1) have strong medium
dependence and are important for nuclear saturation. To
include their effects one needs to use a sufficiently large
decimation scale � so that the above momentum range is not
integrated out. We have carried out ring-diagram calculations
for symmetric nuclear matter using � ∼ 3 fm−1 with several
modern high-precision NN potentials, and the results yield

nuclear saturation. However, E/A and kF at saturation are
both considerably larger in magnitude than the corresponding
empirical values. Great improvement can be obtained when
one takes into account medium modifications to the exchanged
mesons. Clearly mesons in a nuclear medium and those in free
space are different: the former are “dressed” while the latter are
“bare.” Brown and Rho have suggested that the dependence of
meson masses on nuclear density can be described by a simple
equation known as Brown-Rho scaling [25,26]:√

gA

g∗
A

m∗
N

mN

= m∗
σ

mσ

= m∗
ρ

mρ

= m∗
ω

mω

= f ∗
π

fπ

= �(n), (1)

where gA is the axial coupling constant, � is a function of
the nuclear density n, and the star indicates in-medium values
of the given quantities. At saturation density, �(n0) � 0.8. In
a high-density medium such as nuclear matter, these medium
modifications of meson masses are significant and can render
VNN quite different from that in free space. Thus, in contrast
to shell-model calculations for nuclei with only a few valence
particles, for nuclear matter calculations it may be necessary to
use a VNN with medium modifications built in. In the present
work, we carry out such a ring-diagram summation using a
Brown-Rho scaled NN interaction.

The Skyrme [27] interaction is one of the most suc-
cessful effective nuclear potentials. An important component
of this interaction is a zero-range three-body force, which
is equivalent to a density-dependent two-body force. Note
that the importance of three-body interactions in achieving
nuclear saturation with low-momentum interactions has been
extensively discussed in the literature (see Ref. [20] and
references quoted therein). In the last part of our work,
we study whether the density dependence from Brown-Rho
scaling can be well represented by that from an empirical
density-dependent force of the Skyrme type.

The organization of this article is as follows. In Secs. II and
III we outline our model-space pphh ring-diagram calculation
for the nuclear binding energy and the concept of Brown-Rho
scaling, respectively. In Sec. IV we present our computational
results. A brief conclusion can be found in Sec. V.

II. SUMMATION OF pphh RING DIAGRAMS

In this section we describe how to calculate the properties
of symmetric matter using the low-momentum ring-diagram
method. We employ a momentum model space where all
nucleons have momenta k � �. By integrating out the k > �

components, the low-momentum interaction Vlow-k is con-
structed for summing the pphh ring diagrams within the model
space.

The ground-state energy shift �E0 = E0 − Efree
0 for nu-

clear matter is defined as the difference between the true
ground-state energy E0 and the corresponding quantity for the
noninteracting system Efree

0 . In the present work, we consider
�E0 as given by the all-order sum of the pphh ring diagrams
as shown in Figs. 1(b)–1(d).

We shall calculate the all-order sum, denoted as �E
pp
0 ,

of such diagrams. Each vertex in a ring diagram is the
renormalized effective interaction Vlow-k corresponding to the
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model space k � �. It is obtained from the following T -matrix
equivalence method [12–17]. Let us start with the T -matrix
equation

T (k′, k, k2) = V (k′, k)

+P
∫ ∞

0
q2dq

V (k′, q)T (q, k, k2)

k2 − q2
, (2)

where V is a bare NN potential. In the present work we
use the CD-Bonn [28], Nijmegen-I [29], and Idaho (chiral)
[30] NN potentials. Notice that in the above equation the
intermediate-state momentum q is integrated from 0 to ∞. We
then define an effective low-momentum T -matrix by

Tlow-k(p′, p, p2) = Vlow-k(p′, p) + P
∫ �

0
q2dq

× Vlow-k(p′, q)Tlow-k(q, p, p2)

p2 − q2
, (3)

where the intermediate-state momentum is integrated from
0 to �, the momentum space cutoff. The low-momentum
interaction Vlow-k is then obtained from the above equations by
requiring the T -matrix equivalence condition to hold, namely,

T (p′, p, p2) = Tlow-k(p′, p, p2); (p′, p) � �. (4)

The iteration method of Lee-Suzuki-Andreozzi [17,31,32] has
been used in obtaining the above Vlow-k .

With Vlow-k , our ring-diagram calculations are relatively
simple, compared to the G-matrix calculations of Ref. [18].
Within the model space, we use the Hartree-Fock s.p. spectrum
calculated with the Vlow-k interaction, and outside the model
space we use the free particle spectrum. In other words,

εk =
{
h̄2k2/2m + ∑

h<kF
〈kh|Vlow-k|kh〉; k � �

h̄2k2/2m; k > �.
(5)

The above s.p. spectrum is medium (kF ) dependent.
Our next step is to solve the model-space RPA equation∑

ef

[(εi + εj )δij,ef + λ(n̄i n̄j − ninj )〈ij |Vlow-k|ef 〉]Yn(ef, λ)

= ωnYn(ij, λ); (i, j, e, f ) � �, (6)

where na = 1 for a � kF and na = 0 for a > kF ; also
n̄a = (1 − na). The strength parameter λ is introduced for
calculational convenience and varies between 0 and 1. Note
that the above equation is within the model space as indicated
by (i, j, e, f ) � �. The transition amplitudes Y of the above
equation can be classified into two types, one dominated
by hole-hole components and the other by particle-particle
components. We use only the former, denoted by Ym, for the
calculation of the all-order sum of the pphh ring diagrams.
This sum is given by [18,24,33]

�E
pp
0 =

∫ 1

0
dλ

∑
m

∑
ijkl<�

Ym(ij, λ)

×Y ∗
m(kl, λ)〈ij |Vlow-k|kl〉, (7)

where the normalization condition for Ym is 〈Ym| 1
Q

|Ym〉 =
−1 and Q(i, j ) = (n̄i n̄j − ninj ). In the above, �m means we
sum over only those solutions of the RPA equation (6) that

are dominated by hole-hole components as indicated by the
normalization condition.

The all-order sum of the pphh ring diagrams as indicated by
Figs. 1(b)–1(d) is given by the above �E

pp
0 . Because we use the

HF s.p. spectrum, each propagator of the diagrams contains the
HF insertions to all orders as indicated by Fig. 1(a). Clearly our
ring diagrams are medium dependent; their s.p. propagators
have all-order HF insertions that are medium dependent, as is
the occupation factor (n̄i n̄j − ninj ) of the RPA equation.

III. BROWN-RHO SCALING AND IN-MEDIUM N N
INTERACTIONS

Nucleon-nucleon interactions are mediated by meson ex-
change, and clearly the in-medium modification of meson
masses is important for NN interactions. These modifications
could arise from the partial restoration of chiral symmetry
at finite density/temperature or from traditional many-body
effects. Particularly important are the vector mesons, for
which there is now evidence from both theory [34–36]
and experiment [37,38] that the masses may decrease by
approximately 10–15% at normal nuclear matter density and
zero temperature. This in-medium decrease of meson masses
is often referred to as Brown-Rho scaling [25,26]. For densities
below that of nuclear matter, it is suggested [34] that the masses
decrease linearly with the density n:

m∗
V

mV

= 1 − C
n

n0
, (8)

where m∗
V is the vector meson mass in-medium, n0 is nuclear

matter saturation density, and C is a constant of value ∼0.10–
0.15.

We study the consequences for nuclear many-body cal-
culations by replacing the NN interaction in free space
with a density-dependent interaction with medium-modified
meson exchange. A simple way to obtain such potentials is
by modifying the meson masses and relevant parameters of
the one-boson-exchange NN potentials (e.g., the Bonn and
Nijmegen interactions). The saturation of nuclear matter is an
appropriate phenomenon for studying the effects of dropping
masses [23,39], because the density of nuclear matter is
constant and large enough to significantly affect the nuclear
interaction through the modified meson masses.

One unambiguous prediction of Brown-Rho scaling in
dense nuclear matter is the decreasing of the tensor force
component of the nuclear interaction. The two most important
contributions to the tensor force come from π and ρ meson
exchange, which act opposite to each other:

V T
ρ (r) = − f 2

ρ

4π
mρτ1 · τ2S12f3(mρr), (9)

V T
π (r) = f 2

π

4π
mπτ1 · τ2S12f3(mπr), (10)

f3(mr) =
(

1

(mr)3
+ 1

(mr)2
+ 1

3mr

)
e−mr . (11)

In Brown-Rho scaling the ρ meson is expected to decrease
in mass at finite density while the pion mass remains nearly
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unchanged due to chiral invariance. Therefore, the overall
strength of the tensor force at finite density will be significantly
smaller than that in free space. As we shall discuss later, this
decrease in the tensor force plays an important role for nuclear
saturation.

The Skyrme effective interaction has been widely used in
nuclear physics and has been very successful in describing the
properties of finite nuclei as well as nuclear matter [27]. This
interaction has both two-body and three-body terms, having
the form

Vskyrme =
∑
i<j

V (i, j ) +
∑

i<j<k

V (i, j, k). (12)

Here V (i, j ) is a momentum (�k)-dependent zero-range inter-
action, containing two types of terms: one with no momentum
dependence and the other depending quadratically on �k. V (i, j )
corresponds to a low-momentum expansion of an underlying
NN interaction. Its three-body term is a zero-range interaction,

V (i, j, k) = t3δ(�ri − �rj )δ(�rj − �rk), (13)

which is equivalent to a density-dependent two-body interac-
tion of the form

Vρ(1, 2) = 1
6 t3δ(�r1 − �r2)ρ(�rav), (14)

with �rav = 1
2 (�r1 + �r2).

The general structure of Vskyrme is rather similar to the
effective interactions based on effective field theories (EFT)
[20], with V (i, j ) corresponding to Vlow-k and V (i, j, k) to
the EFT three-body force. The Skyrme three-body force,
however, is much simpler than that in EFT. We compare in
the next section the density-dependent effect generated by the
medium modified NN interaction with that from an empirical
three-body force of the Skyrme type.

IV. RESULTS AND DISCUSSIONS

In this section, we report computational results for the
binding energy of symmetric nuclear matter calculated with an
all-order summation of low-momentum pphh ring diagrams.
The method is already outlined and discussed in the above
sections. As mentioned above, we employ a model-space
approach. Starting from various bare NN interactions, we
first construct the low-momentum interactions Vlow-k with
a particular choice of the cutoff momentum �. The low-
momentum (<�) pphh ring diagrams are then summed to
all orders as given by Eq. (7) to give the binding energy.

A. Single-particle spectrum and nuclear binding energy

First, we look carefully into the role of � in our ring-
diagram calculation. Let us start with the s.p. energy εk .
Obtaining εk is the first step in our ring-diagram calculation.
Within our model-space approach, εk is given by the Hartree-
Fock spectrum for k � �, while for k > �, εk is taken as
the free spectrum [see Eq. (5)]. As emphasized before, the
s.p. spectrum obtained in this way will in general have a
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FIG. 2. Dependence of the model-space s.p. spectrum on the
decimation scale � for symmetric nuclear matter at the empirical
saturation density. The CD-Bonn potential is used in the construction
of Vlow-k .

discontinuity at �. Such a discontinuity is a direct consequence
of having a finite model space. It is of much interest to study
the s.p. spectrum as � is varied. In Fig. 2, we plot the spectrum
for different values of � ranging from 2 to 4 fm−1. We
observed that with � = 2.0 fm−1, the discontinuity at � is
relatively large; there is a gap of about 50 MeV between the
s.p. spectrum just inside � and that outside. However, this
discontinuity decreases if � is increased to around 3 fm−1. At
this point, the s.p. spectrum is most “satisfactory” in the sense
of being almost continuous. A further increase in � will result
in an “unreasonable” situation where the s.p. spectrum just
inside � becomes significantly higher than that outside. This
is clearly shown in the data of � = 4.0 fm−1. The above results
suggest that to have a nearly continuous s.p. spectrum, which
is physically desirable, it is necessary to use � ∼ 3 fm−1.

Next, we look into the effect of � on the nuclear binding
energy. Once the s.p. energies are obtained, the all-order ring-
diagram summation can be carried out [see Eqs. (6) and (7)].
Let us first discuss the computational results based on the
CD-Bonn potential. Results from various � ranging from 2 to
3.2 fm−1 are shown in Fig. 3. Let us focus on (i) the overall
saturation phenomena and (ii) the numerical values of the
binding energy and the saturation momentum.

(i) We observe that the nuclear binding energy exhibits
saturation only when � is ∼3 fm−1 and beyond. This
reflects the importance of ring diagrams in the intermediate-
momentum region (k ∼ 2 fm−1). To illustrate, let us compare
the results for the cases of � = 2 and 3 fm−1. As indicated
by Eqs. (2)–(4), Vlow-k includes only the k > � pp ladder
interactions between a pair of “free” nucleons; there is no
medium correction included. Thus the above two cases treat
correlations in the momentum region between 2 and 3 fm−1

differently: the former includes for this momentum region only
pp ladder interactions with medium effect neglected, while the
latter includes both pp and hh correlations with medium effect,
such as that from the Pauli blocking, included. Our results
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FIG. 3. Results for the energy per nucleon (E/A) of symmetric
nuclear matter obtained by summing up the pphh ring diagrams to all
orders. Low-momentum NN interactions, constructed from the CD-
Bonn potential, with various cutoffs � are used in the ring-diagram
summation.

indicate that the medium effect in the above momentum region
is vital for saturation.

For nuclear matter binding energy calculations, there is no
first-order contribution from the tensor force (VT ); its leading
contribution is second order of the form 〈3S1|VT

Q

e
VT |3S1〉,

where Q stands for the Pauli blocking operator and e the
energy denominator. Thus the contribution from the tensor
force depends largely on the availability of the intermediate
states; this contribution is large for low kF but is suppressed
for high kF . To illustrate this point, we plot the potential
energy of nuclear matter from the 1S0 and 3S1 − 3D1 channels
separately in Fig. 4. The behavior of the potential energy in
these two channels differ in a significant way. The 1S0 channel
is practically independent of the choice of �, as displayed in
the upper panel of the figure. This indicates that for this channel

the effects from medium corrections and hh correlations are
not important. Also the PE/A from this channel does not
exhibit saturation at a reasonable kF . In the lower panel of
the figure, we display the PE/A for the 3S1 − 3D1 channel
where the tensor force is important. As seen, PE/A does not
exhibit saturation when using � = 2 fm−1. On the contrary,
the result using � = 3 fm−1 shows a clear saturation behavior.
This is mainly because in the former case the Pauli blocking
effect is ignored for the momentum region 2–3 fm−1 while
it is included for the latter. To have saturation, we should not
integrate out the momentum components in the NN interaction
that are crucial for saturation. Considering also the effect
of � on the s.p. spectrum, we believe that � = 3.0 fm−1

is a suitable choice for our ring-diagram nuclear matter
calculation. Notice that a model space ∼3 fm−1 has been used
in other similar ring-summation calculations using G-matrix
effective interactions [18,19].

(ii) We have performed a similar ring summation with the
Nijmegen I and Idaho potentials. Results with � = 3.0 fm−1

are compared with those from CD-Bonn as shown in Fig. 5.
The saturation energies for these three potentials are located
between −19 and −23 MeV, while the saturation momentum
ranges from 1.75 to 1.85 fm−1. These quantities are con-
siderably larger than the empirical values of −16 MeV and
1.4 fm−1, respectively. We believe that improvements can be
obtained if one takes into account the medium dependence
of the NN interaction. Namely, instead of using a Vlow-k

constructed from a bare NN interaction, one should employ a
Vlow-k constructed from a “scaled” NN interaction according
to the nuclear density. Below we report how we incorporate
such effects into our ring-diagram summation.

B. Nuclear binding energy with Brown-Rho scaling

The concept of Brown-Rho scaling has already been dis-
cussed in Sec. III. The medium effects on the NN interaction
resulting from the in-medium modification of meson masses
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FIG. 4. Potential energy per nucleon (PE/A)
in the 1S0 and 3S1 − 3D1 channels of symmetric
nuclear matter from summing up pphh ring
diagrams to all orders. The CD-Bonn potential
is used in the construction of Vlow-k .
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FIG. 5. The binding energy of symmetric nuclear matter from
the low-momentum ring-diagram summation using various NN

potentials. A momentum-space cutoff of � = 3.0 fm−1 is used.

have a profound effect on nuclear binding. To incorporate this
in our ring-diagram calculation we work with the Nijmegen
potential, which is one of the pure one-boson-exchange NN

potentials. The bare Nijmegen is first Brown-Rho scaled
[see Eq. (8)] with the dropping mass ratio C chosen to
be 0.15. Vector meson masses in a nuclear medium have
been widely studied both theoretically and experimentally,
but the σ meson mass is not well constrained. Previous
calculations [39] of nuclear matter saturation within the
Dirac-Brueckner-Hartree-Fock formalism showed that there
is too much attraction when the σ meson is scaled according
to Eq. (8). However, a microscopic treatment [39] of σ meson
exchange in terms of correlated 2π exchange showed that
the medium effects on the σ are much weaker than those
in Eq. (8). Therefore, in our ring-diagram summation using
the Brown-Rho scaled Nijmegen II interaction, we employ
a range of scaling parameters Cσ between 0.075 and 0.09.
Our calculations are shown in Fig. 6. With Brown-Rho
scaling, the numerical values for both the saturation energy
and saturation momentum are greatly improved. Whereas the
unscaled potential gives a binding energy BE/A � 20 MeV
and k0

F � 1.8 fm−1, the scaled potential gives BE/A � 14–
17 MeV and k0

F � 1.30–1.45 fm−1 for a σ meson scaling
constant Cσ ∼ 0.08–0.09, in very good agreement with the
empirical values.We conclude, first, that the medium depen-
dence of nuclear interactions is crucial for a satisfactory
description of nuclear saturation and, second, that within the
framework of one-boson-exchange NN interaction models
one can obtain an adequate description of nuclear matter
saturation by including Brown-Rho scaled meson masses.

C. Nuclear binding energy with three-body force of
the Skyrme type

As discussed earlier in Sec. III, the widely used Skyrme
interaction contains a three-body term that is equivalent to a
density-dependent two-body interaction. It is of much interest
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FIG. 6. (Color online) The binding energy of symmetric nuclear
matter from the Brown-Rho scaled low-momentum Nijmegen II
interaction using the ring-diagram summation with � = 3.0 fm−1.
Calculations for different choices of the σ meson scaling constant Cσ

are shown.

to study whether our result with Brown-Rho scaled Nijmegen
potential can be reproduced with the unscaled Nijmegen plus
an effective three-body interaction of the Skyrme type that
is characterized by a strength parameter, t3 [see Eq. (14)].
In Fig. 7 we compare the results using t3 = 1250 with our
previous calculations using the Brown-Rho scaled Nijmegen II
potential with a σ meson scaling constant of Cσ = 0.087. In all
calculations � = 3.0 is used. We note that satisfactory results
for the saturation energy and Fermi momentum are obtained
using either Brown-Rho scaling or a 3NF of the Skyrme type.
However, the nuclear incompressibility is considerably larger
in the case of Brown-Rho scaling.
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FIG. 7. The binding energy of symmetric nuclear matter from the
low-momentum ring-diagram summation with � = 3.0 fm−1. Three
different interactions are used: (1) the medium-independent Nijmegen
II interaction, the Brown-Rho scaled interaction with Cσ = 0.087,
and finally the Nijmegen II interaction supplemented with a 3NF of
the Skyrme type with t3 = 1250.
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V. CONCLUSION

We have studied the equation of state for symmetric
nuclear matter using the low-momentum nucleon-nucleon
(NN ) interaction Vlow-k . Particle-particle hole-hole (pphh)
ring diagrams within a momentum model space k < � were
summed to all orders. The significant role of the intermediate-
momentum range (∼2.0 fm−1) for nuclear saturation was
discussed. We concluded that, in the ring-diagram summation,
having a sufficiently large model space is important to
capture the saturation effect from the intermediate-momentum
components. Various bare NN potentials including CD-Bonn,
Nijmegen, and Idaho have been employed, resulting in nuclear
saturation with � = 3.0 fm−1. However, the resulting binding
energy and saturation momentum are still much larger than
the empirical values. Improvement can be obtained when we
take into account the medium modification of NN interaction.
We first constructed Vlow-k from a medium-dependent Brown-
Rho scaled NN potential and then implemented this into
the ring-diagram summation. Satisfactory results of E/A �

−15 MeV and k
(0)
F � 1.4 fm−1 could then be obtained. We

showed that these saturation properties are well reproduced
by the first ring-diagram approach with the addition of an
empirical three-body force of the Skyrme type.

In the future, it is of much interest to carry out a BCS
calculation on nuclear matter with Vlow-k , particularly for the
3S1 − 3D1 channel where earlier calculations using bare NN

interactions revealed a gap of 10 MeV around normal nuclear
matter densities [40,41]. Recently, Vlow-k has been applied to
obtain the equation of state of neutron matter [24,42] and the
1S0 pairing gap [42,43]. A similar calculation on nuclear matter
that incorporates the tensor correlations is obviously important
and we plan to investigate it in the future.
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