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Lattice calculation of thermal properties of low-density neutron matter with
pionless N N effective field theory
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Thermal properties of low-density neutron matter are investigated by determinantal quantum Monte Carlo
lattice calculations on 3+1 dimensional cubic lattices. Nuclear effective field theory (EFT) is applied using
the pionless single- and two-parameter neutron-neutron interactions, determined from the 1S0 scattering length
and effective range. The determination of the interactions and the calculations of neutron matter are carried
out consistently by applying EFT power counting rules. The thermodynamic limit is taken by the method of
finite-size scaling, and the continuum limit is examined in the vanishing lattice filling limit. The 1S0 pairing gap
at T ≈ 0 is computed directly from the off-diagonal long-range order of the spin pair-pair correlation function
and is found to be approximately 30% smaller than BCS calculations with the conventional nucleon-nucleon
potentials. The critical temperature Tc of the normal-to-superfluid phase transition and the pairing temperature
scale T ∗ are determined, and the temperature-density phase diagram is constructed. The physics of low-density
neutron matter is clearly identified as being a BCS-Bose-Einstein condensation crossover.
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I. INTRODUCTION

Neutron matter is of great interest in nuclear physics
as a quantum many-body system. The 1S0 nucleon-nucleon
(NN ) interaction is strongly attractive, dominating the physics
of neutron matter. The interaction yields the negative (in
our convention) scattering length a0 of an unnaturally large
magnitude (≈20 fm), with the effective range r0 of a moderate
(natural) size of about twice the pion wavelength (≈2.8 fm).
The value of a0 implies that the strongly attractive interaction
nearly forms a bound state. By this pairing, neutron matter is a
strongly interacting many-body system, which must be treated
nonperturbatively [1].

The strong neutron pairing generates a pairing gap that
creates superfluidity in neutron matter. Superfluidity in neutron
matter is of astronomical interest because of the close relation
to the internal structure and thermal evolution of neutron
stars [2,3]. 1S0 and 3P2-3F2 superfluidity are believed to be
realized in the inner crust and in the core region of neutron
stars, respectively, and to contribute to the thermodynamic and
dynamic properties of the stars.

Neutron pairing is also considered important for under-
standing the structure of neutron-rich unstable nuclei. Neutron-
neutron correlations are expected to be a crucial ingredient in
the weakly bound, surface structure near the neutron drip line;
and for the surface structure, neutron pairing in neutron matter
must be well understood [1,4–6].

Investigations over many years have provided much un-
derstanding of the physics of thermodynamic properties of
neutron matter [7–9], but reliable quantitative information
of the thermal properties has not been fully available [1,2].
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For example, the 1S0 pairing gap at zero temperature � had
been firmly established in the BCS approximation, as evident
in the fact that various conventional NN potentials have
provided nearly the same �BCS as a function of neutron matter
density [10,11]. Many-body calculations beyond the BCS
mean-field approximation, however, have yielded � of various
magnitudes, generally smaller than the BCS values, some even
by a factor of 2 or more. Quantum Monte Carlo calculations,
based on a nonperturbative approach, have also been used
on the � determination. The Green’s function Monte Carlo
(GFMC) method, quite successful in treating the ground-state
properties of finite nuclei by the use of the conventional NN

potentials [12], has yielded � in the low-density region (kF <∼
0.6 fm−1), smaller than �BCS [13,14] but not as small as those
obtained by some of the many-body calculations. Another
method closely related to GFMC, the auxiliary field diffusion
Monte Carlo (AFDMC) method, which is also applied to
finite nuclei [15], has given � quite close to �BCS [16,17]
and significantly larger than the GFMC �. We present a
more detailed comparison of these works, including ours, in
Sec. VII B.

In this paper, we report a quantum Monte Carlo calculation
of � and thermal properties of neutron matter using a method
different from the GFMC and the AFDMC methods. The dif-
ference is that ours is based on the standard finite-temperature,
grand canonical formulation, while the GFMC and AFDMC
methods are based on essentially zero-temperature formula-
tions, performed for the ground or specific excited states with
a pre-fixed neutron number. Our calculation may be viewed,
in a sense, as a nonrelativistic hadronic version of lattice
QCD calculations, but it involves different aspects such as
those associated with the large numbers of fermions on the
lattice [18]. We use a Hamiltonian formulation different from
the Lagrangian formulation commonly used in the lattice QCD
calculations. Our formulation is not new, as it has been applied
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in condensed matter physics for many years [19,20] and has
been also applied in nuclear physics [21]. This work is an
extension of the latter.

We also use a new ingredient, the NN interaction based on
effective field theory (EFT) [22,23], in place of the conven-
tional NN potentials. It is desirable to include pions [24] in the
EFT interaction as dynamical degrees of freedom, representing
chiral symmetry and its breaking. Our objective is twofold:
(1) to apply the NN EFT interaction to the many-nucleon
system of neutron matter by properly applying EFT counting
rules, and (2) to determine reliably the thermal properties of
neutron matter and their key quantities, such as �. In the
first attempt for achieving this objective, we have chosen a
pionless NN EFT potential with two parameters. The major
consequence of this choice is that application of our calculation
is limited to the low-density region, kF <∼ 0.6 fm−1. Even with
this potential, our work has become a relatively large-scale
computation, especially because we take the thermodynamic
limit and examine the continuum limit. Note that field
theoretical aspects of the general approach of this work were
discussed a few years ago [25].

Because the pairing in neutron matter is strong, neutron
matter should be treated as a strongly correlated fermionic
system in the state of BCS-Bose-Einstein condensation (BEC)
crossover, which has been receiving much attention in recent
years [26]. Traditionally the pairing in neutron matter has
been discussed in the framework of the BCS approximation
[27], but the pairing is too strong for a BCS treatment. The
pairing strength is characterized by 1/(kF a0) and corresponds
to the BCS limit with 1/(kF a0) → −∞ and to the BEC
limit with 1/(kF a0) → +∞ [28]. The range of 1/(kF a0)
in the low-density region investigated in this work is well
in the middle of the two limits, −0.8 <∼ 1/(kF a0) <∼ −0.1,
and the magnitude of 1/(kF a0) becomes smaller for a
higher density. We elaborate on the issue of crossover in
Sec. VII A.

The limit 1/(kF a0) → 0 corresponds to the unitary limit,
to which much attention has been paid lately in the fields
of atomic and condensed-matter physics. A fermion pair in
the unitary limit forms a zero-energy bound state, thereby
yielding a scattering length infinitely long, associated with
no classical scale and expected to have a universal feature.
Our single-parameter EFT description of low-density neutron
matter is close to the unitary limit (rather than to the BCS
limit), and we will discuss the relation between the two in
an accompanying paper [29]. We emphasize, however, that
the close similarity of the two is restricted to the low-density
region of neutron matter (kF <∼ 0.3 fm−1), because additional
EFT parameters and the pionic contributions needed for the
description of the denser region introduce new length scales
and make the physics more complicated than that of the unitary
limit.

The outline of this paper is as follows. After the Introduction
of Sec. I, the basic setup of our calculation is described in
Sec. II. In Sec. III, we present how we determine the physical
quantities of interest in this work, and in Sec. IV, we show
how we carry out their numerical calculation by taking the
thermodynamic and continuum limits. In Sec. V, we discuss
how the single- and two-parameter calculations are matched.

The summary results are shown in Sec. VI, and discussions of
the key points in this work are given in Sec. VII. A summary
of our work is found in Sec. VIII. We include, in Appendix A,
a relevant, short discussion on how the two NN potential
parameters are determined by satisfying EFT counting rules;
in Appendix B, a comparison of the physical sizes of a
neutron (Cooper) pair and the computational lattices; and, in
Appendix C, somewhat detailed technical aspects of our Monte
Carlo calculation.

II. BASIC SETUP

A. N N EFT Hamiltonian

The nuclear EFT Lagrangian is constructed by including all
possible terms allowed by symmetries of the underlying theory
of QCD [30]. The NN potential from the EFT Lagrangian is
written in the momentum expansion form

V ( p′, p) = c0(�) + c2(�)( p2 + p′2)

+ · · · − 2c2(�) p · p′ + · · · , (1)

where p and p′ are the NN center-of-mass momenta, and �

is the regularization scale. The terms not explicitly shown in
Eq. (1) include those in which pions are treated as a dynamical
degree of freedom [31]. For the momentum below the pion
mass scale, we may neglect the explicit dynamics of chiral
symmetry and its breaking by truncating Eq. (1) and including
in c0 and c2 the consequences of the dynamics. In this work,
we use this pionless S-wave NN potential with the first two
terms in Eq. (1). Generally an EFT potential is regarded as
an expansion in terms of p/Q and p′/Q with Q setting the
momentum scale of the expansion. In our pionless potential,
we have Q >∼ mπ (mπ , the pion mass). Note that the potential
consists of the central and spin-dependent parts, as cc + σ ·
σ ′cσ , with σ · σ ′ = −3 for the 1S0 state (and = +1 for the
3S1 state, not considered in this work). We also neglect in this
work the P -wave interaction term starting with the p · p′ and
the relativistic effects appearing in O(p4/M4) [32].

Regularization is required for the application of Eq. (1). On
a cubic lattice, the lattice spacing a serves as the regularization
scale �, approximately as

� ∼ π

a
. (2)

� should generally be set large, at least larger than the
momentum p,

� > p, (3)

or better set

� >∼ Q, (4)

corresponding to a <∼ 4.5 fm for Q ∼ mπ [32,33]. When the
two-nucleon interaction is applied to a many-nucleon system
of finite density, an additional constraint is imposed on the
value of a, as discussed in Sec. II C.
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On the lattice, the Hamiltonian for our potential takes the
discretized form [34]

Ĥ = −t
∑
〈i,j〉σ

ĉ
†
iσ ĉjσ + 6t

∑
iσ

ĉ
†
iσ ĉiσ + 1

a3

[
c0(a) − 6

a2
c2(a)

]

×
∑

i

ĉ
†
i↑ĉ

†
i↓ĉi↓ĉi↑ + 1

2a5
c2(a)

∑
〈i,j〉σσ ′

ĉ
†
iσ ĉiσ ĉ

†
jσ ′ ĉjσ ′ ,

(5)

where t = 1/(2Ma2), the hopping parameter (M is the neutron
mass), and 〈i, j 〉 denotes a restriction on the sum to all
neighboring pairs. ĉ†iσ and ĉiσ are the creation and annihilation
operators of the neutron, with σ =↑,↓, respectively, at the ith
site.

The neutron-neutron interaction parameters, c0(a) and
c2(a), are determined from the neutron-neutron scattering
phase shift, using the 1S0 effective range expansion (ERE),

p cot δ0(p) = − 1

a0
+ 1

2
r0p

2 − Pr3
0 p4 + O(p6), (6)

where P is the shape parameter. By dividing both sides by Q,
we find Eq. (6) is an expansion in terms of the dimensionless
quantity p2/Q2. ForQ ≈ mπ , the coefficients of the expansion
r0Q/2 and P (r0Q)3 are of the natural size O(1), while the first
coefficient is unnaturally small, |1/a0Q| � 1. Phenomeno-
logically the sum of the first two terms in Eq. (6) agrees well
with the phase shift up to the center-of-mass momentum of
nearly the pion mass mπ ≈ 0.7 fm−1, or about 40 MeV of
the laboratory kinetic energy [35] (see also Ref. [36]). This
assures us that c0(a) and c2(a) are safely determined from a0

and r0 for a chosen value of a [37].
These interaction parameters are determined by consis-

tently applying EFT power counting rules in a way different
from a mere phenomenological fitting, as briefly discussed in
Appendix A. Because this determination is one of the crucial
steps in this work, let us note its key point here: c2(a) and the
contributions of the same order must be treated perturbatively
by neglecting the O([c2(a)]2) contributions, so that O(p4/Q4)
contributions are consistently neglected. Furthermore, to be
consistent, c2(a) and the contributions of the same order
must also be treated perturbatively in the neutron matter
calculations. In the next subsection, we discuss how this
treatment is formulated for the neutron matter calculation.

In this work, we carry out the neutron matter calculation
using Eq. (5) in two different ways: the leading-order (LO)
calculation, in which the c2(a) contribution and the contribu-
tions of the same order are neglected, and the next-to-leading-
order (NLO) calculation, in which they are included. The
LO and NLO calculations are expected to yield somewhat
different physics, because Eq. (5) is the Hamiltonian of the
attractive Hubbard model for the LO calculation, and it is
the Hamiltonian of an extended attractive Hubbard model for
the NLO calculation [34]. With the neglect of O(p2/Q2), the
LO calculation involves the neutrons of low momenta and
should be applicable to a low-density region of neutron matter
without the perturbative treatment.

An important issue in this work is the density at which
the LO and NLO results should be matched. The ERE of
Eq. (6) suggests that the center-of-mass momentum of an

interacting neutron pair is less than
√

2/(|a0|r0) ≈ 0.20 fm−1

at the matching density. As a rough estimate, it may be feasible
to identify the Fermi momentum kF as this momentum and to
estimate the density from it [1], but for a rigorous matching,
the LO and NLO neutron matter calculations should be carried
out for some common densities and their results compared. As
it is desirable to avoid excess computer time, we use in this
work the following procedure: we carry out the LO and NLO
calculations at the common density of kF = 0.3041 fm−1,
where we expect the two results will certainly differ, and then
perform similar calculations by lowering the density so as to
identify the density that yields the same LO and NLO results
(within the statistical uncertainties). The matching using this
procedure is elaborated in Sec. V.

B. Determinantal quantum Monte Carlo computation

We follow a lattice Hamiltonian formulation, somewhat
different from the Lagrangian formulation usually used in
lattice QCD [38]. Instead of using the representation in terms
of coherent-state Grassmann variables, we use the number
representation, working with the lattice Fock space 〈n| using
the creation and annihilation operators of the neutrons. Our
treatment is the same as that used in Refs. [21,34,39] and is
commonly used in condensed-matter physics [19,20] under
the determinantal quantum Monte Carlo (DQMC) method.

We carry out neutron matter calculations using the
Hamiltonian of Eq. (5) in the method of grand canonical
ensemble. The Monte Carlo computation is carried out for
various values of the chemical potential µ, and the µ depen-
dence is converted to the density dependence by determining
the densities by the average over i, σ of 〈ĉ†iσ ĉiσ 〉 for various
values of µ.

For many-nucleon systems, the Hamiltonian (5) should also
include three-nucleon interactions. By EFT power counting
rules, the interactions are to be treated generally as the LO
order in the pionless case, and they play a significant role when
a three-nucleon bound state such as the triton can be formed
[40]. In neutron matter, however, the three-neutron system has
no bound state, and the three-neutron interactions appear at
a higher order because the Fermi statistics prohibit the LO
diagram of three neutron from being at the same spatial point
with the momentum-independent vertex. As the interactions
would also affect the two-neutron pairing indirectly, we expect
that the interactions would affect the observables of our interest
relatively weakly and defer the issue to a future investigation
by neglecting them in this work.

We write the partition function as

Z(T ,µ) ≡ 〈n|Û (β)|n〉, (7)

where Û (β) is the (imaginary time) evolution operator, and
the trace implied in Eq. (7) is over all possible nucleon
configurations on the lattice 〈n|. Using the Trotter-Suzuki
approximation, we express Û (β) as

Û (β) = T exp

⎡
⎣−

Nt∑
τt=1

�β

(
Ĥ − µ

∑
iσ

ĉ
†
iσ ĉiσ

)⎤
⎦

≡ T �
Nt

τt=1Û (�β) (8)
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by the temporal discretization β = �β Nt , with Nt being the
number of time slices. In Eq. (8), Ĥ is the two-parameter NLO
Hamiltonian of Eq. (5), and i is actually an integer vector
specifying the location of a site with its component ranging as
[−aN

1/3
s /2, aN

1/3
s /2]. The τt dependence of Ĥ and Û (�β)

is solely through ĉ† and ĉ, as seen from Eq. (5). The last
expression in Eq. (8) is thus a product of Û (�β) operators,
each having the same form and depending on τt implicitly.

To cast Z(T ,µ) in a form amenable to Monte Carlo
computation of the fermion integration, we express the two-
nucleon interaction of Ĥ in a single-nucleon interaction form
by applying the Hubbard-Stratonovich transformation

e+An̂2
i =

√
A

π

∫
dχi e

−A(χ2
i −2χi n̂i ) (9)

for a constant A with Re(A) > 0. Here, χi is an auxiliary scalar
field at the ith site, and n̂i is the density operator defined as
n̂i ≡ n̂i↑ + n̂i↓ (n̂iσ ≡ ĉ

†
iσ ĉiσ , the number operator with the

spin σ at the ith site). Ĥ is divided into two parts,

Ĥ ≡
[
Ĥs + 1

2a3
c

(0)
0 (a)

∑
i

n̂2
i

]
+ Ĥ ′ , (10)

where

Hs ≡ −t
∑
〈i,j〉σ

ĉ
†
iσ ĉjσ +

[
6t − 1

2a3
c

(0)
0 (a)

]∑
i

n̂i ,

H ′ ≡ 1

2a5
c2(a)

∑
〈i,j〉

n̂i n̂j + 1

2a3

[
�c0(a) − 6

a2
c2(a)

]

×
∑

i

(
n̂2

i − n̂i

)
. (11)

Here, c0(a) is expressed as a sum of the LO part c
(0)
0 (a) and the

NLO part �c0(a), which are defined in Eqs. (A3) and (A2),
respectively, with � = π/a.

We introduce Ĥ0(χ ), the LO single-nucleon Hamiltonian
interacting with the external scalar field χ ≡ {χi},

Ĥ0(χ ) ≡ Ĥs + 1

a3
c

(0)
0 (a)

∑
i

χi n̂i . (12)

In terms of Ĥ0(χ ), Û (�β) is written as

Û (�β) =
∫

d[χ ] exp

[
+�β

2a3
c

(0)
0 (a)

∑
i

χ2
i

]

× exp

{
−�β

[
Ĥ0(χ ) + Ĥ ′ − µ

∑
i

n̂i

]}

≈
∫

d[χ ] e
+ �β

2a3 c
(0)
0 (a)

∑
i χ2

i (1 − �βĤ ′)

× e−�β[Ĥ0(χ)−µ
∑

i n̂i], (13)

where the measure is defined as d[χ ] ≡ dχ1 dχ2 . . . with
a constant factor generated by the Hubbard-Stratonovich
transformation. We emphasize that Ĥ ′ is defined to be of
the NLO and is treated perturbatively in the second step of
Eq. (13).

We thus obtain

Z(T ,µ) ≈
∫

d[χ ] T �
Nt

τt=1e
+ �β

2a3 c
(0)
0 (a)

∑
i χ2

i

×〈n|(1 − �βĤ ′)e−�β[Ĥ0(χ)−µ
∑

i n̂i]|n〉

≡
∫

d[χ ] G(χ )〈n|Ûχ (β)|n〉, (14)

where

G(χ ) ≡ �
Nt

τt=1e
+ �β

2a3 c0(a)
∑

i χ2
i ,

Ûχ (β) = �
Nt

τt=1Ûχ (�β)

≡ �
Nt

τt=1(1 − �βĤ ′) e−�β[Ĥ0(χ)−µ
∑

i n̂i]. (15)

Note that the time-ordering (sequential) integration over [χ ]
is understood in the last expression of Eq. (14). In accordance
with Eq. (13), the factor (1 − �βĤ ′) in Ûχ (�β) of Eq. (15) is
to be evaluated by the use of the nucleon lattice configuration
resulting from the exp{−�β[Ĥ0(χ ) − µ

∑
i n̂i]} operation at

τt , and that this procedure is repeated successively from
τt = 0 to Nt . This step is vital in the computation for the
perturbative treatment of Ĥ ′. We make a technically important
note: because of the perturbative treatment of Ĥ ′, the number
of the auxiliary fields for the NLO calculation remains as
NsNt , the same as for the LO calculation. If Ĥ ′ were not
treated perturbatively, 4 × NsNt more of {χi} would have been
needed owing to the derivative interactions, and the Monte
Carlo computation would have required more time by nearly
an order of magnitude.

The trace of the single-particle evolution operator Ûχ (β) is
expressed in terms of the single-particle matrix representation
of the operator, Uχ (β), as [19–21,39]

〈n|Ûχ (β)|n〉 = det[1 + Uχ (β)] ≡ ξ (χ ). (16)

The expectation value of the (static) operator O(ĉ†, ĉ) at T =
1/β is then obtained from

〈O(ĉ†, ĉ)〉 = 1

Z(T ,µ)

∫
d[χ ]G(χ )〈n|O(ĉ†, ĉ)Ûχ (β)|n〉

≡
∫

d[χ ]G(χ )〈O(χ )〉ξ (χ )∫
d[χ ]G(χ )ξ (χ )

, (17)

where 〈O(χ )〉 is

〈O(χ )〉 ≡ 〈n|O(ĉ†, ĉ)Ûχ (β)|n〉
〈n|Ûχ (β)|n〉 (18)

and can be evaluated in terms of Uχ (β) using Eq. (16), as
shown in Refs. [19–21,39].

Equation (17) is now amenable to a Monte Carlo integration
by treating |G(χ )| or |G(χ )ξ (χ )| as a weight. Our Monte
Carlo computation is the same as that used in Ref. [21],
supplemented by a matrix-decomposition stabilized method
for low-temperature computations [19,20].

Before closing this subsection, we make a relevant com-
ment. In the procedure just described, we reduced the original
Hamiltonian Ĥ of Eq. (5) to the single-nucleon Hamiltonian
Ĥ0 (with Ĥ ′) of Eq. (12) in terms of the density operators
{n̂i}, as in Eq. (10). The choice of the density operators in
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this step may seem natural, but it is not required for the
reduction to an effective single-nucleon Hamiltonian because
of the arbitrariness in the path integral formulation. In fact,
we can choose a combination of pairing operators and density
operators, leading to a Hartree-Fock-Bogoliubov (HFB) type
Hamiltonian [39,41].

C. Lattice spacing toward thermodynamic and
continuum limits

Neutron matter is a strongly correlated fermion system.
On a three-dimensional cubic lattice, the correlation length
resulting from the simulation, ξ , satisfies

a � ξ <∼ L, (19)

where L ≡ aN
1/3
s is the physical dimension of the cubic lattice.

ξ is the length scale in which the collective state is realized in
the simulation and is different from the size of a neutron pair
(a Cooper pair) in the state ξcp. Note that, confusingly, ξcp has
often been referred to terms similar to ξ . In Appendix B, we
compare the physical sizes of the neutron pair simulated and
the lattice spaces used.

To obtain a physically meaningful result, we seek for ξ and
for the expectation values of other quantities, in the continuum
limit a → 0 and in the thermodynamic limit L → ∞. The
clear procedure for achieving both limits is to do the former
with L fixed (for obtaining results insensitive to the lattice
structure), and then to do the latter (using finite volume
corrections), as is usually done in lattice QCD calculations
[38].

In our calculation of the many neutron system, each
meaningful configuration must consist of neutrons fewer than
Ns , so that the calculation properly describes the interacting
neutron system in free space. This requirement is crucial in
general for the simulation of a system of many fermions, and
we find that the requirement complicates the straightforward
approach of achieving the above two limits. Note that lattice
QCD calculations have not yet dealt with cases of such high
baryon-density states.

Let us elaborate on this requirement. Consider setting up a
classical lattice configuration. When Nf neutrons are placed
on a lattice of volume a3Ns , the neutron density ρ is

ρ ≡ Nf

Nsa3
≡ n

a3
, (20)

which defines the lattice-filling fraction (or more descriptively,
the site-occupation fraction), n ≡ Nf /Ns . n denotes the
fraction of the lattice sites occupied by the neutrons. Note
that the complete filling of the lattice occurs with n = 2 owing
to the spin degree of freedom. Classically, n can simply be
chosen, while in our quantum-mechanical, grand canonical
calculation, it is determined from

∑
i,σ 〈ĉ†iσ ĉiσ 〉, which is

computed for a fixed value of a and µ.
Mathematically, for a finite nucleon density, Eq. (20)

implies

n(µ) → 0 (21)

as a → 0. Physically, these limits simulate the free-space
environment, because the smaller n is, the more vacant sites
are available, allowing more feasible excitations to be realized.
To determine thermal quantities as a function of neutron matter
density, we consider achieving the limits to be vital and take
the limit of Eq. (21) as the continuum limit. Note that this
procedure is similar to, but different from, the one recently
proposed for the unitary limit problem [42], in that we keep
the density ρ finite as we approach the continuum limit, but
the kF → 0 limit is taken in Ref. [42].

Once we decide to take Eq. (21) as the continuum limit,
we have to use different values of a for different densities to
satisfy the regularization scale requirement, Eqs. (3) and (4),
of the EFT. The procedure becomes complicated in order to
satisfy all these requirements, but at the same time it has to
be durable in practice. We have decided to use the following
procedure. First, we choose an appropriate n value that is small
enough yet reasonably durable. Second, for this n, we choose a
set of the representative nucleon densities for the computation
and a set of appropriate a values for them. We call the set the
standard parameter set, and we list them in Sec. II D. Third,
after we complete the computation for the standard set, we
perform the computation by varying the lattice size, so as to
take the thermodynamic limit. Fourth, we vary n to examine
the continuum limit as n → 0.

In the rest of this subsection, we discuss the first step, how
we choose n for the standard set. As an estimate, take the
Fermi gas model. In terms of the Fermi momentum kF , n for
neutron matter is written as

n = (akF )3/(3π2) → 0. (22)

To keep n independent of a for various densities, we should
have a ∝ 1/kF . Note that the excitation energies of the neutron
matter of interest are about an order of magnitude less than the
Fermi energy, as seen in Sec. V, and are safely ignored in this
estimate.

The smallness of n is achieved by making a small, or �

large. If we take Eq. (3), Eq. (2) with p ∼ kF yields

π > akF . (23)

Equations (22) and (23) yield a rather loose estimate of n < 1.
We can obtain a more realistic limit from the observation that
the lattice discretization amounts to the replacement

p2 → 2

a2

3∑
i=1

[1 − cos(api)] = p2 + O (a2p4), (24)

for example, in the neutron propagator. This observation
suggests that the left-hand side of Eq. (23) is more like unity
instead of π , and we obtain the inequality

(3π2)−1/3 > n. (25)

This choice of n does not require a large � to satisfy Eq. (4),
but it does for Eq. (3).

The preceding consideration leads us to set n = 1/4 (or 1/8
of the full filling of the lattice), as a practical compromise.
Other parameters also need to be chosen. In the following
subsection, we discuss how they are chosen and list all
parameter values in the standard parameter set.
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TABLE I. Standard parameter set.

kF (MeV) kF ( fm−1) ρ (ρ0) a (fm) c0/(a3t) c2/(a5t)

LO 15 0.07602 9 × 10−5 25.64 −5.308 –
LO 30 0.1520 7 × 10−4 12.82 −6.354 –
LO 60 0.3041 6 × 10−3 6.409 −7.049 –
NLO 60 0.3041 6 × 10−3 6.409 −9.646 0.3684
NLO 90 0.4561 2 × 10−2 4.273 −11.074 0.5139
NLO 120 0.6081 5 × 10−2 3.205 −12.343 0.6555

D. Standard parameter set

The standard set of the potential parameters is shown in
Table I. We choose the set by the following steps. First, we
choose the values of the Fermi momentum kF , representing
the neutron matter density, as shown in the first and second
columns. Second, the values of a are determined from
(akF )3/(3π2) = n = 1/4 and at the same time by ensuring
that the a values provide reasonable EFT regularization scales.
Third, the values of c0 and c2 are determined from a0 and r0

using the a values in Eqs. (A2) and (A3) with � = π/a. The
Monte Carlo calculations are carried out using the c0 and c2

values by tuning the chemical potential µ, so that the resultant
neutron matter densities by the Monte Carlo computation are
the ρ values listed in the third column in the unit of the normal
nuclear density ρ0 = 0.16 fm−3. We emphasize that these ρ

values are expressed in terms of the kF values in the first and
second column exactly as

ρ = k3
F

/
(3π2). (26)

Throughout this work, we use kF defined through Eq. (26) for
specifying the quantum-mechanically computed density, ρ, of
neutron matter as the interacting fermion system.

III. DETERMINATION OF �, Tc, AND T ∗ FROM THE
PAIRING CORRELATION FUNCTION

In this work, we focus on the determination of three
quantities: the 1S0 pairing gap at T ≈ 0,�; the critical
temperature Tc of the normal-to-superfluid phase transition;
and the pairing temperature scale T ∗. The latter two will be
used to obtain the density-temperature phase diagram, and all
quantities will be calculated from correlation functions, the
first two from the pair-pair correlation function and the third
from the magnetic susceptibility (the spin-spin correlation).

A. Pairing gap �

� is determined directly from the off-diagonal long-range
order (ODLRO) of the spin pair-pair correlation function Ps

[43],

Ps(R) = 1

Ns

∑
i

〈�̂†
i+R�̂i〉

= 1

Ns

∑
i, j=i+R

(δij − Gji)
2, (27)
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FIG. 1. Spin pair-pair correlation function Ps as a function of the
lattice separation R for the lattice size Ns = 83 for the site-occupation
fraction n = 0.25 at kF = 30 MeV. The DQMC results are shown
with statistical uncertainties for T/t = 2.0, 0.444, 0.25, and 0.125 in
the unit of hopping amplitude t = 0.126 MeV. The dashed line is
the asymptotic value of Ps = 0.0244(6) extracted from the values for
R = 4 and 4

√
3 at T/t = 0.25, 0.125, and 0.0625 (not shown).

where �̂i ≡ ĉi↑ĉi↓ is the two-neutron spin-pairing operator
at the ith site, and R is the separation of the neutron pairs
in the lattice spacing unit and has no dimension. Note that
Gij ≡ Gσ

ij = 〈ĉiσ ĉ
†
jσ 〉 for σ =↑,↓ in the attractive Hubbard

model. Ps(R) decays rapidly in R ≈ 1 or 2 and takes a
diminishing asymptotic value. When a long-range order exists
between neutron pairs, the asymptotic value is finite, that is,
the signature of the ODLRO. Figure 1 illustrates this behavior.

In Fig. 1, Ps(R) is calculated for 14 values of T/t between
2.0 and 0.0625; but for clarity, only the selected values of T/t

are shown. Note that the integer points of R = 1–4 arise from
the lattice points in the side of the cubic, while the largest R =
4
√

3 ≈ 7 comes from the midpoint of the diagonal line in the
cubic, which has the displacement vector 〈4, 4, 4〉. The values
for R � 3 are found to be quite close to each other at the lowest
three temperatures, T/t = 0.25, 0.125, and 0.0625. The values
at R = 4 and 7 are averaged, yielding Ps(T ≈ 0, R � 1). �

is then determined from

� = |c0|
a3

√
Ps(T ≈ 0, R � 1). (28)

Similar procedures are applied for different Ns and kF . The
errors from the fit hereafter are estimated by a constrained
least-squares method.

Note that, as seen in Fig. 2 of the next subsection, the
critical temperature is Tc/t = 0.335(1), and the behavior of
Ps(R) at Tc is similar to T/t = 0.25 in Fig. 1. We caution the
reader that the � thus determined is not our final value but
is the value for Ns = 83 and n = 1/4 at kF = 30 MeV. Using
�’s for various values of Ns and n at each kF , we determine
� at the thermodynamic and continuum limits by the further
analysis described in Sec. IV. The same caution is applied to
the determination of Tc and T ∗ in the following subsections.
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 0
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C
∆

T/t

FIG. 2. Spin pair-pair correlation sum C� as a function of
temperature T in the unit of the hopping parameter t . The Monte
Carlo data with the statistical uncertainties are shown for the case
of Ns = 83 and kF = 30 MeV. The vertical dashed line signifies
Tc(Ns = 83) = 0.335(1)t , corresponding to the inflexion point of the
interpolated curve of C�(T/t), Eq. (30) with C1 = 13.6 ± 1.0, C2 =
15.1 ± 2.9, and C3 = 16.2 ± 0.6. The interpolated curve is shown as
the solid curve.

B. Critical temperature Tc

Tc of the normal-to-superfluid phase transition is deter-
mined from the spin pair-pair correlation sum [44–47]

C�(T ) = 1

Ns

∑
i,j

〈�̂i�̂
†
j + �̂

†
i �̂j 〉

= 1

Ns

∑
i,j

[(Gij )2 + (δij − Gji)
2]. (29)

Tc is extracted from the inflexion point of C�(T ). Figure 2
illustrates a typical case of C� as a function of T/t , for kF =
30 MeV and Ns = 83. In the figure, the inflexion point is
at Tc/t = 0.335(1), or Tc = 0.0423(1) with t = 0.1261 MeV.
The inflexion point is determined by an interpolation that fits
the Monte Carlo data with an assumed function,

C�(T ) = −C1 tanh[C2(T − Tc)/t] + C3, (30)

where C1 = C�(T = 0)/2, C2, and C3 are free constant
parameters.

C. Pairing temperature scale T ∗

As the temperature increases, the long-range order of the
superfluidity disappears at Tc. Above Tc, the spin pairing still
remains, however, without generating the long-range order,
and as the temperature increases further, the pairing eventually
disappears. Though the process of the pairing disappearance
is expected to be a continuous process, we may identify
the temperature below which the pairing can be viewed as
still strong. Following a practice in condensed-matter physics
[46,47], we denote the temperature as the pairing temperature
scale T ∗ and determine it from the temperature dependence
of the Pauli spin susceptibility χP . When the (S-wave singlet)
spin pairing is weakened, the spectral weight of low-energy
spin excitations is reduced, and the spin response weakens. χP

is a good quantity for studying this transition, since the χP of

0

 0.1

 0.2

 0.3

 0.4

0  0.5 1  1.5 2

χ P

T/t

FIG. 3. Pauli spin susceptibility χP as a function of temperature T

in the unit of hopping parameter t for Ns = 43. The solid curve is the
free fermion gas limit (|c0|/(a3t) → 0) of χP (T ),≈ n(1 − n/2)/T

(with the filling fraction n) [48]. In comparison to this, the cases for
|c0|/(a3t) = 2, 4, 6, 8, 10, and 12 are shown in the increasing order
of the interaction strength, from top to bottom.

a free fermion gas diverges as T → 0, while it vanishes for an
interacting fermion gas, as illustrated in Fig. 3.

χP is given by

χP (T ,Ns) = 1

T

1

Ns

∑
i,j

〈Si · Sj 〉

= 1

T

1

Ns

∑
i,j

2Gij (δij − Gji), (31)

where Si = ∑
µ,ν=↑,↓ c

†
iµσµνcjν and σ is the Pauli vectorial

matrices. T ∗ is determined by identifying the maximum point
of χP as a function of T [46,47], as discussed in the following.

Figure 4 shows a typical case. For kF = 30 MeV and N =
83, we obtain T ∗/t = 0.5253(3) [T ∗ = 0.06624(3) MeV with
t = 0.1261 MeV]. The maximum point of the Monte Carlo
data is determined through interpolation by use of a fitting
function with a parameter C1,

χP (T ) = C1T exp(−T/T ∗). (32)

0

 0.05

 0.1

0  0.5 1  1.5 2

χ P

T/t

FIG. 4. Pauli spin susceptibility χP as a function of temperature T

in the unit of hopping parameter t for Ns = 83 and kF = 30 MeV. The
vertical dashed line signifies T ∗(Ns = 83) = 0.5253(3)t , which is
determined as the maximum point of χP (T ), using the fitting function
Eq. (32) with C1 = 0.258 ± 0.008 (shown as the solid curve).
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FIG. 5. Lattice-size (Ns) dependence of � at LO for kF = 15, 30,
and 60 MeV with n = 1/4. The Monte Carlo data shown with the
statistical uncertainties are obtained for Ns = 43, 63, 83, and 103. The
dashed lines are the best fits by the use of linear functions of N−1/2

s .

Note that though the definition of T ∗ is somewhat sub-
jective, T ∗ thus defined approaches Tc at the BCS limit, and
T ∗ signifies the pair-forming temperature at the BEC limit
as T ∗ ∝ |c0|/[a3t ln(|c0|/(a3tεF ))3/2] [28,47]. Here, the BCS
and BEC limits correspond to the weak and strong interaction
limits, or the small and large c0/(a3t) limits, respectively.

IV. �, Tc, AND T ∗ AT THE THERMODYNAMIC AND
CONTINUUM LIMITS

A. Pairing gap �

As the first step, we determine � at the thermodynamic
limit. To carry out a definite analysis, we apply the BCS
finite-size scaling exponent, λ = 3/2 in � ∼ L−λ = N

−λ/3
s

as being independent of the density [49]. The exponent is
obtained through �(T = 0, Ns) ∝ Tc(Ns) ∼ L−3/2 = N

−1/2
s

by combining the BCS result, �(T = 0) ≈ 1.76Tc, and the
direct relations between the finite-size scaling and critical
exponents [49,50]. Note that while the usual χ2 best fit to
all of our Monte Carlo data results in an essentially indefinite
λ, the jackknife method (often used in the lattice QCD data
analysis [38]) yields λ = 1.6 ± 0.3 by assuming a linear L−λ

dependence independent of the density. Apparently the value
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FIG. 6. Same as Fig. 5, but at NLO for kF = 60, 90, and 120 MeV.
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FIG. 7. Pairing gap � in the unit of the Fermi energy εF as
a function of the filling fraction n for kF = 60 MeV. The solid
circles show Monte Carlo data for Ns = 63 at LO, with statistical
uncertainties. The dashed line is the best fit by the use of a linear
n1/3 dependence. The interception of the dashed line with the vertical
axis corresponds to � at the continuum limit (n → 0) for Ns = 63 at
kF = 60 MeV.

of the exponent changes little between the BCS weak-coupling
region and the neutron-matter BCS-BEC crossover region.
Figures 5 and 6 show the choice of λ = 3/2 reasonable.

In Figs. 5 and 6, the finite-size scaling of � is shown as
a function of Ns using Ns = 43, 63, 83, and 103 data with
n = 1/4. Fig. 5 is the finite-size scaling of � evaluated at
LO for kF = 15, 30, and 60 MeV, while Fig. 6 is at NLO for
kF = 60, 90, and 120 MeV. The data at LO are found to be
best fit with a linear dependence on N

−1/2
s = L−3/2 as

�(Ns, kF = 15 MeV) = 0.0394(34) N−1/2
s + 0.019152(20),

�(Ns, kF = 30 MeV) = 0.096(35) N−1/2
s + 0.1207(16),

�(Ns, kF = 60 MeV) = 0.74(24) N−1/2
s + 0.581(13), (33)

and those for NLO are

�(Ns, kF = 60 MeV) = 0.423(67) N−1/2
s + 0.4602(54),

�(Ns, kF = 90 MeV) = 1.16(17) N−1/2
s + 1.028(14),

�(Ns, kF = 120 MeV) = 3.91(75) N−1/2
s + 1.565(42), (34)

where the last constant for each value of kF is � at the thermo-
dynamic limit (Ns → ∞). The best-fit constants in Eqs. (33)
and (34) are determined using the jackknife method.

As the second step, we determine � in the continuum limit
using the above thermodynamic limit values. As discussed
in Sec. II C, these values are obtained by using the standard
parameter set, or with n = 1/4 (half of the quarter-filling),
and are needed to extrapolate to n = 0 to reach the continuum
limit, a → 0. For the extrapolation, we need to know how
much � changes between n = 1/4 and n → 0, or the ratio of
� at the two values of n,R�. In this work, we determine R�

solely using LO Monte Carlo data of the Ns = 63 lattice for
kF = 60 MeV. Dependence of R� on Ns and kF is weak both
for LO and NLO, as discussed in Sec. IV D.

Figure 7 shows the dependence of � on n for Ns =
63 at kF = 60 MeV. The data in the figure, shown with
statistical uncertainties by solid circles, are for n = 1/16,
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FIG. 8. Finite-size scaling of the critical temperature Tc and the
pairing temperature scale T ∗. The Monte Carlo data for Tc and T ∗

with n = 1/4 at LO are shown for kF = 15, 30, and 60 MeV from
bottom to top. The dotted lines are the best fits of Eqs. (38) and (40).

1/8, 3/16, 1/4, 3/8, and 1/2. The EFT potential parameter
c0(a) is varied by the use of Eq. (A3) to accommodate the
variation of a generated by the change of n.

The n dependence of � is found to be relatively weak, and
the jackknife analysis of the data yields

�(n,Ns = 63)/εF = −0.07(7) n1.6(1.3) + 0.337(20). (35)

While more data are desirable to reduce the uncertainty of the
continuum limit, the constant term in Eq. (35), some indirect
information of the n exponent is available from the weak-
coupling BCS theory by the use of � ∝ Tc, and also from
the analysis by Burovski et al. [42] in a similar limit (but with
kF → 0 as noted in Sec. II C) for their unitary limit calculation.
Both suggest the n1/3 dependence, with which we find the best
fit

�(n,Ns = 63)/εF = −0.044(16) n1/3 + 0.351(10). (36)

For definiteness and because of lack of time, we use in our
present analysis Eq. (36) and show it as the dashed line in
Fig. 7. Equations (35) and (36) yield the statistically con-
sistent � at the continuum limit and suggest the systematic
uncertainty by the use of the n1/3 dependence to be several
percent.

Equation (36) gives the ratio R�

R� ≡ �
(
n → 0, Ns = 63

)
�

(
n = 0.25, Ns = 63

) = 0.674(19) MeV

0.628(11) MeV

= 1.07(5). (37)

That is, the continuum-limit correction amounts to a 7%
increase in the value of �. Exploiting the weak dependence of
R� on Ns and kF (elaborated in Sec. IV D), we apply the same
R� to � at the thermodynamic limit in Eqs. (33) and (34), so
as to obtain the final values of � at the thermodynamic and
continuum limits.

B. Critical temperature Tc and pairing temperature scale T ∗

To obtain Tc and T ∗ at the thermodynamic and continuum
limits, we carry out the same two steps as those done on � in the
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FIG. 9. Same as Fig. 8, but for kF = 60, 90, and 120 MeV, from
bottom to top. The dotted lines are the best fits of Eqs. (39) and (41).

preceding subsection. Because Tc is at criticality, we will apply
the universality argument for taking the thermodynamic limit.
Monte Carlo data at n = 1/4 used for the finite-size scaling of
Tc and T ∗ are shown in Figs. 8 and 9 for Ns = 43, 63, 83, and
103 with statistical uncertainties.

The exponent of the finite-size scaling and the critical
exponents are known to be directly related at criticality [50].
Furthermore, because the three-dimensional (3D) XY model
and our 3D Hubbard model are expected to belong to the
same universality class [47,49,51], the exponents of finite-size
scaling at criticality of both models are also expected to
be the same [49,50]. Accordingly, we have Tc(kF ,Ns) −
Tc(kF ,Ns → ∞) ∼ N

−1/(3ν)
s = L−1/ν with ν = 2/3 of the

XY model [51,52]. Here, ν denotes the exponent of, for
example, the correlation length, as ∼(T − Tc)−ν . Note that in
comparison, a mean-field approximation such as Ginzburg-
Landau theory gives ν = 1/2 [53]. With the linear N

−1/2
s

dependence, we find the best fits to the data for Tc at LO
to be

Tc(kF = 15 MeV, Ns) = 0.039(14) N−1/2
s + 0.00700(94),

Tc(kF = 30 MeV, Ns) = 0.1839(11) N−1/2
s + 0.03420(11),

Tc(kF = 60 MeV, Ns) = 0.6069(64) N−1/2
s + 0.15770(30),

(38)

which are shown in Fig. 8, and at NLO,

Tc(kF = 60 MeV, Ns) = 0.88(19) N−1/2
s + 0.146(13),

Tc(kF = 90 MeV, Ns) = 1.14(33) N−1/2
s + 0.388(22), (39)

Tc(kF = 120 MeV, Ns) = 1.67(63) N−1/2
s + 0.687(37),

which are shown in Fig. 9. The last constant in each best
fit in Eqs. (38) and (39) is Tc at the thermodynamic limit,
Tc(kF ,Ns → ∞).

While T ∗ is not at criticality, we find the finite-size scaling
for T ∗ to be similar to that of Tc. For example, the data of
T ∗(Ns) yield the best-fit scaling power ∼N−0.507±0.007

s with
the jackknife method (for Tc,∼ N−0.53±0.03

s ). We thus apply
the same linear N

−1/2
s dependence to T ∗ as that for Tc. The
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best fits for T ∗ at LO are found to be

T ∗(kF = 15 MeV, Ns) = 0.1400(24) N−1/2
s + 0.00707(24),

T ∗(kF = 30 MeV, Ns) = 0.448(54) N−1/2
s + 0.0463(23),

T ∗(kF = 60 MeV, Ns) = 1.45(15) N−1/2
s + 0.2618(99),

(40)

and at NLO,

T ∗(kF = 60 MeV, Ns) = 1.890(59) N−1/2
s + 0.2575(35),

T ∗(kF = 90 MeV, Ns) = 3.583(60) N−1/2
s + 0.5876(61),

T ∗(kF = 120 MeV, Ns) = 3.70(12) N−1/2
s + 1.4320(69),

(41)

where the last constant in each equation gives T ∗ at the
thermodynamic limit.

As to the continuum limit, in Fig. 10 we show the n

dependence of Tc and T ∗ at LO for Ns = 63 at kF = 60 MeV.
The data with statistical uncertainties are shown by solid circles
for n = 1/16, 1/8, 3/16, 1/4, 3/8, and 1/2. The exponent
fit of Tc (T ∗) shows Tc ∼ n0.31±0.12 (T ∗ ∼ n0.43±0.10). As
observed for the similar limit of Tc [42], they appear to be
best fit by a linear n1/3 dependence,

Tc(n,Ns = 63)/εF = −0.165(23) n1/3 + 0.209(12), (42)

and

T ∗(n,Ns = 63)/εF = −0.286(20) n1/3 + 0.367(12). (43)

Note that the continuum limits of Tc and T ∗ in Eqs. (42) and
(43) are consistent with those determined by the exponent fits
using the jackknife method within the statistical uncertainties
[Tc = 0.223(41) and T ∗ = 0.328(34)]. Contrary to the case
of �, the n dependence of Tc and T ∗ is rather strong.
Equations (42) and (43) provide the needed ratios RTc

and
RT ∗ , which are used to obtain Tc and T ∗ at the thermodynamic
and continuum limits, as in the case of �.
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FIG. 10. n dependence of the critical temperature Tc and pairing
temperature scale T ∗ at LO in the unit of the Fermi energy εF for
Ns = 63 at kF = 60 MeV. The dashed lines are the best fits to the Tc

and T ∗ data, Eqs. (42) and (43), respectively.

TABLE II. Dependence of the continuum limit on Ns .

kF (MeV) Ns R� RTc
RT ∗

LO 60 43 1.14(17) 2.10(15) 1.9(2)
LO 60 63 1.07(5) 1.96(13) 1.94(9)
LO 60 83 1.12(8) 1.86(10) 2.0(1)
NLO 60 43 1.08(6) 2.08(8) 2.1(2)
NLO 60 63 1.04(5) 2.05(7) 2.1(1)
NLO 60 83 1.05(4) 2.08(37) 2.0(1)

C. Dependence of the continuum limit on Ns and kF

The extrapolation to n → 0 depends generally on Ns and
kF , but the dependence is expected to be weak because of the
separation of local (ultraviolet) and global (infrared) properties
for a sufficiently large Ns .

For the Ns dependence, we calculate, using the lattice
sizes of Ns = 43 and 83, the ratios between n → 0 and n =
0.25: R�,RTc

, and RT ∗ , both at LO and NLO. As summarized
in Table II, each ratio at kF = 60 MeV is consistent within
the statistical uncertainties for Ns = 43, 63, and 83 both at LO
and NLO. Note that the second row for Ns = 63 is obtained
using data at n = 1/16, 1/8, 3/16, 1/4, 3/16, and 1/2, while
the other rows use data at n = 1/16, 1/4, and 1/2.

Table III also confirms the weak dependence on kF . Note
that the third row uses data for n = 1/16, 1/8, 3/16, 1/4, 3/8,
and 1/2, while the other rows use data at n = 1/16, 1/4,
and 1/2.

V. MATCHING LO AND NLO RESULTS

Figures 11 and 12 display the LO and NLO �’s as a
function of kF and illustrate their matching in the region of
kF = 0.15–0.30 fm−1: the � shown in Fig. 11 is the result of
the elaborate calculation described in Secs. III and IV, while
the � shown in Fig. 12 is the result of a simpler calculation
for 43 lattices with n = 1/4, including � at the density of
kF = 0.22805. The density dependences of the �’s are quite
close to each other in the two figures, demonstrating that a
smooth transition from the LO � to the NLO � occurs in
the density region of kF = 0.15–0.30 fm−1. Accordingly, we
take the LO � for kF = 0.1520 fm−1 and the NLO � for
kF = 0.3041 fm−1, as the final values.

Figure 13 shows that also for Tc and T ∗, smooth transitions
take place between the LO and NLO values in the same
density region as for �. We thus also take Tc and T ∗ at kF =
0.1520 fm−1 as the LO and Tc and T ∗ at kF = 0.3041 fm−1

TABLE III. Dependence of the continuum limit on kF .

kF (MeV) Ns R� RTc
RT ∗

LO 15 63 1.09(3) 1.96(9) 2.4(9)
LO 30 63 1.08(8) 1.98(6) 2.4(4)
LO 60 63 1.07(5) 1.96(13) 1.94(9)
NLO 60 63 1.04(5) 2.05(7) 2.1(1)
NLO 90 63 1.11(10) 2.12(20) 2.0(1)
NLO 120 63 1.04(2) 2.00(36) 2.0(3)
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FIG. 11. 1S0 pairing gap, �, in the thermodynamic and continuum
limits, resulting from the LO (solid circles) and NLO (open circles)
calculations. The neutron density is denoted in terms of the Fermi
momentum kF . The BCS calculation of Ref. [54] ( solid curve) and
a higher order calculation including polarization effects of Ref. [55]
(dashed curve) are also shown for comparison. For a more detailed
comparison, see Fig. 17 in Sec. VII B.
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FIG. 12. 1S0 pairing gap, �, for Ns = 43 and n = 1/4, resulting
from the LO (solid circles) and NLO (open circles) calculations. The
neutron density is denoted in terms of the Fermi momentum kF .
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FIG. 13. Critical temperature Tc (circles) and the pairing temper-
ature scale T ∗ (squares) by the LO (solid symbols) and NLO (open
symbols) calculations for Ns = 43 and n = 1/4, shown as a function
of the neutron matter density (represented by the Fermi momentum
kF ). The error bars are statistical uncertainties only.

TABLE IV. Our final values of the 1S0 pairing gap � in the
thermodynamic and continuum limits, and the ratio of � and the
BCS value �BCS. Uncertainties are statistical only.

kF (MeV) ρ (ρ0) � (MeV) �/�BCS

15 9 × 10−5 0.021(1) 0.69(3)
30 7 × 10−4 0.13(1) 0.67(4)
60 6 × 10−3 0.49(3) 0.56(5)
90 2 × 10−2 1.10(7) 0.68(4)

120 5 × 10−2 1.7(1) 0.74(4)

as the NLO. Note that the difference between the LO and NLO
values of Tc and T ∗ in Fig. 13 is much smaller than that in the
case of �.

VI. RESULTS

A. Pairing gap �

Table IV lists our final values of � in the thermodynamic
and continuum limits for low-density neutron matter. Table IV
includes the ratio of � and the corresponding BCS pairing
gap, �BCS. Here, the �BCS’s are taken from those tabulated
in Ref. [54] as the representative BCS values. As noted in
Sec. VII B, there are only quite small differences among the
�BCS’s calculated by the CD-Bonn, Nijmegen I, Nijmegen II,
and Argonne V18 NN potentials [10,11].

It is difficult to assess the systematic uncertainties involved
in our calculation. In view of the probable uncertainties
involved in taking the thermodynamic limit and especially
the continuum limit, however, it would be fair to state that our
calculation yields � to be approximately 30% less than the
BCS values, perhaps with an additional systematic uncertainty
of about ±10%. We thus consider finer variations of �

inconclusive. For example, a close examination of Table IV
shows that the �/�BCS ratio dips at around kF = 60 MeV.
But this would require further study.

B. Phase diagram of low-density neutron matter

Table V lists our final values of Tc and T ∗ in the
thermodynamic and continuum limits. It also shows their
ratios and the ratios with the � of Table IV. In Table V, we
observe that T ∗ approaches Tc as the density decreases. That
is, the pseudogap state (see below) diminishes as the density

TABLE V. Our final values of Tc and T ∗, and the relative
magnitudes among them and � in Table IV.

kF

(MeV)
Tc

(MeV)
T ∗

(MeV)
�/Tc �/T ∗ Tc/T ∗

15 0.014(3) 0.014(1) 1.5(4) 1.5(2) 0.99(28)
30 0.067(5) 0.091(9) 1.6(2) 1.4(2) 0.74(12)
60 0.29(5) 0.45(5) 1.7(4) 0.99(11) 0.57(12)
90 0.76(9) 1.1(1) 1.5(3) 0.97(11) 0.67(12)

120 1.4(2) 2.8(1) 1.2(2) 0.60(7) 0.49(8)
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FIG. 14. 1S0 phase diagram of low-density neutron matter. The
solid and open symbols with statistical uncertainties show the LO and
NLO results, respectively. The dotted curves for Tc and T ∗ are drawn
by extrapolation. Neutron matter is in the superfluid phase below the
critical temperature Tc of the second-order phase transition. Above
Tc, neutron matter is in the pseudogap phase [49], in which pairing
remains locally without forming long-range order, and undergoes a
smooth transition from the pseudogap phase to the normal phase
around T ∗, as pairing gets much less.

decreases. Furthermore, as the density decreases, the �/Tc

ratio approaches the BCS value of about 1.76 [56], while �

and Tc themselves remain different from the BCS values.
Tc and T ∗ in Table V provide the temperature-density

phase diagram as shown in Fig. 14. The figure illustrates the
thermodynamic properties of low-density neutron matter. For
example, at a fixed density kF , as the temperature goes down
from the normal phase, the pairing is gradually enhanced,
forming the pseudogap phase [49] around and below T ∗. As
the temperature goes down farther, the pairing gets stronger
and eventually forms a long-range ordering at Tc, thereby
generating the second-order phase transition to the superfluid
phase. Note that the transition between the pseudogap phase
and the normal phase is smooth. We must also note that the
definition of T ∗ is somewhat subjective.

VII. DISCUSSIONS

A. Nature of low-density neutron matter: BCS-BEC crossover

To understand the nature of low-density neutron matter, we
examine the dependence of Tc on the parameter c0 by applying
the LO calculation, since the physics throughout our low-
density region is largely dictated by c0. Figure 15 illustrates the
dependence in comparison to Tc in the weak-coupling (BCS)
and strong-coupling (BEC) limits,

Tc(BCS) = 2eγ

π

√
(36t2 − µ2) exp

(
− a3

D0(µ)|c0|
)

,

(44)

Tc(BEC) = 2

(
2π2n

�(3/2)ζ (3/2)

)2/3
a3t2

|c0| ,

respectively [48]. Here, γ is Euler’s constant and D0(µ) is the
density of states. In our low-density neutron matter, |c0|/(a3t)
is 5–7 and corresponds to the middle region in Fig. 15. The
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T
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BEC

FIG. 15. EFT parameter (c0) dependence of the critical tem-
perature Tc. For easier comparison, Tc and c0 are expressed as
dimensionless by use of the spatial lattice spacing a and the hopping
parameter t . The open circles are shown for Ns = 63 at the quarter-
filling (n = 0.5). The dashed curves are Tc/t at the BCS and BEC
limits of Eq. (44).

figure clearly shows that the thermal property of low-density
neutron matter is not in a state of BCS, but of BCS-BEC
crossover. Though not discussed here, the c0 dependence of
T ∗ also verifies this point [47,48].

The preceding point is perhaps better clarified by the c0

dependence of the chemical potential µ. µ is positive in
the weak-coupling BCS region and becomes negative in the
strong-coupling BEC region by exhibiting a bosonic nature.
Figure 16 illustrates the c0 dependence of µ in the LO
calculation. µ decreases as c0 increases, and it takes a relatively
small, positive value in the region of our low-density neutron
matter. The small positive value is in accord with the neutron
matter being close but not (yet) in the BEC region and
indeed confirms the simple characterization of the crossover,
a negative and small (in magnitude) value of 1/(kF a0) [28], as
noted in Sec. I.
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0 2 4 6 8  10  12  14

µ/
t

|c0|/(a3t)

FIG. 16. Chemical potential µ as a function of the interaction
strength c0 in a dimensionless unit, with the spatial lattice spacing a

and the hopping amplitude t . The calculation is of the LO for Ns = 63

and n = 0.5.
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FIG. 17. Comparison of our Monte Carlo � to other calculations
as a function of the neutron matter density (represented by the Fermi
momentum kF ). The solid diamonds show our results, with statistical
uncertainties. The other calculations consist of three types: quantum
Monte Carlo (symbols with statistical uncertainties), BCS (solid
curve), and BCS with higher-order effects (R’s, C’s, and RG; shown
by dotted and dashed curves). See text for the description of each
calculation shown.

B. Pairing gap �

Figure 17 illustrates the density dependence of various �’s
reported in the literature. �’s in the figure consist of those
obtained by three types of calculations: (1) BCS (shown by a
solid curve), (2) BCS or similar approximations, with higher
order effects (dotted and dashed curves), and (3) quantum
Monte Carlo (shown with error bar symbols).

(1) Below kF ≈ 0.7 fm−1, there are few recognizable
differences [10,11] among �BCS’s calculated by various
conventional NN potentials: Argonne v18 [57], Nijmegen [58],
and CD Bonn [59]. Accordingly, �BCS’s are represented by a
single (solid) curve in Fig. 17.

(2) Figure 17 includes �’s by the calculations beyond
BCS. Calculations in the random phase approximation (RPA)
with polarization effects are by Wambach et al. [55] (denoted
as R1), Schulze et al. [60] (R2), and Cao et al. [61] (R3).
Calculations using correlated-basis functions are by Chen
et al. [62] (C1) and Fabrocini et al. [16] (C2). A calculation
based on a renormalization group approach is by Schwenk
et al. [63] (RG). The curves for these �’s are taken from
similar figures in the recent literature: Figs. 1 and 2 of
Ref. [17] and Fig. 4 of Ref. [14]. In addition, though not
shown, an extrapolation from finite nuclei results obtained by
Hartree-Fock-Bogoliubov calculations also gives � close to
the �BCS for kF <∼ 0.5 fm−1 [64]. We see that these �’s differ
appreciably among each other, though recent works tend to
give the values closer to the BCS �.

(3) Two types of quantum Monte Carlo calculations have
been reported based on the GFMC [13,14] and AFDMC [16,
17] methods. The two methods are applied for a fixed number
of neutrons using the conventional NN potentials (or some
model potentials), while our work is based on a grand canonical
ensemble formulation. Figure 17 shows the most recent results
of the GFMC [14] (open squares), the AFDMC [17] (open
circles), and ours (taken from Table IV and shown by solid
diamonds).

In the figure, we see that all quantum Monte Carlo
calculations are, overall, close to the �BCS. The AFDMC �

is quite close to the �BCS in the density region examined in
this work, while the GFMC � is smaller than the �BCS and
is similar to (even slightly lower than) our �. Note that above
kF ≈ 0.6 fm−1, the AFDMC � becomes quickly smaller than
the �BCS as the density increases.

It is difficult to assess the three quantum Monte Carlo
calculations by comparing them, because the intermediate
steps of the calculations are all different. Here, however,
we point out a possible issue closely tied to their basic
formulations and setups: stemming from the neutron numbers
being fixed, the GFMC and AFDMC �’s are calculated using
the odd-even staggering (or the second-order finite difference)
of the energy per neutron,

�(oddN ) = E(N ) − 1
2 [E(N − 1) + E(N + 1)] , (45)

where N is the number of neutrons. As described in Sec. III, our
�’s are calculated directly from the spin pair-pair correlation
functions. By physical arguments, the two ways of calculating
� are expected to be the same for a large N , but we are not
aware of a rigorous proof for this expectation. Since it has
been a common practice to apply Eq. (45) for the extraction
of � from finite nuclei [1,27], closer examination of this issue
would be desirable, as exemplified in Ref. [64].

As noted above, it is desirable to apply Eq. (45) for a large
N . The large values up to N = 92 are used in the GFMC
calculation [14], while up to N = 68 in the AFDMC [17]. Both
N ’s are perhaps large enough to provide reliable information
for N → ∞. While it might be caused by the different ways
the nuclear potentials are applied in the two methods, the
noticeable difference between the GFMC and AFDMC �’s is
puzzling to us.

C. Further improvement of the present work

We note here the aspects of this work that we would like to
improve.

(1) The largest lattice size we have used is Ns = 103, but
larger lattices would be desirable for reliably reaching the
thermodynamic limit. For this, we would like to study more
closely the use of the hybrid Monte Carlo (HMC) method. As
the commonly used method in lattice QCD calculations [38],
the HMC is expected to reduce the computation time from
∼(NsNt )2 or (NsNt )3 (for the DQMC) to ∼(NsNt )5/4. Our trial
application of the HMC (following Ref. [65]) in our problem
has shown a strong dependence on the HMC parameters, such
as the size and number of molecular dynamics steps and has
brought about a difficult compromise between the computation
time and the systematic error. We suspect that the difficulty
stems from badly conditioned fermion matrices and also from
our (effectively) strong interaction. We would like to resolve
this issue and find a practical procedure for optimizing the
HMC calculation for this problem.

(2) Because of lack of time, we have examined the
continuum limit by applying the case of Ns = 63 to all Ns’s
that we computed. The possible Ns dependence is a potentially
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important source of the systematic error, and we would like to
clarify this issue.

(3) The matching of the LO and NLO calculations indicates
that our � deviates from the �BCS more appreciably in the
matching density region, kF ≈ 0.15–0.3 fm−1. It is difficult to
establish the deviation by using the present statistics. We would
like to examine this density region more closely to determine
whether such a fine structure of the density dependence of �

exists.

VIII. SUMMARY

In conclusion, we have investigated thermal properties of
low-density neutron matter by the determinantal quantum
Monte Carlo lattice calculations with the single- and two-
parameter pionless EFT NN potential. The 1S0 pairing gap
at T ≈ 0, the critical temperature of normal-to-superfluid
phase transition, and the pairing temperature scale have been
determined directly from the correlation functions and have
provided the temperature-density phase diagram for the den-
sity of (10−4–10−1)ρ0. The thermodynamic limit was taken,
and the continuum limit was examined in the determination.
The pairing gap was found to be approximately 30% less than
the BCS value. The physics of neutron matter in this density
region has clearly been identified as a BCS-BEC crossover.
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APPENDIX A: DETERMINATION OF THE EFT
POTENTIAL PARAMETERS c0(�) AND c2(�)

The EFT potential parameters, c0(�) and c2(�), are
determined from the observables for an appropriately chosen
value of �. As the observables, we choose the scattering length
a0 and the effective range r0 in the effective range expansion

of Eq. (6) with � = π/a in our lattice calculation (where a is
the lattice spacing).

� is needed in the determination of c0(�) and c2(�) so as to
regularize loop contributions, which otherwise diverge. With
the regularization, the Schrödinger equation is solved, and a0

and r0 are expressed in terms of c0(�) and c2(�) algebraically
[37,66]. The direct use of the algebraic expressions, however,
amounts to a mere phenomenological fit. As an application
of EFT, we must ensure that EFT counting rules are properly
applied: because our EFT Lagrangian is truncated at p2/Q2,
we must be consistent with the truncation in the determination
of c0 and c2. That is, c2(�) must be treated perturbatively
by neglecting the O([c2(�)]2)-order contributions. We then
obtain [37]

M

4π

1

a0
=

[
1

c0(�)
+ M

2π2
L1

]
+ M

π2
L3

c2(�)

c0(�)
,

M

16π
r0 = c2(�)

c2
0(�)

− M

4π2

1

�
R(0), (A1)

where L1 = θ1� and L3 = θ3�
3. The numerical values of

θ1, θ3, and R(0) for large lattices are given in Ref. [37]. The
inversion of Eq. (A1) is, again by treating c2(�) perturbatively,

c0(�) = c
(0)
0 (�)

{
1 + r0

π

(
M

4π

)2

L3η
[
c

(0)
0 (�)

]2

}

≡ c
(0)
0 (�) + �c0(�),

c2(�) = Mr0

16π
η
[
c

(0)
0 (�)

]2
, (A2)

where η = 1 + 4R(0)/(πr0�), and the leading-order
c0(�), c(0)

0 (�), is given by

c
(0)
0 (�) = 4π

M

(
1

a0
− 2

π
L1

)−1

. (A3)

Equations (A1) and (A2) consistently include up to
O(p2/Q2); their combined use is equivalent to solving the
Schrödinger equation with the truncated potential of Eq. (A2)
by treating c2(�) perturbatively. That is, in this treatment,
we obtain exactly the same a0 and r0 as those determined
phenomenologically or obtained by solving the Schrödinger
equation with no counting rule applied. Because of this, the
phase shifts determined by a0 and r0 are also exactly the
same as those determined by the LO and NLO potentials
by consistently applying the EFT counting rule. The same
EFT treatment should also be applied to calculations of
many-nucleon systems, as we have done in this work. Note that
upon the application of the EFT counting rule, consistency is
the vital point, as is evident from the observation that r0 turns
out to be negative for a certain range of � if this step is not
properly applied [66].

For a0 and r0, we have used the old values of −16.45
and 2.83 fm, respectively [67,68]. The most recent values are
a0 = −18.9 ± 0.4 fm and r0 = 2.75 ± 0.11 fm as quoted in
Ref. [36]. The discrepancy between the two a0 values is 13 ±
2% and not negligible, but its effects are expected to be much
smaller.
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As Eq. (A3) implies, c(0)
0 is dominated by the � contribution

because c
(0)
0 is close to the nontrivial fixed point in the

renormalization group flow [30,69], dictated by the large
magnitude of a0. Consequently, c0 and c2 are quite insensitive
to the exact value of a0. For example, at kF = 60 MeV, using
the standard parameter set of Table I, the NLO c0/(a3t) and
c2/(a5t) differ by 1.8% and 1.4%, respectively, between the
old and the most recent values of a0 and r0. The corresponding
LO c0/(a3t) differs by 1.4% between them.

Generally some � contributions must cancel in calculating
observables, so that their values are independent of the regular-
ization procedure. But the closeness to the fixed point suggests
the cancellation to be effectively small in this case. Although
repeating our entire calculations is quite time consuming and
unrealistic at present, we have performed a limited, test LO
calculation at kF = 60 MeV for Ns = 63 and n = 1/4. We
find � differs by about 2%, in the same order of the statistical
uncertainties of the Monte Carlo calculation: � = 0.63(1) and
= 0.64(3) MeV for a0 = −16.45 and = −18.9 fm, respec-
tively. This finding also confirms the following observation: in
the accompanying paper [29], we report the determination of
various quantities at the unitary limit (|a0| → ∞ with r0 = 0)
by making the extrapolation η ≡ 1/(a0kF ) → 0. By taking
the η variation to be an a0 variation, we find that the above
discrepancy in � is 2.2% for kF = 60 MeV and decreases as
kF gets larger and increases as kF gets smaller.

APPENDIX B: PHYSICAL SIZES OF A NEUTRON PAIR
AND COMPUTATIONAL LATTICE

A measure of the size of an interacting neutron pair
(a Cooper pair) in the superfluid state, ξcp, is [27]

ξcp = h̄2kF

M�
. (B1)

ξcp must be smaller than the dimension of the cubic lattice,
as a necessary condition for the simulation of the collective
state (but clearly not a sufficient one). Table VI shows that
ξcp is indeed much smaller than the dimension of the lattice
aN

1/3
s , except for the marginal case of Ns = 43. Note that

ξcp depends on a and L through the n dependence of �. The
a and Ns dependence of ξcp through � is weak, as seen in
Sec. IV A. In the table, we list ξcp for Ns = 43 and n = 1/4, for
simplicity.

APPENDIX C: TECHNICAL DETAILS OF MONTE CARLO
COMPUTATION

In this appendix, we discuss some technical details of the
setup for the implementation of our lattice calculations.

1. Parameter values

The parameter set for lattice sizes is the following: the
number of spatial lattice sites used are

Ns = 43, 63, 83, and 103, (C1)

so as to extrapolate the data into the thermodynamic limit
(Ns → ∞); the number of temporal lattice sites is

4 � Nt � 128, (C2)

where the discretization size of the temporal lattice is the same
in Ref. [47] as

�Nt = 0.125

t
. (C3)

The typical example of one production run is as follows.
Because the method of grand canonical ensemble is used, µ

is fixed in each run. The thermal observable for the desired
density ρ is interpolated from a few sets of the observables
calculated at different µ. About 1000–10000 samples are
accumulated to obtain statistics with a precision of several
percent.

2. Determinantal quantum Monte Carlo

a. Temporal lattice spacing

To choose �β, we need to know how the expectation values
of thermal observables are affected by the choice. Figure 18
illustrates the dependence of �β on the thermal observable
C� in our DQMC calculation. The data have been taken with
µ/t = 0 and Ns = 43 at kF = 30 MeV. The figure is a typical
example, and we have observed similar results with other
thermal observables and parameter values.

From Fig. 18, we see that the expectation values of thermal
observables are affected only a little for �β <∼ 0.2t , confirming
that the choice employed in the previous DQMC calculation
similar to ours [20] is indeed reasonable, and so we adopted
this choice.

TABLE VI. Physical sizes of a neutron pair and computational lattices.

kF (MeV) ξcp (fm) a (fm) aN1/3
s (Ns = 43) aN 1/3

s (Ns = 63) aN 1/3
s (Ns = 83) aN 1/3

s (Ns = 103)

15 1.3 × 102 25.64 102.6 153.8 205.1 256.4
30 47 12.82 51.3 76.9 102.6 128.2
45 28 8.55 34.2 51.3 68.4 85.5
60 21 6.41 25.7 38.5 51.3 64.1
90 11 4.27 17.1 25.6 34.2 42.7

120 8.6 3.21 12.8 19.2 25.6 32.1
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FIG. 18. Pair correlation function C� as a function of temporal
lattice spacing �β, with Ns = 43 at kF = 30 MeV in the unit of
hopping amplitude t in the DQMC calculation.

b. Prethermalization steps

At the start of sampling, we generate the initial configura-
tion of the auxiliary fields χ . In our DQMC calculation, we
use the hot start, in which a random (disordered) configuration
is used, instead of the cold start using a uniform (ordered)
configuration. Following the start, we must take a sufficient
number of prethermalization steps to obtain the equilibrium
configurations, statistically independent from the initial con-
figuration in the Markov chain.

Figure 19 illustrates the dependence of the sample number
on the thermal observable C� in our DQMC calculation. The
data have been taken with µ/t = −1.83 at Ns = 43 and Nt =
12. The figure shows that the equilibrium starts to be reached
after 100–150 samples. Similar results are observed with other
observables and for other parameter values.

c. Thermalization steps and autocorrelations

To ensure statistically independent configurations, we must
take thermalization (decorrelation) steps between sample
takings. We determine the number of the thermalization steps
by monitoring the autocorrelation. The autocorrelation for k
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FIG. 19. Pair correlation function C� as a function of the sample
number at Ns = 43 and Nt = 12 in the unit of hopping amplitude t

in our DQMC calculation.
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FIG. 20. Autocorrelation as a function of thermalization steps
between samples taken with the number of spatial lattice sites Ns = 43

and of temporal lattice sites Nt = 12 at the Fermi momentum kF =
30 MeV in our DQMC calculation.

conservative samples of the observable O,CO(k), is of the
standard form

CO(k) = 〈OiOi+k〉 − 〈Oi〉2〈
O2

i

〉 − 〈Oi〉2
, (C4)

where 〈· · ·〉 denotes the average over the random walk labeled
with i, for example,

〈OiOi+k〉 ≡ 1

N − 1

N−k∑
i=1

O(Xi)O(Xi+k). (C5)

The condition of no correlation is CO ∼ 0, but in practical
terms CO <∼ 0.1 is recommended [70], and thus we ensure CO

to be less than 10%.
A typical case of the autocorrelations for some observables

is shown in Fig. 20 with the parameter set (Ns = 43, Nt =
12, and kF = 30 MeV). The autocorrelations are seen to be
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FIG. 21. �β dependence of the ratio of energy per particle
E/A, pair correlation function C�, Pauli spin susceptibility χP ,
and chemical potential µ to those at �β → 0 at T/t = 0.4 with
the interaction strength c0/(a3t) = −6.0 at the one-eighth filling
(n = 1/4) in the dimensionless unit.
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FIG. 22. Pair correlation function C� as a function of temperature
T in the unit of hopping amplitude t at different �β at kF = 30 MeV,
Ns = 43, and n = 1/4. The open and solid circles with statistical
errors are the results at LO and NLO, respectively.

less than 0.1 for more than ten thermalization steps between
samples.

3. Systematic error of the DQMC

Here, we discuss the systematic uncertainties of the DQMC
besides the statistical ones due to data sampling. After ensuring
the independence between samples by keeping the autocor-
relations of thermal observables small enough as described
in Appendix A 2, the systematic error of the DQMC on
observables solely comes from the size of the discretization of
the time slice �β, which is related to the inverse of temperature
β ≡ Nt�β.

For confirming the consistency of our DQMC calculation
with others, we compare Tc/t with that in Refs. [47,48] over the
various interaction strengths c0/(a3t) at fixed temporal lattice
spacing �β = 0.125/t , which has been commonly used in
the condensed-matter physics. For estimating the systematic
errors caused by finite �β, the �β dependence of �,Tc, and
T ∗ have also been further examined.

By these preliminary DQMC calculations, we can ensure
the consistencies of DQMC calculations with those in other
literature. The systematic uncertainties caused by our calcula-
tions with finite �β amount to around 10%.

a. Comparison of Tc(c0/(a3 t)) with other work

First we ensure that our DQMC calculation at finite �β

is consistent with other literature. Figure 15 is the critical
temperature Tc as a function of interaction strength |c0|/(a3t)
at the quarter-filling (n = 1/2) in Ns = 63. Tc is obtained
through the inflexion point of the curve of pair correlation
function C�. The parameters used in the calculations are
�β = 0.125/t, Npretherm = 200, Ntherm = 50, and Nsample =
1000–2000. Our Tc(|c0|/(a3t)) over the interaction strength
ranging between BCS and BEC limits is in good agreement
with Refs. [47,48] of the same setup within around 5% of
errors, which is within the DQMC results in other literature,
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FIG. 23. Pauli spin susceptibility χP as a function of temperature
T in the unit of hopping amplitude t at different �β at kF = 30 MeV,
Ns = 43, and n = 1/4. The open and solid circles with statistical
errors are the results at LO and NLO, respectively.

ranging around 10% at half-filling (n = 1) as shown in the left
panel of Fig. 5.13 in Ref. [48].

b. Dependence of thermal observables on �β

Now that our DQMC calculations with finite �β are
confirmed within around 5% of the differences, we have to con-
sider the systematic error from the discretization of temporal
direction �β. Figure 21 shows the dependence of various ther-
mal observables on �β by fixing T/t = 1/(Nt�βt) = 0.4.
The expectation values of thermal observables are obtained
by 1000–2000 samples with Npretherm = 200 and Ntherm = 100
at the one-eighth filling (n = 1/4). In Fig. 21, we take the
ratio of thermal observables at �β = 0.125/t to those at the
continuum limit of the temporal direction �β → 0 to make
the deviations easily visible. As summarized in Table VII,
the differences of the observables with �τ = 0.125/t and
�β → 0 are around 5% (for χP ), 10% (for C� and E/A), and
20% (for µ). Note that we use only C� and χP for obtaining
Tc and T ∗ in this work.

Next we examine the influence of finite �β on Tc and T ∗.
Figures 22 and 23 summarize the effect of the finite �β on
Tc and T ∗. As seen in those figures, Tc/t = 0.45(1) MeV
and T ∗/t = 0.87(2) MeV for �β = 0.125/t , and Tc/t =
0.47(2) MeV and T ∗/t = 0.79(2) MeV for �β = 0.0625/t .
The quantities in the parentheses indicate the statistical un-
certainties. The deviations in Tc and T ∗ without the statistical
errors are around 5% and 10%, respectively. We have to count
on these discrepancies of around 10% as the systematic error
of our final results besides the statistical error.

TABLE VII. Ratio of thermal observables.

O O (�β = O (�β → 0) O (�β = 0.125/t)/
0.125/t) O (�β → 0)

E/(At) 1.449(8) 1.625(8) 0.892(9)
C� 1.45(1) 1.32(1) 1.10(2)
χP 0.207(9) 0.1965(9) 1.05(5)
µ/t 1.49(1) 1.23(1) 1.21(1)
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As described in Sec. III, we use Ps for an estimation
of �. The constant tails of Ps at the large separation of
pairs are Ps(�β = 0.125/t) = 0.02784(46) and Ps(�β =
0.0625/t) = 0.0295(24) at kF = 30 MeV. The resultant
pairing gaps extracted from Ps through � = c0

√
Ps with

c0 = 0.8012 MeV are �(�β = 0.125/t) = 0.1337(11) MeV
and �(�β = 0.0625/t) = 0.1377(56) MeV. The deviation
between them without the statistical errors quoted by the
parentheses is 0.004 MeV, which results in around 3% of the
systematic error.
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