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Obtaining information on short range correlations from inclusive electron scattering
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In view of recent data from the Thomas Jefferson National Accelerator Facility (JLab) on inclusive electron
scattering off nuclei at high momentum transfer (Q2 >∼ 1 GeV2) and their current analysis, it is shown that, if
the scaling variable is properly chosen, the analysis in terms of scaling functions can provide useful information
on short-range correlations (SRC). This is demonstrated by introducing a new relativistic scaling variable that
incorporates the momentum dependence of the excitation energy of the (A − 1) system, with the resulting scaling
function being closely related to the longitudinal momentum distributions.
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Obtaining information on short-range correlations (SRC)
in nuclei is a primary goal of modern nuclear physics [1].
Interest in SRC stems not only from the necessity to firmly
establish the limits of validity of the standard model of
nuclei but also from the impact that the knowledge of the
detailed mechanism of SRC would have in understanding
the role played by quark degrees of freedom in hadronic
matter and the properties of the latter in dense configurations
[2]. Recently, evidence of SRC has been provided by new
experimental data on inclusive [A(e, e′)X] [3,4] and exclusive
[A(e, e′pN )X and A(p, pN )X] lepton and hadron scattering
off nuclei at high momentum transfer (Q2 >∼ 1 GeV2) (see
Ref. [5] and references therein quoted). In inclusive scattering
the observation of a scaling behavior of the ratio of the
cross section on heavy nuclei to that on the deuteron [3],
for values of the Bjorken scaling variable 1.4 <∼ xBj <∼ 2, and
to that on 3He [4], for 2 <∼ xBj <∼ 3, has been interpreted as
evidence that the electron probes two- and three-nucleon
correlations in complex nuclei similar to the ones occurring in
two- and three-nucleon systems [6]. It should be pointed out,
however, that whereas exclusive processes can directly access
the relative and center-of-mass motions of a correlated pair in
a nucleus [7], obtaining information on these quantities from
inclusive scattering is, in principle, more difficult. Various
approaches based on scaling concepts have therefore been
proposed, going from the already mentioned scaling behavior
of the cross section ratio plotted versus xBj to the scaling
behavior of the ratio of the nuclear to the nucleon cross
sections plotted versus proper scaling variables; among the
latter, a process that has been most investigated in the past
is the so-called Y -scaling, for it is believed that this may
represent a powerful tool to extract the high-momentum part
of the nucleon momentum distribution, which is governed
by SRC [8,9]. It is the aim of this Rapid Communication to
critically reanalyze the concept of Y -scaling, mainly because
of (i) the lack of a general consensus about the usefulness of
such a concept and (ii) a strong renewal of interest in Y -scaling
owing to recent experimental data on A(e, e′)X reactions
from the Thomas Jefferson National Accelerator Facility
(JLab) [10,11]. We will show that the analysis of inclusive
scattering in terms of proper Y -scaling variables could indeed
provide useful information on SRC; to this end, following the

suggestion of Refs. [12–14] a new approach to Y -scaling and
its usefulness will be illustrated in detail. Let us consider a
virtual photon of high momentum impinging on a nucleus A

(with mass MA) and knocking out, in a quasielastic process,
a nucleon N (with mass mN ) having momentum k ≡ |k|
and removal energy E. The latter is defined as the energy
necessary to remove the nucleon from A, leaving the residual
nucleus (A − 1) (with mass MA−1) with intrinsic excitation
energy E∗

A−1 (i.e., E = mN + MA−1 − MA + E∗
A−1 = Emin +

E∗
A−1). In the plane wave impulse approximation (PWIA) and

using the instant form of dynamics, the quasielastic cross
section reads as follows:

σA
2 (q, ν) ≡ d2σ (q, ν)

d�2 dν
=

A∑
N=1

∫
dE dkP A

N (k,E)σen

× (q, ν, k, E) δ(ν + MA − EN − EA−1), (1)

with energy conservation (M∗
A−1 = MA−1 + E∗

A−1)

ν + MA =
√

m2
N + (k + q)2 +

√
M∗2

A−1 + k2 (2)

and momentum conservation q = p + pA−1. Here ν = ε1 − ε2

and q = k1 − k2 are the energy and three-momentum transfers
(Q2 = q2 − ν2 = 4ε1 ε2 sin2 θ

2 with q ≡ |q|), σen is the elastic
electron cross section off a moving off-shell nucleon
with momentum k ≡ |k| and removal energy E, and
P A

N (k,E) is the spectral function (normalized to one) of
nucleon N (i.e., the joint probability to have a nucleon
with momentum k and removal energy E); eventually,
p and PA−1 are the momenta of the undetected struck
nucleon and the final (A − 1) system. Considering, for
ease of presentation, isoscalar nuclei, one has P A

N (k,E) =
P A

p (k,E) = P A
n (k,E) ≡ P A(k,E) = P A

0 (k,E) + P A
1 (k,E),

where P A
0 (k,E) = (1/A)

∑
α∈F Aαnα(k) δ(E − εα) is the

(trivial) shell-model part [with Aα denoting the occupation
number of the single-particle state α with removal energy
εα and momentum distribution nα(k)] and P1 is the
(interesting) part generated by NN correlations. The
spectral function is linked to the momentum distributions
by the momentum sum rule nA(k) = ∫

P A(k,E) dE =∫
P A

0 (k,E) dE + ∫
P A

1 (k,E) dE = nA
0 (k) + nA

1 (k). It has
been shown [8] that at high values of momentum transfer,
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after integrating over the direction of k, Eq. (1) can be written,
to a good approximation, as follows:

σA
2 (q, ν)

�
{

[Zsep(q, ν, k, E) + Nsen(q, ν, k, E)]
Ep

q

}
(kmin,Emin)

×FA(q, ν), (3)

where sen is the electron-nucleon cross section integrated over
the polar angle and FA(q, ν) is the nuclear structure function

FA(q, ν) = 2 π

∫ Emax(q,ν)

Emin

dE

∫ kmax(q,ν,E)

kmin(q,ν,E)
k dkP A(k,E). (4)

Equation (3) is obtained by eliminating the δ function
by integrating over cos α = (k · q/kq), with the limits of
integration resulting from the condition −1 � cos α � 1. We
can now introduce a scaling variable Y = Y (q, ν), which
is only required to be a function of q and ν (and any
arbitrary constant) so that, regardless of the specific form of
Y , the cross section and structure function can be expressed,
without loss of generality, in terms of the two independent
variables q and Y = Y (q, ν), rather than the canonical q and
ν. Correspondingly, a scaling function FA(q, Y ) is introduced;
this is nothing but Eq. (4) with ν replaced everywhere by Y ;
if, under certain conditions, FA(q, Y ) → FA(Y ), Y -scaling
is said to occur and, depending on the physical meaning of
Y and FA(Y ), information on nucleons in nuclei could be
obtained. To simplify our analysis, let us consider high values
of the momentum transfer, when Emax(q, Y ) and kmax(q, Y,E)
become so large that, because of the rapid falloff of P A(k,E),
they can be replaced by ∞ (although in actual calculations
we use the correct values of these quantities); in this case, the
q and ν dependence of the scaling function is governed only
by kmin(q, Y,E), and it is trivial to show that, by adding and
subtracting a proper term, the scaling function can be cast in
the following general form:

FA(q, Y ) = 2π

∫ ∞

Emin

dE

∫ ∞

kmin(q,Y,E)
k dkP A(k,E)

= f A(Y ) − BA(q, Y ), (5)

where f A(Y ) = 2π
∫ ∞
|Y | k dknA(k) represents the longitudinal

momentum distribution, and

BA(q, Y ) = 2π

∫ ∞

Emin

dE

∫ kmin(q,Y,E)

|Y |
k dkP A

1 (k,E) (6)

is the binding correction [8], which, through kmin(q, Y,E),
is governed by the continuum energy spectrum of the final
(A − 1) system, unlike f A(Y ), which is integrated over all
excited states of (A − 1). The quantities f A(Y ) and nA(k) are
linked by the relation nA(k) = −[df A(Y )/dY ]/[2π Y ], k =
|Y |, so that if f A(Y ) could be extracted from the experimental
data, nA(k) could be determined. Unfortunately, the presence
of BA 	= 0 such an extraction is hindered by depending
upon the difference between Y and kmin and therefore
upon the definition of the former. The binding correction is
absent only in the deuteron, since E = Emin = constant =
2.22 MeV, so that Y = kmin(q, ν,Emin), BD(q, Y ) = 0, and

FD(q, Y ) = f D(Y ). The final state interaction (FSI) of the
struck nucleon invalidates the PWIA, but, in spite of that,
an approach was developed in the past to reduce the effects
from both the binding corrections and FSI [8]; the approach
is based upon the widely used relativistic scaling variable
Y = y [8–11,15], which is obtained by setting, in the energy
conservation equation [Eq. (2)], k = y, k · q/kq = 1, and,
most importantly, E∗

A−1 = 0; thus y represents the minimum
longitudinal momentum of a nucleon having the minimum
value of the removal energy E = Emin. In the asymptotic limit
(q → ∞), Eq. (5) scales in y and becomes the asymptotic
scaling function FA(y) = f A(y) − BA(y), that is, Eq. (5)
with Y and kmin(q, Y,E) replaced by y and k∞

min(y,E),
respectively (scaling in this variable also occurring within a
relativistic description of the deuteron [15]). Unfortunately,
owing to the presence of BA(y), FA(y) is not related to a
momentum distribution so that, in principle, the experimental
longitudinal momentum distribution f A

ex(y) and, consequently,
nA

ex(k), cannot be extracted from the data. Let us briefly recall
how this problem was addressed in Ref. [8]. The experimental
scaling function FA

ex(q, Y ) = σA
2,ex(q, Y )/{[Zsep(q, ν, k, E) +

Nsen(q, ν, k, E)](Ep/q)}(kmin,Emin) exhibits, when Y = y, a
strong q dependence owing to the FSI and binding effects
and differs from the asymptotic scaling function FA

ex(y). The
latter, however, has been obtained in Ref. [8] by extrapolating
to q → ∞ the available values of FA

ex(q, y), on the basis
that FSI can be represented as a power series in 1/q and
dies out at large q2, a conclusion that has been reached
by various authors (see, e.g., Ref. [16]). The experimen-
tal longitudinal momentum distribution f A

ex(y) has thereby
been obtained by adding to FA

ex(y) the binding correction
BA(y) evaluated theoretically, and nA

ex(k) has been obtained
by nA(k) = d[FA(y) + BA(y)/dy]/[2π y], k = |y|. Such a
procedure affects the final results in terms of large errors
on the extracted momentum distributions, particularly at
large values of k; in spite of these errors, the extracted
momentum distributions at k >∼ 1.5–2 fm−1 turned out to be
larger by orders of magnitude from the prediction of mean-field
approaches and in qualitative agreement with realistic many-
body calculations that include SRC. To make the extraction
of f A

ex(y) as independent as possible from theoretical binding
corrections, in Ref. [12] another scaling variable Y = yCW has
been introduced; this scaling variable incorporates relevant
physical dynamical effects left out in the definition of y. To
readily understand the physical meaning of the new scaling
variable, let us consider the asymptotic limit of kmin(y, q,E)
for a large nucleus [i.e., k∞

min(y,E) = |y − (E − Emin)|]; it
can be seen that only when E = Emin does kmin(y,E) = |y|,
in which case BA = 0 and FA(y) = f A(y); this holds only
for the deuteron, whereas for a complex nucleus E∗

A−1 	=
0 and E � Emin, so BA(y) 	= 0, and FA(y) 	= f A(y). It is
therefore the dependence of kmin on E∗

A−1 that gives rise to
the binding effect [i.e., to the relation FA(y) 	= f A(y)]. This
is an unavoidable defect of the usual approach to Y -scaling,
based on the scaling variable y; in fact, the longitudinal
momentum is very different for weakly bound shell-model
nucleons (E∗

A−1 ∼ 0–20 MeV) and strongly bound correlated
nucleons (E∗

A−1 ∼ 50–200 MeV), and at large values of |y| the
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scaling function is not related to the longitudinal momentum
of strongly bound correlated nucleons, whose contributions
almost entirely exhaust the behavior of the scaling function.
As stressed in Refs. [12–14], to establish a global link between
experimental data and longitudinal momentum components,
one has to conceive a scaling variable that could equally well
represent longitudinal momenta of both weakly bound and
strongly bound nucleons so that the binding correction could
be minimized. This can be achieved by adopting a scaling
variable that properly includes the momentum dependence
of the average excitation energy of (A − 1) generated by
correlations, namely,

〈E∗
A−1(k)〉 = 1

nA(k)

∫
P A

1 (k,E∗
A−1)E∗

A−1d E∗
A−1, (7)

where E∗
A−1 = E − E

(2)
thr , E

(2)
thr = MA−2 + 2mN − MA being

the threshold energy for two-particle emission. We have
calculated the quantity in Eq. (7) using a realistic spectral
function for nuclear matter and 3He. The results are presented
in Fig. 1, where they are compared with the prediction of the
spectral function of the few-nucleon correlation (FNC) model
of Ref. [19], according to which

E∗
A−1(k, KCM) = A − 2

A − 1

1

2mN

[
k − A − 1

A − 2
KCM

]2

, (8)

where KCM is the CM momentum of a correlated pair. In view
of the very good agreement between the FNC model and the
exact many-body results for nuclear matter and 3He, we used
the former to calculate 〈E∗

A−1(k)〉 for nuclei with 3 < A < ∞.
The values shown in Fig. 1 can be interpolated by

〈E∗
A−1(k)〉 = A − 2

A − 1
TN + bA − cA|k|, (9)

where TN = (
√

m2
N + k2 − mN ) and bA and cA result from

the CM motion of the pair (bNM = 37.3 MeV, cNM = 0.04
and b3 = −2.94 MeV, c3 = −0.03). Placing in Eq. (2) k =
yCW,

k·q
kq

= 1, and M∗
A−1 = MA−1 + 〈E∗

A−1(k)〉 − 〈Egr〉, we
obtain a fourth-order equation for the new scaling variable

FIG. 1. (Color online) The average value of E∗
A−1(k) [Eq. (7)]

calculated for nuclear matter with the spectral function of Ref. [17]
(open dots) and for 3He with the spectral function from the Pisa wave
functions [18] (full dots). The full lines are obtained with the spectral
function of the few-nucleon correlation model of Ref. [19].

yCW, which, in contrast to previous work [12–14], has been
solved exactly; this, together with the relativistic extension of
the definition of the mean excitation energy, is necessary to
extend yCW to high values. Note that the value of 〈Egr〉, fixed
by the Koltun sum rule (see Refs. [12–14]), has been added
to Eq. (9) to counterbalance the effects of 〈E∗

A−1〉 at low yCW.
For a large nucleus and not too large values of yCW, one has

yCW = − q̃

2
+ νA

2WA

√
W 2

A − 4m2
N. (10)

Here, νA = ν + M̃D, M̃D = 2mN − E
(2)
th − bA + 〈Egr〉, q̃ =

q + cAνA, and W 2
A = νA

2 − q2 = M̃2
D + 2νM̃D − Q2. For

the deuteron yCW = y = −q/2 + (νD/2WD)
√

W 2
D − 4m2

N

with νD = ν + MD and invariant mass W 2
D = νD

2 − q2 =
MD

2 + 2νMD − Q2; for small values of yCW, such that
A−2
A−1 (

√
y2

CW + m2
N − mN ) + bA − cA|yCW| 
 〈Egr〉, the vari-

able y, representing the longitudinal momentum of a weakly
bound nucleon, is recovered. Therefore yCW effectively takes
into account the k dependence of E∗

A−1, both at low and high
values of yCW, and interpolates between the correlation and the
single-particle regions; it can be interpreted as the minimum
longitudinal momentum of a nucleon that, at high values of
yCW, has removal energy 〈E∗

A−1〉 and is partner of a correlated
two-nucleon pair with effective mass M̃D .

Let us now illustrate the merits of yCW-scaling and its
practical usefulness. The main merit is that, because of the
definition of yCW, binding effects play a minor role, as clearly
illustrated in Fig. 2; practically, kmin(q, ν,E) � |yCW| and
BA(q, yCW) � 0, with two relevant consequences: (i) to a large
extent FA(q, yCW) � f A(yCW) [cf. Eq. (5)] and (ii) as a result
of (i), one would expect that at high values of yCW, FA(q, yCW)
will behave in the same way in the deuteron and in complex
nuclei, since nA(k) � CAnD(k) and, accordingly, f A(yCW) �
CAf D(yCW); at low values of yCW, in contrast, FA(q, yCW)
should exhibit an A dependence generated by the different

FIG. 2. (Color online) The ratio of the binding correction
[Eq. (6)] to the scaling function [Eq. (5)] for 3He (open dots) and
12C (full dots) calculated with the scaling variable y, which does
not contain any effective excitation energy from SRC (upper panel),
and with the variable yCW, which takes into account SRC effects by
Eq. (9) (lower panel).
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FIG. 3. (Color online) The experimental scaling function (sym-
bols) for 4He, 12C, and 56Fe obtained from the experimental data
of Refs. [10,21]. The upper panel shows F A(q, Y = y) and the
lower panel F A(q, Y = yCW). The full, long-dashed, dashed, and
dotted curves represent the longitudinal momentum distributions
f A(Y ) = 2π

∫ ∞
|Y | n

A(k)kdk for 2H, 4He, 12C, and 56Fe, respectively,
calculated with realistic wave functions.

asymptotic behavior of the nuclear wave functions in configu-
ration space. This is fully confirmed in Fig. 3, which, moreover,
also shows that whereas FA(q, y) scales to a quantity that
strongly differs from the longitudinal momentum distribution,
FA(q, yCW) scales exactly to f A(yCW). This is even better
demonstrated in Fig. 4, where the effects of FSI are also
illustrated. The left panel shows that (i) scaling is violated
and approached from the top (which is clear signature of the
breaking down of the PWIA, which has to approach scaling
from the bottom [8]) and (ii) the Q2 dependence of the scaling
violation appears to be the same for the deuteron and complex
nuclei, a fact that has never been demonstrated before and
represents, in our opinion, a relevant finding. To better validate
point (ii), we have divided FA(Q2, yCW) by a constant CA, such
as to obtain FA(Q2, yCW)/CA � FD(Q2, yCW). The results
are shown in the right panel of Fig. 4; it can again be seen that
not only at high values of |yCW| do all scaling functions scale
in A, but, more importantly, the constants CA agree, within the

FIG. 4. (Color online) The scaling function F A(Q2, yCW) from
the lower panel of Fig. 3 plotted vsQ2 at fixed values of yCW (4He,
asterisks; 12C, triangles; 56Fe, squares). In the right panel the data
for 4He, 12C, and 56Fe have been divided by the constants C4 =
2.7, C12 = 4.0, and C56 = 4.6, respectively. The theoretical curves
refer to 2H and represent the PWIA results (full) and the results that
include the FSI (dashed), both obtained with the AV18 interaction
[20]. Scaling variables are in MeV/c.

statistical errors, with the theoretical predictions of Ref. [6], as
well as with the experimental results on the ratio R(xBj,Q

2) =
2σA

2 (xBj,Q
2)/AσD

2 (xBj,Q
2) [3]. The main findings of our

analysis can be summarized as follows: (i) at high values of
|yCW|( >∼200–300 MeV/c) the scaling function FA(Q2, yCW)
scales to the one of the deuteron, with scaling constants
CA in qualitative agreement with theoretical predictions and
other types of experimental analysis; this kind of A-scaling
is entirely due to the scaling of the momentum distributions,
nA(k) � CAnD(k), at k >∼ 1.5–2 fm−1, which can therefore be
investigated by yCW-scaling analysis of inclusive data, owing
to the direct link between the scaling function FA(Q2, yCW)
and the longitudinal momentum distributions; (ii) the FSI has
relevant effects on the scaling functions up to Q2 � 4–5 GeV2

but, most importantly and surprisingly, it exhibits a similar Q2

dependence in complex nuclei and in the deuteron; this has
neither been observed nor theoretically predicted previously;
in a forthcoming paper it will indeed be shown that the effects
of the FSI on the momentum distribution of a correlated
nucleon are similar in the deuteron and in a complex nucleus
(for preliminary results see Ref. [22]).

Useful discussions with M. Alvioli, D. Day, L. Kaptari,
S. Scopetta, and M. Strikman are gratefully acknowledged.
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(1987); 43, 1155 (1991).

[9] D. B. Day et al., Annu. Rev. Nucl. Part. Sci. 40, 357 (1990).
[10] J. Arrington, Ph.D. thesis, California Institute of Technology,

2006; arXiv:nucl-ex/0608013.
[11] D. Day, AIP Conf. Proc. 1056 315 (2008); N. Fomin, thesis,

arXiv:0812.2144v1[nucl-ex].
[12] C. Ciofi degli Atti and G. B. West, Phys. Lett. B458, 447 (1999).
[13] C. Ciofi degli Atti, D. Faralli, and G. B. West, Proceedings of

the Elba Workshop on Electron Nucleus Scattering, edited by
O. Benhar, A. Fabrocini, and R. Schiavilla (Edizioni ETS, Pisa,
1999), p. 181; arXiv:nucl-th/9811102.

[14] C. Ciofi degli Atti, D. Faralli, and G. B. West, Proceedings of
the 2nd International Conference on Perspectives in Hadronic

Physics, edited by S. Boffi, C. Ciofi degli Atti, and M. Giannini
(World Scientific, Singapore, 2000), p. 75.

[15] W. N. Polyzou and W. Glockle, Phys. Rev. C 53, 3111 (1996);
C. Ciofi degli Atti, D. Faralli, A. Yu. Umnikov, and L. P. Kaptari,
ibid. 60, 034003 (1999).
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