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α-particle (quartet) condensation in homogeneous spin-isospin symmetric nuclear matter is investigated. The
usual Thouless criterion for the critical temperature is extended to the quartet case. The in-medium four-body
problem is strongly simplified by the use of a momentum-projected mean-field ansatz for the quartet. The
self-consistent single-particle wave functions are shown and discussed for various values of the density at the
critical temperature. Excellent agreement of the critical temperature with a numerical solution of the Faddeev-
Yakubovsky equation is obtained.
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Introduction. The investigation of pairing in different Fermi
systems is still on the forefront of active research. Examples are
nuclear physics [1] and the physics of cold fermionic atoms [2].
The formation and condensation of heavier clusters in Fermi
systems is much less studied.

In cold atom physics, the recent advent of trapping three
different species of fermions [3] has opened up the possibility
of creating gases of heavier clusters. For the time being, those
may be trions (bound state of three different fermions), but in
the future one also can think of quartets (bound state of four
different fermions). The latter are specially interesting because
of their bosonic nature and the possibility of Bose-Einstein
condensation (BEC) of quartets. The description of quartet
condensation has been attempted with an extension of the
so-called Cooper problem to the four-body case in Ref. [4].
In Ref. [5], a variational procedure for the condensation of
multicomponent fermion clusters has been proposed. A quartet
phase has been found in a one-dimensional model with four
different fermions [6].

On the other hand, in nuclear physics, quartet correlations
are often very strong. This is rooted in the fact that it is
a four-component fermion system (proton/neutron with spin
up/down) with all fermions attracting one another, leading to
the very strongly bound α particle. The formation of clusters
has been an object of study almost since the beginning of
nuclear physics [7]. Of course, pairing also exists in nuclei.
Nuclei are very small quantum objects with only a (slowly)
fluctuating phase (the conjugate variable to particle number
N ). Still, signatures of superfluidity are strong in nuclei, and
one safely can extrapolate to the existence of superfluidity
in neutron stars. On the other hand, as already mentioned,
in nuclear physics the existence of quartets (α particles) as
subclusters of nuclei is omnipresent. As is well known, many
lighter nuclei with equal proton and neutron numbers (Z = N )
show, for instance, in excited states, strong α clustering. The
concept that these α particles may form a condensate in certain
low-density states of nuclei and that this may, in analogy to the

pairing case, be a precursor sign of α-particle condensation in
infinite matter [8] has come up only recently [9]. Also heavy
nuclei seem to have preformed α clusters in the surface because
of their well-known spontaneous α decay properties.

Symmetric nuclear matter does not exist in nature be-
cause of the too strong Coulomb repulsion. However, in
collapsing stars, so-called proto-neutron stars, the fraction of
protons is still high [10], and the formation of α particles
and, at sufficiently low temperature, their condensation may
eventually be possible. At any rate, it seems evident that
nuclear matter at various degrees of asymmetry is unstable
with respect to cluster formation in the low-density regime.
Several theoretical studies predict that α phases exist in certain
temperature-density-asymmetry domains [11].

In view of the complexity of the task, the objective of the
present work is quite modest. We want to study the critical
temperature of α-particle condensation as a function of density
and temperature in symmetric nuclear matter. Still, even this
task will not be carried out down to the BEC limit. We will
study the critical temperature T α

c for the onset of formation of α

particles in a thermal gas of nucleons. This will be done with
a theory analogous to the famous Thouless criterion for the
onset of formation of Cooper pairs in a superconductor. On
the microscopic level, the problem is still very challenging,
since it amounts to solving an in-medium four-body problem.
In spite of that, solutions have already been worked out in the
past, either solving approximately the Faddeev-Yakubovsky
(FY) equations [12] or with an approximate ansatz [8].

In this work, we will continue along those lines. The final
objective is to reach the BEC regime in a treatment similar
to the one of Nozières and Schmitt-Rink (NSR) theory [13],
but for quartets. Needless to say, this will only be possible if
the whole formalism can radically be simplified. Actually, as
we will show in this work, such a procedure may well exist.
In any case, it is not conceivable that one treats condensation
of bosonic clusters built out of N fermions on the level of
nonlinear in-medium N -body equations for N > 2. On the
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FIG. 1. Sketch of α-particle configuration, indicating that the two
protons and two neutrons occupy the lowest 0S level in the mean-field
potential of harmonic oscillator shape.

other hand, it is well known that nuclei can satisfactorily
be described in mean-field approximation [14]. Projecting
these mean-field (Hartree-Fock) type of solutions on zero total
momentum (K = 0) will then allow these mean-field clusters
to Bose condense. Actually it is well known among the nuclear
physics community that even for such a small nucleus as the α

particle a momentum-projected mean-field approach yields a
very reasonable description [15]. The reason for this stems,
as already mentioned, from the presence of four different
fermions, all attracting one another with about the same force.

In Fig. 1, we sketch the situation, indicating that the two
protons and two neutrons occupy the lowest 0S level of the
mean-field potential. Actually, calculations show that the 0S

orbital of the self-consistent mean field resembles very much
an oscillator wave function of Gaussian shape. In this respect,
the sketch in Fig. 1 is not so far from reality. We suspect that the
situation is generic for all strongly bound quartets which may
be produced in the future, and, therefore, our present study is of
quite general interest. We will adopt this momentum-projected
mean-field procedure in this work.

In-medium four-body equation. In-medium four-body equa-
tions have long been well documented in the literature [16]. In
the present case of an in-medium quartet, the corresponding
equation reads as follows [8]:

(E − ε1234)�1234 = (1 − f1 − f2)
∑
1′2′

v12,1′2′�1′2′34

+ (1 − f1 − f3)
∑
1′3′

v13,1′3′�1′23′4

+ permutations, (1)

where ε1234 = ε1 + ε2 + ε3 + ε4 with εi = ε(ki) = k2
i /

(2m) + V m.f.(ki), where V m.f. is the Hartree-Fock-mean-field
shift, and fi = f (εi) = [e(εi−µ)/T + 1]−1 is the Fermi-Dirac
distribution (h̄ = c = kB = 1). The matrix element of the
interaction is v12,1′2′ with the numbers 1, 2, 3, . . . standing for
all quantum numbers as momenta, spin, isospin, etc. This also
applies to all other quantities in Eq. (1).

In Eq. (1), when E = 4µ, this signals quartet condensation
in very much the same manner as in the two-body equation

(E − ε1 − ε2)�12 = (1 − f1 − f2)
∑
1′2′

v12,1′2′�1′2′ , (2)

where the approach of T → Tc so that E → 2µ signals the
transition to a superconducting or superfluid state (the well-
known Thouless criterion [17]).

Of course, as already stated several times, the determination
of T α

c needs the heavy solution of the in-medium modified

four-particle equation (1). Nonetheless, we here also will
present for the first time an exact numerical solution of the
in-medium four-body equation employing the FY method (see
footnote 1).1

Now, following the discussion in the introduction, we make
the following “projected” mean-field ansatz for the quartet
wave function [4,5,18],

�1234 = (2π )3δ(3)(k1 + k2 + k3 + k4)
4∏

i=1

ϕ(ki)χ
ST , (3)

where χST is the spin-isospin function which we suppose
to be the one of a scalar (S = T = 0). We will not further
mention it. We work in momentum space, and ϕ(k) is
the as-yet-unknown single-particle 0S wave function. In
position space, this leads to the usual formula [14] �1234 →∫

d3R
∏4

i=1 ϕ̃(ri − R), where ϕ̃(ri) is the Fourier transform of
ϕ(ki). If we take for ϕ(ki) a Gaussian shape, this gives �1234 →
exp[−c

∑
1� i<k � 4(ri − rk)2], which is the translationally

invariant ansatz often used to describe α clusters in nuclei.
For instance, it is also employed in the α-particle condensate
wave function of Tohsaki, Horiuchi, Schuck, Röpke (THSR)
in Ref. [9].

Inserting the ansatz (3) into Eq. (1) and integrating over
superfluous variables, or minimizing the energy, we arrive at
the following nonlinear, Hartree-Fock type of equation for the
single-particle 0S wave function ϕ(k) = ϕ(|k|):

A(k)ϕ(k) + 3B(k) + 3C(k)ϕ(k) = 0, (4)

where A(k), B(k), and C(k) are given by

A(k1) =
∫ 4∏

i=2

d3ki

(2π )3

[
4∑

i=1

k2
i

2m
− 4µ

]

× |ϕ(k2)|2|ϕ(k3)|2|ϕ(k4)|2(2π )3δ(3)

(
4∑

i=1

ki

)
, (5)

B(k1) =
∫ 4∏

i=2

d3ki

(2π )3

d3k′
1

(2π )3

d3k′
2

(2π )3
(1 − f (ε1) − f (ε2))

× vk1k2,k′
1k′

2
ϕ(k′

1)ϕ(k′
2)ϕ(k2)|ϕ(k3)|2|ϕ(k4)|2

× (2π )3δ(3)

(
4∑

i=1

ki

)
, (6)

C(k1) =
∫ 4∏

i=2

d3ki

(2π )3

d3k′
2

(2π )3

d3k′
3

(2π )3
(1 − f (ε2) − f (ε3))

× vk2k3,k′
2k′

3
ϕ(k2)ϕ(k′

2)ϕ(k3)ϕ(k′
3)|ϕ(k4)|2

× (2π )3δ(3)

(
4∑

i=1

ki

)
. (7)

We want to point out here that we neglected in this pilot study
the effects from the single-particle Hartree-Fock mean-field
shifts. The direct term can be absorbed into the chemical
potential, whereas the Fock term gives rise to an effective
mass, usually of smaller influence, and it is taken care of here

1A solution of Eq. (1) is given in Ref. [12] which, however, contains
some approximations (M. Beyer, private communication).
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implicitly by adjusting the effective force, defined below in
Eq. (9), to experimental data of the α particle.

From Eq. (4), we obtain the single-particle wave function
in momentum space as

ϕ(k) = −3B(k)

A(k) + 3C(k)
. (8)

As seen in Eqs. (5)–(7), since A(k), B(k), and C(k) depend
on the wave function of ϕ(k), Eq. (8) is strongly nonlinear. Its
solution can be found by iteration.

For a general two-body force vk1k2,k′
1k′

2
, the equation to be

solved is still rather complicated. We, therefore, proceed to the
last simplification and replace the two-body force by a unique
separable one, that is,

vk1k2,k′
1k′

2
= λe−k2/k2

0 e−k′2/k2
0 (2π )3δ(3)(K − K′), (9)

where k = (k1 − k2)/2, k′ = (k′
1 − k′

2)/2, K = k1 + k2, and
K′ = k′

1 + k′
2. This means that we take a spin-isospin averaged

two-body interaction and disregard that in principle the force
may be somewhat different in the S, T = 0, 1 or 1, 0 channels.
It is important to remark that for a mean-field solution, the
interaction can only be an effective one, very different from a
bare nucleon-nucleon force. This is contrary to the usual gap
equation for pairs, to be considered below, where, at least in
the nuclear context, a bare force can be used as a reasonable
first approximation.

We are now ready to study the solution of Eq. (1) for
the critical temperature T α

c , defined by the point where the
eigenvalue equals 4µ. For later comparison, the deuteron (pair)
wave function at the critical temperature is also deduced from
Eqs. (2) and (9) to be

φ(k) = − 1 − 2f (ε)

k2/m − 2µ
λe−k2/k2

0

∫
d3k′

(2π )3
e−k2/k2

0 φ(k′), (10)

where φ(k) is the relative wave function of two particles given
by �12 → φ(| k1−k2

2 |)δ(3)(k1 + k2), and ε = k2/(2m). We also
neglected the momentum dependence of the Hartree-Fock
mean-field shift in Eq. (10). With Eq. (10), the critical tem-
perature of pair condensation is obtained from the following
equation:

1 = −λ

∫
d3k

(2π )3

1 − 2f (ε)

k2/m − 2µ
e−2k2/k2

0 . (11)

Results for the critical temperature T α
c . To determine the

critical temperature for α-particle condensation, we have to
adjust the temperature so that the eigenvalue of Eq. (1) equals
4µ. The result is shown in Fig. 2(a). To get an idea of how this
converts into a density dependence, we use for the moment
the free gas relation between the density n(0) of uncorrelated
nucleons and the chemical potential, that is,

n(0) = 4
∫

d3k

(2π )3
f (ε). (12)

We are well aware of the fact that this is a relatively gross
simplification, for instance, at the lowest densities, and we
intend to generalize our theory in the future so that correlations
are included in the density. The two open constants λ and k0

in Eq. (9) are determined so that binding energy (−28.3 MeV)
and radius (1.71 fm) of the free (fi = 0) α particle come out
right. The adjusted parameter values are λ = −992 MeV fm3,
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FIG. 2. Critical temperature of α and deuteron condensations as
functions of (a) chemical potential and (b) density of free nucleon,
derived from Eq. (4) for the α particle and Eq. (11) for the deuteron.
Crosses (×) correspond to calculations of Eq. (1) with the Malfliet-
Tjon interaction (MT I-III) using the FY method.

and b = 1.43 fm−1. The results of the calculation are shown
in Fig. 2.

In Fig. 2, the maximum of critical temperature T α
c,max is

at µ = 5.5 MeV, and the α condensation can exist up to
µmax = 11 MeV. It is very remarkable that the obtained results
for T α

c agree very well with the exact solution of Eq. (1)
using the Malfliet-Tjon interaction (MT I-III) [19] with the
FY method shown by crosses in Fig. 2 (the numerical solution
only could be obtained for negative values of µ). This indicates
that T α

c is essentially determined by the Pauli blocking factors.
These results for T α

c are about 25% higher than the ones of
our earlier publication [8]. We, however, checked that the
underlying radius of the α particle in that work is larger than
the experimental value and that T α

c decreases with increasing
radius of α particle. Furthermore, a different variational wave
function was used in Ref. [8].

In Fig. 2 we also show the critical temperature for deuteron
condensation derived from Eq. (11). In this case, the bare force
is approximated with λ = −1305 MeV fm3 and k0 = 1.46 fm−1

to get the experimental energy (−2.2 MeV) and radius
(1.95 fm) of the deuteron. It is seen that at higher densities,
deuteron condensation wins over the one of α particle. The
latter breaks down rather abruptly at a critical positive value of
the chemical potential. Roughly speaking, this corresponds to
the point where the α particles start to overlap. This behavior
stems from the fact that Fermi-Dirac distributions in the
four-body case, see Eq. (1), can never become step-like, as
in the two-body case, even not at zero temperature, since the
pairs in an α particle are always in motion. As a consequence,
α condensation generally only exists as a BEC phase and the
weak coupling regime is absent.

Figure 3 shows the normalized self-consistent solution of
the wave function in momentum space derived from Eq. (8)
and the wave function in position space defined by its Fourier
transform ϕ̃(r). Figures 3(a1) and 3(b1) are the wave functions
of the free α particle. As discussed in the introduction, the wave
function resembles a Gaussian, and this shape is approximately
maintained as long as µ is negative, see Fig. 3(a2). On the
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FIG. 3. Single-particle wave functions in (a) momentum space
ϕ(k) and (b) in position space rϕ̃(r) at critical temperature, Eq. (8).
From top to bottom: (1) µ = −7.08 MeV, Tc = 0 MeV, n = 0 fm−3;
(2) µ = −2.22 MeV, Tc = 6.61 MeV, n = 9.41 × 10−3 fm−3; (3)
µ = 6.17 MeV, Tc = 8.45 MeV, n = 3.07 × 10−2 fm−3; and (4) µ =
10.6 MeV, Tc = 5.54 MeV, n = 3.34 × 10−2 fm−3. Figures (a1) and
(b1) correspond to the wave functions for a free α particle. The vertical
lines in (a3) and (a4) are at the Fermi wavelength kF = √

2mµ.

contrary, the wave function of Fig. 3(a3), where the chemical
potential is positive, has a dip around k = 0, which is due to
the Pauli blocking effect. For the even larger positive chemical
potential of Fig. 3(a4), the wave function develops a node.
This stems from the structure of the wave function, derived
in Eq. (4) from where one can realize that again this is a
consequence of the Pauli blocking factor. The maximum of
the wave function shifts to higher momenta and follows the
increase of the Fermi momentum kF , as indicated on Fig. 3.
From a certain point on, the denominator in Eq. (8) develops a
zero, and no self-consistent solution can be found any longer.

On the other hand, the wave functions in position space in
Figs. 3(b2), 3(b3), and 3(b4) develop an oscillatory behavior,
as the chemical potential increases. This is reminiscent to what
happens in BCS theory for the pair wave function in position
space [20].

Discussion and conclusions. In this work, we again studied
the critical temperature of α-particle (quartet) condensation
in homogeneous symmetric nuclear matter. We essentially
confirmed the behavior of two previous studies [8,12]. The
objective of the paper was to show that practically the same
results as before can be obtained with a strongly simplifying
ansatz for the four-particle wave function. Namely, this time,

we used a momentum-projected mean-field variational wave
function. This is based on the fact that the four different
fermions of the quartet can occupy the same single-particle 0S

wave function in the mean field. The latter is to be determined
from a self-consistent nonlinear HF type of equation as
a function of chemical potential or density. The relation
between the chemical potential and density is taken from
the free Fermi gas relation, Eq. (12). However, the total
nucleon density of the system must be calculated from single
nucleon occupation numbers including correlations, so that
the contribution of bound states to the total nucleon density
is taken into account, see Ref. [21]. To calculate the critical
temperature not as function of the free nucleon density, see
Fig. 2(b), but of the total nucleon density, a generalization
à la NSR [13] must be performed; that is, we have at least to
incorporate the contribution of the α-particle density including
the condensate to the single-particle occupation numbers. This
shall be investigated in future work.

Besides, in this work, we used the isospin-independent sep-
arable potential, Eq. (9), for the effective two-body interaction
as a simplification.

The self-consistent wave function has been studied in mo-
mentum and position space. For negative chemical potential,
the single-particle wave function behaves like a Gaussian.
However, once the chemical potential turns positive, then the
single-particle wave function in r space starts to oscillate. This
is a well-known feature from ordinary pairing.

We, therefore, have demonstrated that a very simplifying
momentum-projected mean-field ansatz suffices to account
for the salient features of quartet condensation. This is very
helpful for the next step, which is more complicated, i.e., the
incorporation of quartet condensation self-consistently into the
equation of state.

We should, however, be aware of the fact that our projected
mean-field ansatz for the quartet wave function can only be a
valid approximation as long as well-defined quartets exist. In
the breakdown region seen in Fig. 2, this is certainly no longer
the case. How the quartet phase evolves into a superfluid phase
of pairs is an open question.

The success of our study in employing a very simplifying
ansatz of the mean-field type for the quartet wave function may
open wide perspectives. Besides pushing the description of
quartet condensation much further, there exists the possibility
that even for the case of a gas of trions, such a projected mean-
field ansatz is a quite valid approach. In the case of three colors,
such as quarks in the constituent quark model for nucleons, a
harmonic confining potential is frequently assumed, and the
three quarks can occupy the lowest 0S state, analogous to the
case of quartets treated in the present paper. Of course, trions
are composite fermions and cannot be treated in the same way
as bosonic composites, since they form a new Fermi gas with
their own new Fermi level. How this situation can eventually
be treated has recently been outlined in Ref. [22].

This work is part of an ongoing collaboration with
Y. Funaki, H. Horiuchi, A. Tohsaki, and T. Yamada. Useful
discussions are gratefully acknowledged. We thank P. Nozières
for his interest in quartet condensation. This work is supported
by the DFG Grant No. RO905/29-1.
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