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From low-density neutron matter to the unitary limit
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Various quantities of an attractively interacting fermion system at the unitary limit are determined by
extrapolating Monte Carlo results of low-density neutron matter. Smooth extrapolation in terms of 1/(kF a0)
(kF is the Fermi momentum, and a0 is the 1S0 scattering length) is found with the quantities examined: the
ground-state energy, the pairing gap at T ≈ 0, and the critical temperature of the normal-to-superfluid phase
transition. We emphasize proximity of the physics of low-density neutron matter to that at the unitary limit. The
extrapolated quantities are in a reasonable agreement with those in the literature.
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I. INTRODUCTION

In our previous paper [1], we reported a Monte Carlo cal-
culation of thermodynamic properties of low-density neutron
matter by using nuclear effective field theory (EFT) [2]. As
pairing in neutron matter is strong, neutron matter is a strongly
correlated fermionic system. We firmly established that low-
density neutron matter is in the state of BCS-Bose-Einstein
condensation (BEC) crossover [3] instead of a BCS-like state,
the standard description in nuclear physics [4].

The crossover state of low-density neutron matter is
actually an expected one from studies of the BCS-BEC
crossover over the past decade. The pairing strength of an
attractively interacting (therefore unstable) fermion system is
characterized by a product of the two physical parameters, the
Fermi momentum kF and the (S-wave) scattering length a0 [5].
In terms of η ≡ 1/(kF a0), the state of the BCS limit is realized
at η → −∞, that of the BEC limit at η → +∞, and that of
the unitary limit at η → 0. (We use the sign convention a0 < 0
for fermions attractively interacting with no bound state.) A
fermion pair at the limit forms a zero-energy bound state,
thereby yielding an infinitely long scattering length. Because
the infinitely long scattering length generates no classical
scale, the fermion system composed of the pairs is expected
to have a universal feature. In recent years, much attention has
been paid to the physics at the unitary limit in the fields of both
condensed matter and atomic physics; for example, Refs. [6,7],
and references therein. The 1S0 neutron-neutron scattering
length is negative and large in magnitude, a0 ≈ −16.45 fm [8].
For a density of about (10−4–10−2)ρ0 (ρ0 = 0.16 fm−3 is the
nuclear matter density), η takes the value of

−0.8 <∼ η <∼ −0.2. (1)

Furthermore, the neutron matter of the above density is well
described by the EFT lattice Hamiltonian that is identical to
the attractive Hubbard model [9]. Equation (1) thus suggests
that the physics of low-density neutron matter would be similar
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to that of the unitary limit. Note that the similarity is expected
only in the limited range of the density. For η � −0.8
(η → −∞), neutron matter would be in more of a BCS state
in this quite low density. For η >∼ −0.2(η → 0), the physics of
neutron matter is much affected by the next-order (repulsive)
term in the EFT potential, and deviates from that of the unitary
limit.

Physically, neutron matter never reaches the unitary limit
η = 0. But our previous Monte Carlo results at the leading-
order (LO) [1] are based on the Hubbard model with the
parameter values chosen (translated from kF and a0) to be
suitable for neutron matter. A Monte Carlo calculation of
a fermion system at the unitary limit could be carried out
by repeating our neutron-matter calculation but with the
parameter values adjusted to the limit. This approach has been
used by Lee [10–13], based on the Lagrangian formalism.
While it may appear to be a straight-forward application, the
computation is quite time consuming. Instead, by exploiting
the proximity of low-density neutron matter to the unitary
limit, we follow here another procedure originally proposed in
Ref. [14], an extrapolation to the unitary limit from low-density
neutron matter by use of our previous Monte Carlo results at
the LO.

The underlying assumption in this procedure is that the
physical quantities of interest are, at least numerically, slowly
varying functions of η and smoothly reachable to the unitary
limit, as Eq. (1) suggests. As will be seen in Secs. III and IV,
we find that this is indeed the case. The quantities examined
are the ground-state energy Eg.s., the pairing gap at T ≈ 0 �,
and the critical temperature of the normal-to-superfluid phase
transition Tc, all of which are made to be dimensionless by
taking ratios with εF ≡ k2

F /(2M) (M is the neutron mass).
Note that only kF provides a classical dimension at the unitary
limit in the system.

This paper is organized as follows. After the Introduction,
Sec. II briefly summarizes our computational method, which
will help keep the discussions in later sections coherent. In
Secs. III, IV, and V, we describe the extrapolation procedure
of Eg.s., �, and Tc, respectively. The description of Eg.s. in
Sec. III is somewhat detailed, since this quantity was not
examined in our previous paper [1]. Our conclusion is found in
Sec. VI.
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II. MONTE CARLO COMPUTATION FOR THE STANDARD
PARAMETER SET

The neutron-neutron (nn) interaction in the EFT La-
grangian includes all possible terms allowed by symmetries of
the underlying theory of quantum chromodynamics (QCD) [2].
The nn potential is in the momentum expansion form

V ( p′, p) = c0(�) + c2(�)( p2 + p′2)

+ · · · − 2c2(�) p · p′ + · · · , (2)

where p and p′ are the nn center-of-mass momenta, and �

is the regularization scale. For a description of low-density
neutron matter, we use a truncated potential including only
the first term in Eq. (2). The truncated EFT Hamiltonian on a
three-dimensional cubic lattice Ĥ then takes the form of the
three-dimensional attractive Hubbard-model Hamiltonian [9],

Ĥ = −t
∑
〈i,j〉σ

ĉ
†
iσ ĉjσ + 6t

∑
iσ

ĉ
†
iσ ĉiσ

+ 1

a3
c0(a)

∑
i

ĉ
†
i↑ĉ

†
i↓ĉi↓ĉi↑

= −t
∑
〈i,j〉σ

ĉ
†
iσ ĉjσ + 6t

∑
iσ

n̂iσ + 1

a3
c0(a)

∑
i

n̂i↑n̂i↓, (3)

where a is the lattice spacing, t = 1/(2Ma2) is the hopping
parameter (M , the neutron mass), and 〈i, j 〉 denotes a restric-
tion on the sum of all neighboring pairs. ĉ

†
iσ and ĉiσ are the

creation and annihilation operators of the neutron, respectively
(σ =↑,↓), and n̂iσ = ĉ

†
iσ ĉiσ is the number operator with the

spin σ at the i site.
The lattice spacing a is directly related to � as

� ∼ π

a
. (4)

� should be set larger than the momentum scale, below which
the truncated form of the potential is valid [15]. � can be
chosen to be smaller but should be at least

� > p (5)

for the momentum p at which the physics is studied [16].
In our case, we take p ∼ kF , because the momentum scale
corresponding to the excitation energy of interest is much less.

The EFT parameter c0(a) in the lattice regularization with
the finite lattice spacing a is given as [17]

c0(a) = 4π

M

(
1

a0
− 2θ1

a

)−1

, (6)

where

θ1 ≡ 1

8π2
℘

∫ π

−π

∫ π

−π

∫ π

−π

dx dy dz

3 − (cos x + cos y + cos z)
= 1.58796 · · · (7)

is a form of Watson’s triple integral [18], with ℘ denoting the
principal value of the integral. At the unitary limit (|a0| → ∞),
we have

c0(a)/(a3t) → −4π/θ1 = −7.91353 · · · , (8)

which agrees with the value found in the literature [6].

TABLE I. Standard parameter set and c0(a)/(a3t) at the unitary
limit η = 0.

η c0/(a3t) kF (MeV) a (fm) � (MeV)

−0.7997 −5.308 15 25.64 24.18
−0.3999 −6.354 30 12.82 48.36
−0.1999 −7.049 60 6.409 96.73

0.0000 −7.914

In our Monte Carlo calculation at the LO [1], we carried out
an extensive Monte Carlo lattice calculation for the standard
parameter set, which consists of the three values of the neutron
matter density ρ with the lattice filling (or the site-occupation
fraction) n set to be 1/4. The reasoning underlying this choice
is somewhat involved, and we refer the reader to our previous
paper [1]. Here, n is defined as

n ≡ a3ρ = 1

Ns

∑
i,σ

〈ĉ†iσ ĉiσ 〉, (9)

where Ns is the lattice size (the total number of the three-
dimensional lattice sites). Note that in this work, we specify the
density of the interacting fermion system, ρ, using kF through
the relation ρ = k3

F /(3π2). We emphasize that ρ here is an
expectation value obtained by our Monte Carlo calculation, as
Eq. (9) shows.

The three densities of the standard parameter set are kF =
15, 30, and 60 MeV. The corresponding three values of η are
listed in Table I, together with those of a and c0(a), which
follow from the kF values with n = 1/4. Though not used in the
Monte Carlo calculation, the value of c0(a) at the unitary limit,
Eq. (8), is also shown in the table for comparison. Note that a

in the standard parameter set satisfies the EFT regularization
condition, Eq. (5).

The Monte Carlo calculations were performed on cubic
lattices of Ns = 43, 63, 83, and 103 by the method of de-
terminantal quantum Monte Carlo [19,20], commonly used
in condensed-matter physics. Using the data on the four
different Ns’s, we apply the method of finite-size scaling to
extrapolate to the thermodynamic limit. We take the continuum
limit (n → 0) by extrapolation using Monte Carlo data for
various n’s on the Ns = 63 lattice. In the following section, we
elaborate on how we determine Eg.s. at these limits and how
we then extrapolate to η → 0.

III. GROUND-STATE ENERGY Eg.s.

Following common practice, we express the ground-state
energy per particle of neutron matter Eg.s. in terms of the
energy parameter ξ ,

ξ = Eg.s.

EFG

= 5Eg.s.

3εF

, (10)

where EFG is the ground-state energy per particle of the
corresponding noninteracting system. ξ is expected to be of a
universal character at the unitary limit. As done in our previous
paper, we determine ξ at the three values of η from the LO
lattice calculations, first by taking the thermodynamic limit
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FIG. 1. Finite-size scaling of the energy parameter ξ . The
thermodynamic limit is at Ns → ∞. The Monte Carlo data of ξ

with statistical uncertainties are shown at the Fermi momentum of
kF = 15 (triangle), 30 (square), and 60 MeV (circle). The dotted lines
are the N−1/2

s linear fits, Eq. (11), to the data of Ns = 43, 63, 83, and
103.

and second by applying the continuum limit. After carrying
out the two steps, we extrapolate ξ to η = 0.

First, we determine ξ of the thermodynamic limit at the
three η by applying the method of finite-size scaling using
Monte Carlo data for the four lattice sizes, Ns = 43, 63, 83,
and 103. The data used for the determination are shown with
statistical uncertainties in Fig. 1.

As in the case of � discussed in Ref. [1], the Ns dependence
of ξ is found to be weak. The scaling exponent is difficult to
determine, and the best fit to the Monte Carlo data results in an
exponent with a large uncertainty, essentially being indefinite.
As shown in Fig. 1, we find the choice of the Ns scaling power
of ξ,∼ N

−1/2
s (the same as that of � [1]) works reasonably

well though not quite ideally. Because of the limited number of
our Monte Carlo data, we decided to proceed with the analysis
using the N

−1/2
s scaling. With this scaling, the best fits are

found to be

ξ (η ≈ −0.8, Ns) = −0.37(13) N−1/2
s + 0.5784(35),

ξ (η ≈ −0.4, Ns) = −0.162(84) N−1/2
s + 0.4339(75), (11)

ξ (η ≈ −0.2, Ns) = −0.131(63) N−1/2
s + 0.3400(80),

and are shown with the Monte Carlo data in Fig. 1. The last
constant in each equation in Eq. (11) is ξ in the thermodynamic
limit (Ns → ∞).

The preceding best fits are performed using the jackknife
method (often used in the lattice QCD data analysis [21]). The
method is used to obtain all best fits in this work.

Second, we take the continuum limit through n → 0 in a
procedure similar to that in Ref. [6], as discussed in Ref. [1].
As shown in Fig. 2, the Monte Carlo data for the lattice fillings
of n = 1/16, 1/8, 3/16, 1/4, 3/8, and 1/2 are best fit by

ξ (n) = −0.132(24) n1/3 + 0.409(15). (12)

Note that n = 1/2 corresponds to the quarter filling of the
lattice. The data are taken on a lattice of Ns = 63 at the Fermi
momentum kF = 60 MeV. Equation (12) gives the ratio of
ξ (n → 0) and ξ (n = 1/4) as 1.26(6).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.25  0.5  0.75  1

ξ

n1/3

FIG. 2. Energy parameter ξ as a function of the lattice filling n.
Monte Carlo data (solid circles with statistical uncertainties) are for
n = 1/16, 1/8, 3/16, 1/4, 3/8, and 1/2 on the Ns = 63 lattice for
kF = 60 MeV. The dashed line, Eq. (12), is the best fit to the data.

As discussed in Ref. [1], such a ratio is expected and is also
confirmed to depend weakly on Ns and kF in the case of �

at T ≈ 0, Tc, and the pairing temperature scale T ∗. Here, we
assume that ξ also weakly depends on Ns and kF . Applying
the same ratio to ξ at the thermodynamic limit, we then obtain

ξ (η ≈ −0.8) = 0.728(37),

ξ (η ≈ −0.4) = 0.546(34), (13)

ξ (η ≈ −0.2) = 0.428(30).

The three values of ξ of Eq. (13) are best fitted by

ξ = 0.292(24) − 0.795(33)η − 0.271(21)η2, (14)

which yields ξ = 0.292(24) at the unitary limit by setting η →
0. Note that Eq. (14) is similar to ξ = 0.306(1) − 0.805(2)η −
0.63(3)η2 in Ref. [22] and gives dξ/dη|η=0 = −0.795(33)
close to −1.0(1) in Ref. [10].

Figure 3 shows the three ξ values of Eq. (13) and their best
fit Eq. (14), together with ξ at the unitary limit. In the figure,
we also show several results of the η dependence of ξ reported
in the literature. They include the two types of calculations: (i)
analytical and (ii) numerical.

(i) This type is an ε-expansion calculation at the next-to-
leading order (NLO) [23] about four dimension (shown
by the dash-dotted curve). Note that a recent next-to-
next-to-leading order (NNLO) calculation at η = 0 [24]
shows the appearance of a problematic ln ε contribution,
but it is argued to be infrared manageable.

(ii) The Monte Carlo types of calculation include the lattice
Monte Carlo calculation with the symmetric heavy-light
ansatz [22] (shown by the dotted curve), the diffusion
Monte Carlo method [25] (cross symbols), the fixed-node
Green’s function Monte Carlo method at η < 0 (solid
up-triangles) [26] and at η = 0 (solid down-triangle) [27],
and the determinantal quantum Monte Carlo method
(solid squares) [28,29]. Note that the previously reported
ξ by the fixed-node Green’s function Monte Carlo
calculations [30,31] (solid diamonds) were somewhat
larger, being near that of Ref. [25]. We further note that
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FIG. 3. η ≡ 1/(kF a0) dependence of the energy parameter ξ . The
solid circles and the dashed curve are our Monte Carlo data and the
best-fit, Eq. (14), respectively. Our ξ extrapolated to the unitary limit
is shown by the open circle. For comparison, ξ obtained by other
works are also shown: the dash-dotted curve is by the next-to-leading
order ε expansion [23], the dotted curve is by the lattice Monte Carlo
calculation with the symmetric heavy-light ansatz [22], the cross
symbols are by the fixed-node diffusion Monte Carlo calculation
[25], the solid up- and down-triangles are by the fixed-node Green’s
function Monte Carlo calculations at η < 0 [26] and at η = 0 [27],
respectively, and the solid squares are by the determinantal quantum
Monte Carlo calculation [28,29].

no thermodynamic limit is taken in these Monte Carlo
calculations.

In Fig. 4, we compare our result with various values of
the unitary-limit ξ in the literature. The figure is made by
expanding a similar figure (Fig. 14) in Ref. [24]. On the left-
hand side of the figure, the values of ξ determined by atomic
Fermi-gas experiments are shown by solid circles: ξ = 0.74(7)
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FIG. 4. ξ at the unitary limit. The values of ξ reported in
the literature are shown in three groups from left to right: those
determined by atomic Fermi-gas experiments (solid circles), by
various Monte Carlo calculations (solid squares); and by ε expansions
(triangles). The scale of the horizontal axis has no significance but
for separating data. ξ ’s by the ε-expansion method on the right-hand
side are divided into three subgroups as explained in the text. Our ξ

from Eq. (14) is shown by the diamond at the right-most location in
the Monte Carlo group. See the text for the reference to each value
of ξ . The figure is an expanded version of a similar figure (Fig. 14)
in Ref. [24].

[32], ξ = 0.34(15) [33], ξ = 0.32+0.13
−0.10 [34], ξ = 0.46(5) [35],

and ξ = 0.51(4) [36].
In the middle of Fig. 4, the values of ξ obtained by various

Monte Carlo calculations are shown by the solid squares:
ξ � 0.42(1) [27], ξ = 0.25(3) [10], 0.07 � ξ � 0.42 [11], ξ ≈
0.44 [37], ξ ≈ 0.28 [22], ξ = 0.292(12) and 0.329(5) [12],
and ξ = 0.37(5) [28,29]. For comparison, our result, Eq. (14),
is shown by the diamond.

On the right-hand side of the figure, the values of ξ by
the ε expansions are shown by triangles in three groups: from
left to right, (1) the NLO ε expansion [38], (2) the Borel-
Padé approximation between the NLO expansions about four
and two dimensions [39], (3) the Borel-Padé approximation
between the NNLO expansion around four dimensions and the
NLO expansion about two dimensions [24], and (4) the Borel-
Padé approximation between the NNLO expansions about four
and two dimensions [40].

Figure 4 shows that our value of ξ , 0.292(24), is relatively
small among the values shown.

IV. PAIRING GAP �

The pairing gap � at the unitary limit may be simply
related to Eg.s. as ∼2Eg.s. [30]. To examine the relationship,
we determined � for η → 0 by extrapolation.

In Fig. 5, we show � in the thermodynamic and continuum
limits for the three values of η by taking from our previous
work at the LO [1]. The figure also shows the best-fit curve to
the three η values using the quadratic function

�

εF

= 0.384(30) + 0.303(27)η + 0.046(37)η2, (15)

from which �/εF = 0.384(30) is determined by setting η = 0.
The figure includes other quantum Monte Carlo results: the
solid squares are by Bulgac et al. [28,29], the solid up-triangles

 0

 0.1

 0.2

 0.3
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FIG. 5. Pairing gap � in the unit of εF as a function of η ≡
1/(kF a0). The solid circles are our Monte Carlo data, shown with
statistical uncertainties [1]. The dashed curve is the best fit to the
data by use of a quadratic function of η. � at the unitary limit η → 0
determined by extrapolation is shown by an open circle. The solid
squares, the solid up-triangles, the solid down-triangle, and the solid
diamonds are the quantum Monte Carlo data by Bulgac et al. [28,29],
by Gezerlis et al. [26], by Carlson et al. [27], and by Chang et al. [31],
respectively. Note that the data by Chang et al. at η < 0 are those
quoted in Refs. [28,29].
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TABLE II. �/Eg.s. for various values of η.

η �/εF ξ �/Eg.s.

−0.7997 0.172(9) 0.728(37) 0.391(40)
−0.3999 0.271(16) 0.546(34) 0.827(99)
−0.1999 0.326(22) 0.428(30) 1.27(18)

0.0000 0.384(30) 0.292(24) 2.19(35)

are by Gezerlis et al. [26], the solid down-triangle is by Carlson
et al. [27], and the solid diamonds are by Chang et al. [31].
Figure 5 is drawn similar to Fig. 1 of Ref. [28] and to Fig. 14
of Ref. [29]. Note that the data by Chang et al. at η < 0 are
those quoted in Refs. [28,29].

The relation between � and Eg.s. is found from that of �

and η by eliminating εF from Eqs. (10) and (15) and by using
ξ of Eq. (14) at η = 0. Table II summarizes our result. Our
�/Eg.s. at the unitary limit is 2.19(35) and roughly confirms
∼2 as suggested in Ref. [30]. Note that other quantum Monte
Carlo calculations in the literature also yield similar values:
�/Eg.s. = 2.5(3) [28,29], 2.3(1) [31], and 2.0(2) [27].

V. CRITICAL TEMPERATURE Tc

In the previous two sections, we examined the physical
quantities at zero temperature. Thermodynamics at the unitary
limit is of much interest [7,28,29]. In this section, we
examine a representative thermodynamic quantity: the critical
temperature of the phase transition, Tc, at the unitary limit.

Figure 6 shows Tc in the thermodynamic and continuum
limits for the three values of η by taking from our previous
work at the LO [1]. The best fit to the data is also shown in the
figure by the dashed curve. It is given by

Tc

εF

= 0.189(12) + 0.149(22)η + 0.069(36)η2, (16)

which yields the extrapolated value Tc/εF = 0.189(12) at η =
0, or at the unitary limit. For comparison, in the figure we

 0
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T
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/ ε
F
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FIG. 6. η dependence of the critical temperature Tc, shown in the
unit of εF . Our Monte Carlo data at the thermodynamic and continuum
limits are shown by solid circles, and the extrapolated unitary-limit
point is shown by an open circle. The extrapolation is made using the
fit function, Eq. (16). For comparison, the solid squares show a recent
quantum Monte Carlo result [29].

TABLE III. Tc/εF for various
values of η.

η Tc/εF

−0.7997 0.114(23)
−0.3999 0.141(10)
−0.1999 0.162(11)

0.0000 0.189(12)

show Tc/εF by a recent quantum Monte Carlo calculation [29].
While our values are somewhat larger than those of Ref. [29],
both show similar η dependence on Tc. This η-Tc dependence
is also observed by an ε-expansion calculation [41]. Our Tc is
tabulated for various values of η in Table III.

In Fig. 7, we summarize various values of Tc at the unitary
limit that are reported in the literature, together with ours
for comparison. The figure includes the two groups of the
Tc determination: by Monte Carlo calculations and by the
ε-expansion method.

The Monte Carlo results include Tc/εF = 0.23(2) by the
determinantal quantum Monte Carlo method on Ns = 63 and
83 lattices [37,42]; Tc/εF < 0.15(1) by the determinantal
quantum Monte Carlo method on Ns = 63, 83, and 103 lattices
[29]; Tc/εF < 0.14 by the hybrid Monte Carlo method on
Ns = 43, 53, and 63 lattices [11]; Tc/εF = 0.152(7) by a
diagrammatic determinantal quantum Monte Carlo method
with the finite-size scaling [6]; and Tc/εF ≈ 0.25 by a
restricted path integral Monte Carlo method [43].

The ε-expansion results [41] include Tc/εF ≈ 0.249 and
Tc/εF ≈ 0.153 by up to the NLO in the ε expansion about the
four and two dimensions, respectively; and Tc/εF = 0.173 and
0.192 by the Borel-Padé approximation between the four and
two dimensions. As noted in the case of the ξ determination,

 0
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 0.2

 0.3

 0.4

T
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/ ε
F

Monte Carlo          ε expansion

FIG. 7. Critical temperature Tc at the unitary limit appearing in
the literature and our extrapolated Tc (all shown in the unit of εF ).
The solid squares (with statistical uncertainties) on the left-hand side
of the figure are by Monte Carlo calculations [6,11,29,37,42,43],
and the solid triangles on the right-hand side are by ε expansion
calculations [41]. Our Tc is shown by the solid diamond with the
statistical uncertainty. The horizontal scale is used merely for the
separation of each Tc value. The Tc’s by the ε expansion calculations
are grouped into two in the same way as in Fig. 4. See the text for the
reference of each Tc.
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the ε expansion seems to indicate a possibly problematic
behavior at higher orders [24].

Our Tc at the thermodynamic and continuum limit is also
shown in the Monte Carlo group of Fig. 7. Our result Tc/εF ≈
0.189(12) seems to be consistent with others, especially with
that of Ref. [6], which is the only other Tc obtained in the
thermodynamic and continuum limits.

VI. CONCLUSION

We extrapolate our Monte Carlo results for low-density
neutron matter [1] to the unitary limit for the following
quantities: the ground-state energy Eg.s., the pairing gap �

at T ≈ 0, and the critical temperature of the normal-to-
superfluid phase transition Tc. All quantities show a smooth
extrapolation to the limit in terms of η = 1/(kF a0). Although
no accurate determination of these quantities is yet available,
our extrapolated values are in reasonable agreement with those
in the literature. Our successful extrapolation suggests that
much of the physics of low-density neutron matter [of about

(10−4–10−2)ρ0] is similar to the physics of the attractively
interacting fermion system at the unitary limit.
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