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Long range correlations and the soft ridge in relativistic nuclear collisions
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Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and
extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the
untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse
flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the
Glasma, we find excellent agreement with current data.
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Correlation measurements of high transverse momentum
particles provided the first striking experimental evidence of
jet quenching. Further studies of the correlation of high pt

particles with more typical particles reveal a complex pattern of
correlations as a function of relative pseudorapidity η = η1 −
η2 and azimuthal angle φ = φ1 − φ2. In particular, a “hard
ridge” of enhanced correlation is observed near η = φ = 0 that
is narrow in φ and broad in η [1]. Interestingly, experiments
report a similar ridge in correlations of particles of any pt ,
i.e., without a jet trigger [2,3]. As with the hard ridge, the
width of the untriggered soft ridge is broad in η and narrow
in φ. Preliminary PHOBOS data suggest that the hard ridge
and possibly the soft ridge may extend over the broad range
−4 < η < 2 [4].

We argue that the soft ridge is a consequence of early-stage
rapidity correlations in concert with late-stage transverse flow.
Correlations over several rapidity units can only originate at
the earliest stages of an ion collision when the first partons are
produced [5]. Hydrodynamics and other later-stage effects can
modify these correlations, but they are limited to a horizon of
∼1–2 rapidity units. Analogous to superhorizon fluctuations in
the cosmos, these long range correlations can therefore reveal
the “little bang” in each nuclear collision at its birth.

Almost instantaneously after a collision of two nuclei, color
glass condensate (CGC) theory predicts that the transverse
fields of each nucleus are transformed into longitudinal fields
that are approximately uniform in rapidity [6,7]. The fields,
which are random over transverse distances larger than Q−1

s

where Qs ∼ 1–2 GeV is the saturation scale, comprise a series
of flux tubes. Long range rapidity correlations arise because
particles from the same flux tube start at nearly the same
transverse position, regardless of rapidity.

Pressure builds as the flux tubes fragment to form particles.
The resulting transverse flow modifies these long range
correlations by focusing particles into a narrow region in φ.
Suppose that the transverse fluid velocity has the Hubble-like
form γtvt = λrt . A fluid cell a distance rt from the center of the
collision volume will then have a mean speed vt . When this
cell freezes out, it releases particles into an opening angle
φ ∼ vth/vt ∝ (λrt )−1, for a thermal velocity vth ∼ 1. This
modifies the correlations, since particles near the center of
the collision volume have a large opening angle, while those

from a larger rt have a smaller φ. Voloshin has long stressed
the connection between flow and pt correlations [8].

In this Rapid Communication, we focus on the centrality
dependence of the height and azimuthal width of the near side
peak of the soft ridge. We will see that this dependence can
be explained using CGC-Glasma scaling arguments combined
with blast wave calculations. However, we remark that the
measured correlation function is not a plateau in rapidity,
but a broad structure of width ∼1–2 units, perhaps with
tails extending higher in rapidity [3,4]; see also related
experimental work in Ref. [9]. We will address this rapidity
dependence elsewhere, since that analysis requires quantum
corrections to the Glasma [5] as well as viscous corrections
to the hydrodynamic treatment [10]. We will also not discuss
the jet triggered data, which would require a description of
the passage of the jet through the high-density environment
produced by the nuclear collision [11,12].

Flux tubes arise naturally in descriptions of high energy
collisions [13]. The Glasma description incorporates many of
these features, and in a high density environment such as that
produced by the collisions of nuclei, it allows for a systematic
weak coupling computation. The contribution of flux tubes to
long range correlations is studied in the Glasma formulation
in Ref. [5]. We imagine the Glasma to be filled with flux tubes
of large longitudinal extent but small transverse size ∼Q−1

s .
Each flux tube yields a multiplicity of ∼αs(Qs)−1 gluons. The
number of flux tubes is proportional to the transverse area R2

A

divided by the area per flux tube, Q−2
s . The rapidity density of

gluons is therefore

dN/dy ∼ αs
−1Q2

sR
2
A. (1)

The number of final hadrons scales similarly [14].
We characterize correlations in the Glasma and later in the

evolution using the spatial correlation function

c(x1, x2) = n2(x1, x2) − n1(x1)n1(x2), (2)

where n1 and n2 are the single and pair densities. In the absence
of correlations, n2(x1, x2) → n1(x1)n1(x2) so that c vanishes.
The integral n2 over both positions gives the number of
pairs averaged over events 〈N (N − 1)〉. When correlations are
negligible, the integral of c vanishes—as it must—because N

follows Poisson statistics and, therefore, 〈N (N − 1)〉 → 〈N〉2.
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We take pairs from the same flux tube as correlated and
neglect correlations between tubes. Furthermore, we assume
that correlations are independent of rapidity. The correlation
function then depends only on the relative transverse position
rt = r1,t − r1,t as well as the average Rt = (r1,t + r1,t )/2.
The correlation length in rt is roughly the flux tube size
∼Q−1

s , while the correlation length in Rt is of the order of
the transverse system size RA. For Q−1

s � RA, we take the
correlation function to be point-like in rt and broad in Rt ,
writing

c(x1, x2) = R δ(rt )ρFT (Rt ). (3)

Here, ρFT (Rt ) describes the transverse distribution of flux tubes
in the collision volume, which we assume follows the thickness
function of the colliding nuclei

ρFT (Rt ) = 2〈N〉2

πR2
A

(
1 − R2

t

R2
A

)
(4)

for Rt � RA, and zero otherwise. Integrating both sides of
Eq. (3) with respect to rt and Rt , we find

〈N〉2R =
∫

cd3x1 d3x2 = 〈N2〉 − 〈N〉2 − 〈N〉. (5)

To see how R depends on Qs , think of each flux tube as
a source that produces particles with a mean multiplicity µ

and variance σ 2. For K flux tubes, the mean multiplicity is
µK and the variance is σ 2K . If K fluctuates from event to
event, then the mean multiplicity is µ〈K〉 and the variance is
σ 2〈K〉 + µ2(〈K2〉 − 〈K〉2). Therefore

R = σ 2 − µ

µ2

1

〈K〉 + 〈K2〉 − 〈K〉2

〈K〉2
. (6)

Particle production from a flux tube is a Poisson process, since
the flux tube is a coherent state. It follows that σ 2 = µ, so that
the first contribution vanishes. For large K , the second term is
∝ 〈K〉−1.

We combine these results to obtain a scaling relation for the
integrated strength of correlations in the Glasma

R ∝ 〈K〉−1 = (QsR)−2, (7)

a result supported by momentum-space calculations in Ref. [5].
In contrast, the mean multiplicity in a rapidity interval scales as
αs(Qs)−1Q2

sR
2; see Eq. (1). This difference will prove signifi-

cant later. We comment that Eq. (7) and similar CGC relations
may not quantitatively describe pp or peripheral collisions at
the energies studied here, although phenomenological string
models may apply.

We now turn to the discussion of the impact of these long
range correlations on the final-state particle correlations. As
the partons emitted from these flux tubes locally equilibrate,
transverse flow builds. To describe the effect of thermalization
and flow on the pair correlation function at freeze-out, we
generalize the common blast wave model [15–19]. To begin,
recall that the Cooper-Frye single-particle distribution is

ρ1(p) ≡ dN/dy d2pt =
∫

f (x, p) d
, (8)

where f (x, p) = (2π )−3 exp{−pµuµ/T } is the Boltzmann
phase-space density for a temperature T and fluid four-velocity

uµ, and d
 = pµdσµ is the element of flux through the
four-dimensional freeze-out surface along which particle inter-
actions effectively cease. We assume that freeze-out occurs at
a proper time τF , so that pµdσµ = τF mt cosh(y − η)dη d2rt ,
where η = (1/2) ln[(t + z)/(t − z)] is the spatial rapidity. We
follow Ref. [15] and write the four-velocity of the longitudinal-
boost invariant blast wave as uµ = γt (cosh η, vt , sinh η),
where vt is the transverse velocity and γt = (1 − v2

t )−1/2.
The phase-space density is then f ∝ exp{−γtmt cosh(y −
η)/T } exp{γtvt · pt /T }. We take the transverse velocity to be
γtvt ≈ λrt , a widely used ansatz that adequately describes
much of the data obtained from the CERN Super Proton
Synchrotron (SPS) and BNL Relativistic Heavy Ion Collider
(RHIC). The calculation of Eq. (8) is standard and follows that
in Ref. [15].

To exhibit the effect of flow on particle correlations, we use
the momentum-space correlation function

r(p1, p2) = ρ2(p1, p2) − ρ1(p1)ρ1(p2), (9)

where ρ2(p1, p2) = dN/dy1 d2pt1 dy2 d2pt2 is the pair distri-
bution. Generalizing Eq. (8), we write

r(p1, p2) =
∫

c(x1, x2)
f (x1, p1)

n1(x1)

f (x2, p2)

n1(x2)
d
1 d
2. (10)

We identify c(x1, x2) at freeze-out with Eq. (3), a form that
describes the system at its formation. This identification omits
the effects of diffusion described in Ref. [10]. This omission
is reasonable only as long as we restrict our attention to the
long range correlations with pairs separated by |η1 − η2| > 1.

Experiments measure the characteristics of the untagged
near-side ridge as functions of the centrality at 62 and
200 GeV for Au + Au [3]. While they focus on the
region −1 < η < 1, where short and long range correlation
phenomena are both present, it is instructive to see which
aspects of the data can be explained by a purely long
range model. To facilitate our comparison, we visualize the
STAR analysis as consisting of the following steps. First, a
correlated two particle distribution of “sibling” particles ρsib

is measured. This quantity is essentially our ρ2 integrated over
the magnitudes of each particle’s pt as well as the average
azimuthal angle � = (φ1 + φ2)/2 and pseudorapidity ηa =
(η1 + η2)/2. The resulting density depends only on the relative
quantities φ = φ1 − φ2 and η = η1 − η2. Second, an uncorre-
lated pair distribution ρref is obtained from mixed events, and

ρ/

√
ρ = (ρsib − ρref)/

√
ρref is constructed. Next, a rapidity-

independent function a + b cos φ + c cos 2φ is subtracted to
remove backgrounds as well as elliptical flow and momentum
conservation effects. Finally, the corrected (η, φ) distribution
is subjected to a multicomponent fit to extract the attributes
of the near side peak. In practice, these steps are performed
simultaneously.

To confront the STAR measurements, we calculate

ρ(η, φ) by integrating Eq. (10) over all momenta. Simi-
larly, we compute ρref(η, φ) by integrating ρ1(p1)ρ1(p2). The
integrations are straightforward if we take the γ factors as
constants evaluated at Rt = RA. We obtain


ρ/
√

ρref = R dN/dyF (φ), (11)
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FIG. 1. (Color online) Height of the near side peak vs centrality
for 200 and 62 GeV. Preliminary STAR data are from Ref. [3]. Bands
indicate the uncertainty of the blast wave parameters T and v.

where
∫ 2π

0 F (φ) dφ = 1. The factor

R dN/dy = καs(Qs)
−1 (12)

follows from the Glasma relations (1) and (7), where κ is
an energy-independent constant to be determined from data.
The angular distribution F (φ) depends only on the blast wave
parameters γm/T and vs .

We specify the centrality dependence of the correlation
function using the velocity and temperature fit from single-
particle spectra at 200 GeV in Ref. [16]. The computed 
ρ/

√
ρ

is shown as the dashed line in the top panel of Fig. 1. We fix
κ in Eqs. (12) and (11) to agree with the magnitude of the
200 GeV data. We define the height of the near side peak as
the difference between 
ρ/

√
ρ at φ = 0 and π . The dashed

line in the top panel is the blast wave result F (φ) without the
CGC scaling. It follows the basic trend of the data rather well,
given that the only parameters that vary with centrality—v and
T —are fit elsewhere [16]. The uncertainty in v and T implies
the shaded bands in Fig. 1. To compute 
ρ/

√
ρ at 62 GeV,

we follow Ref. [16] and reduce the velocities by 5% and the
temperatures by 10% by uniform scale factors. The dashed
curve in the bottom panel of Fig. 1 is well above the data but
agrees roughly in shape.

The very existence of long range correlations implies strong
correlations in the initial state, as predicted by color glass
condensate theory [5]. That said, it is interesting to see how
Eq. (12) influences the systematics of the soft ridge. This
modifies the centrality dependence of 
ρ/

√
ρ by introducing

a logarithmic dependence on Qs , which in turn depends on
Npart. It is important to note that although the dashed curve
represents the blast wave without the αs scaling, the correlation
function in the blast wave integrals enforces restraints from the
Glasma picture. The upper solid curve in Fig. 1 combines
this αs(Npart)−1 dependence from Ref. [14] with the blast
wave behavior. Agreement with data is impressive given that
Qs(Npart) is obtained fit in Ref. [14].

We deduce 
ρ/
√

ρ at 62 GeV using the Qs dependence
discussed earlier together with the relevant blast wave v and T .
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FIG. 2. (Color online) Azimuthal width of the near side peak
vs centrality. Preliminary STAR data are from Ref. [3]. The curve
is obtained for by fitting a Gaussian to the computed distribution
in the range −π/2 < φ < π/2 and is independent of energy. The
band shows the sensitivity of the result to a 20% change in this
range.

With the proportionality constant in Eq. (12) fixed by the
200 GeV data, there are no further free parameters to adjust.
The solid curve in the lower panel on Fig. 1 is in good accord
with the data for the expected drop of Q2

s by ∼1/2 relative to
the 200 GeV value [14]. Observe that most of the change from
62 to 200 GeV is caused by the α−1

s (Qs) dependence, since
the change in the blast wave parameters is small [18].

We compare our calculations with the measured azimuthal
width of the near side peak in Fig. 2. To simulate the
experimental fit procedure, we obtain this width by fitting a
Gaussian plus a constant offset to the computed φ distribution
in the near side interval −π/2 < φ < π/2. The uncertainty
band in Fig. 2 indicates the impact of changing the near side
interval by ±20%. Once again, the agreement is surprisingly
good given the simplicity of the model. The calculated
angular width does not change in this energy range, since
the normalization does not affect F (φ). Note that Ref. [5]
includes flow by boosting a Glasma source. Their computed
width exceeds data because they omit the pt dependence of
the boost and do not simulate the experimental fit procedure.

In summary, correlation measurements show a ridge that is
narrow in φ and broad in η, perhaps extending several units
in rapidity. Such long-range rapidity correlations can only be
caused by super-horizon fluctuations at sub-Fermi time scales.
While flux tubes may also enhance forward-backward correla-
tions [20]. These measurements therefore provide an image of
the particle production process at the sub-Fermi scale, which
can be corroborated, e.g., by forward-backward correlation
measurements [20]. For simplicity, we have focused on the soft
ridge, but similar considerations may also apply to jet-tagged
measurements [12]. The height and azimuthal width measured
near midrapidity in Ref. [3] are consistent with flux tubes of
large longitudinal extent formed early in nuclear collisions.
Correlations predicted by color glass condensate theory
combined with transverse flow provide a remarkably good
description of the near side ridge. In particular, agreement with
62 GeV data follows mainly from the CGC-Glasma prediction
(7), the only free parameter being an overall constant fixed at
200 GeV. This agreement is surprising, since our model only
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includes long range correlations. The rapidity dependence for
|η| < 1–2 requires a more detailed hydrodynamic description
[10].
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