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Variational theory of hot nucleon matter. II. Spin-isospin correlations and equation of
state of nuclear and neutron matter
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We apply the variational theory for fermions at finite temperature and high density, developed in an earlier
paper, to symmetric nuclear matter and pure neutron matter. This extension generalizes to finite temperatures, the
many body technique used in the construction of the zero temperature Akmal-Pandharipande-Ravenhall equation
of state. We discuss how the formalism can be used for practical calculations of hot dense matter. Neutral pion
condensation along with the associated isovector spin longitudinal sum rule is analyzed. The equation of state is
calculated for temperatures less than 30 MeV and densities less than three times the saturation density of nuclear
matter. The behavior of the nucleon effective mass in medium is also discussed.
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I. INTRODUCTION

Ab initio models of dense nuclear matter at finite temper-
ature are crucial to the understanding of supernovae evolu-
tion [1,2], composition [3] and cooling [4] of protoneutron
stars, gravitational wave emission spectrum from neutron
star mergers [5], and the analysis of heavy ion collision
experiments [6]. Nuclear matter at zero temperature has been
studied extensively using a variety of theoretical methods (see,
e.g., [7] for a review). In contrast, the corresponding many
body problem at finite temperature has received little attention
[8]. For example, most computer simulations of supernovae
explosions use phenomenological equations of state, like the
Lattimer-Swesty equation of state [9] or the equation of state
due to Shen et al. [10,11].

Three decades ago Friedman and Pandharipande (FP)
carried out a seminal calculation of the equation of state
of hot dense nuclear and neutron matter using a variational
theory [12]. Since then only a few other calculations have
been carried out. The methods employed include Bloch–de
Dominicis diagrammatic expansion [13], extended Brueckner
theory [14,15], self-consistent Green’s functions [16], Dirac-
Brueckner theory [17], relativistic Brueckner-Hartree-Fock
theory [18], perturbation theory with low momentum inter-
actions [19], and lowest order variational [20] methods.

Most variational theories of dense quantum fluids originate
from the suggestion that a reasonable approximation for the
wave functions (�) of an interacting system can be obtained
by writing them as a product of the wave functions of a
noninteracting system (�) and a product of pair correlation
functions (Fij ) [21–24],

� ∝
∏
i<j

Fij�. (1)

The pair correlation functions are found by minimizing the
ground state energy at zero temperature or the free energy
at finite temperature. Different generalizations of this basic
variational method have been applied to the many body
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problem with varying degree of success and sophistication
[25]. In the approach used here the simple pair correlation
function in Eq. (1) is replaced by a pair correlation operator
to include the effects of non-central correlations directly
in the variational wave functions. The calculation of the
energy expectation values are subsequently more difficult.
Nevertheless a reasonably accurate calculation can be done
using a combination of the Fermi hypernetted chain summation
[26,27] and the single operator chain summation approx-
imations [28]. The combination of the Fermi hypernetted
chain summation method for central correlations, the single
operator chain summation for noncentral correlations and
some improvements introduced in later works (see next
paragraph) is collectively known as the variational chain
summation method [29].

The equation of state of dense nucleonic matter at zero
temperature has been calculated using the variational chain
summation method by FP, then by Wiringa, Fiks, and Fabrocini
[30] and by Akmal, Pandharipande, and Ravenhall (APR)
[29,31]. Each successive calculation was a significant improve-
ment over the preceding one with respect to the variational
method, and the models of the nucleon-nucleon interaction and
three nucleon interaction used. Recently the three body cluster
in the variational chain summation method was calculated
exactly (VCS/3) [32] unlike earlier calculations including APR
where only the two body cluster terms were calculated exactly
and all the higher order terms were calculated approximately
(VCS/2). However VCS/3 has not yet been generalized to finite
temperatures nor is a full zero temperature equation of state
available at this moment. Thus in this work we have used the
VCS/2 method and henceforth we will refer to VCS/2 simply
as variational chain summation.

We believe that variational chain summation supplemented
by realistic nucleon-nucleon interactions and three nucleon
interactions is at present one of the most reliable methods for
studying dense many body systems. It compares reasonably
well with the experimental bounds on the equation of state
set by heavy ion collision experiments [33] and benchmark
quantum Monte Carlo calculations in neutron matter [34]. It
is, therefore, worthwhile to investigate its generalization to
nonzero temperatures and arbitrary proton fraction.
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In extending variational chain summation to finite tem-
peratures one is faced with a technical challenge. Since wave
functions used in variational chain summation are not mutually
orthogonal, when constructing a variational theory at finite
temperature one encounters the so called orthogonality cor-
rections [37,38]. The orthogonality corrections are not unique
(they depend on the method of orthonormalization chosen) and
more importantly their calculation requires the evaluation of
the off-diagonal matrix elements of the Hamiltonian and unity.
At present there exists no accurate method to calculate these
off-diagonal matrix elements, especially for wave functions
with operator dependent correlations.

In the only previous application of the variational method
to finite temperatures, viz. in FP, the orthogonality corrections
were simply ignored. Recently we showed that there exists
a choice for the orthonormalization procedure such that
the orthogonality corrections to the free energy vanish in
the thermodynamic limit [39] (hereafter I). This way the
orthogonality problem can be circumvented and at least for
thermodynamic quantities the variational chain summation
method can be extended to nonzero temperatures without
having to worry about orthogonality corrections.

In this paper we apply the formalism developed in I
to symmetric nuclear matter and pure neutron matter. The
present calculations can be regarded as an improvement on the
finite temperature calculations due to FP and/or an attempt to
generalize the zero temperature calculations of APR to finite
temperature. This work is a contribution to the ongoing effort
to understand the properties of nucleonic matter under extreme
conditions of density, temperature and asymmetry starting
from the bare interactions amongst nucleons which can be
constrained by the experimental data on the nucleon-nucleon
scattering in vacuum and the binding energies of light nuclei.

The Hamiltonian we have used for this calculation is
the same as that in APR. It consists of the Argonne v18
nucleon-nucleon interaction [40], the Urbana IX model of
three nucleon interaction [41,42], and leading order relativistic
boost interactions [43]. For completeness we will discuss the
Hamiltonian in some detail in the next section. In Sec. III
we outline the variational chain summation method for finite
temperature. First a short summary of the relevant parts of
I is given. Thereafter the practicalities of the search for the
variational minima are described. Section IV is devoted to
our results. We first discuss the spin-isospin correlations in
symmetric nuclear matter and pure neutron matter, and show
that they are enhanced at finite temperature as they are at zero
temperature [29]. The fate of the neutral pion condensation at
finite temperature is discussed. The behavior of the nucleon
effective mass, free energy, pressure and symmetry energy is
also discussed in this section. Some of the limitations of our
calculations are discussed in Sec. V. We summarize our results
in Sec. VI.

II. THE HAMILTONIAN

The nonrelativistic Hamiltonian used in the present calcu-
lations can be written in real space as

H =
∑

i

−h̄2

4

[(
1

mp

+ 1

mn

)
+

(
1

mp

− 1

mn

)
τzi

]
∇2

i

+
∑
ij

(v18,ij + δvb,ij ) +
∑
ijk

V �
UIX,ijk, (2)

where the kinetic energy operator takes into account the
difference between the mass of a proton mp and the mass
of a neutron mn.

The Argonne v18 nucleon-nucleon interaction v18,ij has the
form

v18,ij =
18∑

p=1

v
p

ijO
p

ij + vem. (3)

The electromagnetic part vem is omitted from all nuclear matter
studies including the present one. The strong interaction part
has 14 isoscalar operator terms

O
p=1,14
ij = [

1, σ i · σ j , Sij , (L · S)ij , L
2
ij , L

2
ijσ i · σ j , (L · S)2

ij

]
⊗ [1, τ i · τ j ]. (4)

By convention the operators with even p � 14 have the τ i · τ j

term while the ones with odd p do not. The three isotensor
operators (p = 15, 16, 17) are given by

O
p=15,18
ij = (3τziτzj − τ i · τ j ) ⊗ (1, σ i · σ j , Sij ). (5)

And finally, the isovector operator (p = 18) is

O18
ij = (τzi + τzj ). (6)

The Argonne v18 nucleon-nucleon interaction along with the
CD BONN [44,45] and the Nijmegen models [46] constitute
the set of ‘modern’ phase-shift equivalent nucleon-nucleon
interactions. These models fit the Nijmegen data base of
proton-proton and neutron-proton scattering phase shifts up
to 350 MeV with a χ2/Ndata ∼ 1. All of them include the
long range one pion interaction potential but have different
treatments of the intermediate and short range parts of the
nucleon-nucleon interaction.

The isotensor and isovector parts of v18,ij , and the isovector
part of the kinetic energy, are very weak and we will treat them
as first order perturbations. In first order, these terms do not
contribute to the energy of symmetric nuclear matter, which
has total isospin T = 0. In pure neutron matter the isovector
and the isotensor terms can be absorbed in the central, spin
and the tensor parts of the nucleon-nucleon interaction.

The Urbana IX model of three nucleon interaction VUIX,ijk

has two terms

VUIX,ijk = V 2π
ijk + V R

ijk. (7)

The first term represents the Fujita-Miyazawa two-pion ex-
change interaction

V 2π
ijk =

∑
cyc

A2π

({τ i · τ j , τ i · τ k}{Xij ,Xik}

+ 1

4
[τ i · τ j , τ i · τ k][Xij ,Xik]

)
, (8)

Xij = SijTπ (rij ) + σ i · σ jYπ (rij ), (9)

with strength A2π . The functions Tπ (rij ) and Yπ (rij ) describe
the radial shapes of the one-pion exchange tensor and Yukawa

045811-2



VARIATIONAL THEORY OF . . . . II. SPIN-ISOSPIN . . . PHYSICAL REVIEW C 79, 045811 (2009)

potentials. The term denoted by V R
ijk is purely phenomenolog-

ical, and has the form

V R
ijk = U0

∑
cyc

T 2
π (rij )T 2

π (rik). (10)

This term is meant to represent the modification of N�-
and ��-contributions in the two-body interaction by other
particles in the medium. The two parameters A2π and U0 are
chosen to yield the observed energy of 3H and the equilibrium
density of cold symmetric nuclear matter, ρ0 = 0.16 fm−3.

It is possible to incorporate the leading order effects of
relativistic boost corrections as an interaction term into a
nonrelativistic Hamiltonian [43]. They give rise to two body
interactions δvij . As a first approximation, only the static part
of the boost interaction is kept in the present calculation.
Studies of light nuclei using the variational Monte Carlo
method [47] find that the contribution of the two-body boost
interaction to the energy is repulsive, with a magnitude which
is 37% of the V R

ijk contribution. However, the parameters of
the Urbana IX model of three nucleon interaction were fixed
without taking into account the boost interactions. In the new
model of three nucleon interaction called UIX� the parameters
are obtained by fitting the binding energies of 3H and 4He, and
the equilibrium density of symmetric nuclear matter, including
δvij . The strength of V R∗

ijk is 0.63 times that of V R
ijk in UIX,

while V 2π
ijk remains unchanged [31].

III. VARIATIONAL CHAIN SUMMATION AT FINITE
TEMPERATURE

A. The variational theory at finite temperature

In variational calculations one assumes that a good approxi-
mation for the eigenstates of the interacting system of fermions
is given by the correlated basis states [12,35–37]

�it[ni(k, x)]

= S(
∏

i<j Fij )�i[ni(k, x)]

�i[ni(k, x)](S(
∏

i<j Fij ))2�i[ni(k, x)]
, (11)

where �i are the eigenstates of a free Fermi gas with
occupation numbers ni(k, x) for single particle states with
momentum k and x standing for any other quantum numbers
of the single particle states (including spin and isospin). The
occupation numbers ni(k, x) can take the values 0 and 1. The
pair correlation operatorFij encodes the effects of interactions.
In the present calculations it has the following form:

Fij =
8∑

i=1

f p(rij )Op

ij . (12)

Since the operators O
p

ij do not commute, the product of
pair correlation operators need to be symmetrized with the
symmetrization operator S to make the full wave function
antisymmetric. Henceforth we will denote the static operator
channels p = 1–6 interchangeably with the more descrip-
tive symbols c, cτ, σ, στ, t and tτ which stand for central,
central-isospin, spin, spin-isospin, tensor, and tensor-isospin,
respectively.

The ansatz Eq. (11) is consistent with Landau’s theory of
Fermi liquids where it is assumed that the eigenstates of an
interacting system have a one-to-one correspondence with the
eigenstates of a noninteracting system. In this approach we
assume that the mapping is accomplished by the correlation
operator. In the spirit of Landau’s theory we will hereafter refer
to the ni(k, x) as the quasiparticle occupation numbers.

An upper bound for the free energy of an interacting system
can be obtained by using the Gibbs-Bogoliubov variational
principle [48]

F � Fv = Tr (ρvH ) + T Tr (ρv ln ρv), (13)

where T is the temperature of the system and ρv is a variational
density matrix (not to be confused with the density ρ). The
inequality is replaced by an equality when ρv is the exact
density matrix of the system. Since we assume that the
correlated basis states provide a good approximation to the
eigenstates of the interacting system we want to construct ρv

from the correlated basis states. However, the correlated basis
states, by construction, are not mutually orthonormal, i.e., in
general

〈�i |�j 〉 �= 0 for i �= j. (14)

Hence, we need to orthonormalize them before they can be
used1 [38]. The orthonormalization procedure is not unique.
Let |�i〉 be the orthonormalized correlated basis states using
one such orthonormalization method. Now, we can choose the
following form for the variational density matrix,

ρv = exp(−βHv)/Tr [exp(−βHv)], (15)

Hv = Ev
i |�i〉〈�i |, (16)

where β = 1/T

and the variational spectrum can be approximated as a sum of
quasiparticle energies [37]

Ev
i [n (k, x)] =

∑
k,x

ε (k, x; ρ, T ) n(k, x). (17)

The quasiparticle energies ε(k, x; ρ, T ) depend on the density
ρ and the temperature T along with k and x.

The entropy is given by

Sv(ρ, T ) = −Tr (ρv ln ρv)

= −
∑

[n̄(k, x; ρ, T ) ln{n̄(k, x; ρ, T )}
+ {1 − n̄(k, x; ρ, T )} ln{1 − n̄(k, x; ρ, T )}],

(18)

where n̄(k, x; ρ, T ) is the mean quasiparticle occupation
number of the single particle state (k, x) at density ρ and
temperature T ,

n̄(k, x; ρ, T ) = 1

exp[β{ε(k, x; ρ, T ) − µ̃(ρ, T )}] + 1
. (19)

1It is possible to define the variational density matrix with the
nonorthogonal correlated basis states. But in that case, the trace
operation will involve their dual vectors and the free energy
expectation value will still contain off-diagonal matrix elements.
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Here µ̃ is an effective chemical potential (see next subsection)
and is fixed by

A =
∑
k,x

n̄(k, x; ρ, T ), (20)

where A is the total number of particles in the system. We have
set the Boltzmann constant kB to 1.

The thermodynamic average of the Hamiltonian is given by

Tr (ρvH ) = 〈H 〉OCBS,n̄(k,x;ρ,T ), (21)

= 〈H 〉CBS,n̄(k,x;ρ,T ) + EOC(ρ, T ), (22)

where 〈H 〉CBS,n̄(k,x;ρ,T ) and 〈H 〉OCBS,n̄(k,x;ρ,T ) are the expec-
tation values of the Hamiltonian in the correlated basis states
and orthonormalized correlated basis states, respectively, with
the occupation numbers set to n̄(k, x; ρ, T ). The orthogonality
corrections are denoted by EOC.

The calculation of the expectation values of various opera-
tors, especially the Hamiltonian, in the basis of correlated basis
states is a nontrivial problem. The diagonal matrix elements
and thus the expectation value in Eq. (22) can be calculated by
expanding it in powers of F2

ij − 1. Schematically we have

Ev(ρ, T )/A = 〈H 〉CBS,n̄(k,x;ρ,T )/A

= h̄2

2m
k2

av +
∑

diagrams(v,F , lT ), (23)

where m is the average bare mass of a nucleon and k2
av is

the mean square momentum per particle. The diagrams are
many body integrals involving the potential v, the correlation
operator F and the finite temperature Slater function lT ,

lT (r; ρ, T ) = 1

A

∑
k,x

eik·rn̄(k, x; ρ, T ). (24)

Within our scheme the pair correlation operator F and the
Slater function lT (r; ρ, T ) encode all the relevant microscopic
information about the many particle system at a temperature
T and density ρ.

Large classes of diagrams can be resummed using the
variational chain summation method. For a review of the
variational chain summation method the reader is referred
to [28–31] (and references therein). Here, we merely wish
to point out that the variational chain summation method can
be used to calculate the expectation values for any set of mean
occupation numbers n̄(k, x). At zero temperature this set is a
step function, but at finite temperatures states above the Fermi
surface become populated.

In contrast to Ev(ρ, T ) whose calculation involves only the
diagonal matrix elements of the Hamiltonian in the correlated
basis states basis, the orthogonality corrections EOC involve
off-diagonal matrix elements of the Hamiltonian and the unit
operator in the correlated basis states basis and they cannot be
calculated within variational chain summation. In fact, there
exists no method to calculate the off-diagonal matrix elements
accurately for operator dependent interactions and correlation
functions like the ones used in this study.

In FP it was assumed that these orthogonality corrections
are small. Recently it was shown in I that exploiting the fact
that only a very small subset of states contributes to the trace

in Eq. (13), it is possible to construct an orthonormalization
scheme where the orthogonality corrections to the free energy
vanish in the thermodynamic limit

EOC

A
→ 0 as A → ∞. (25)

This proof does not rely on the detailed nature of the pair
correlation functions, instead it follows from some general
properties that any reasonable pair correlation function (in-
cluding ours) is expected to possess.

Hence using Eqs. (18), (22), (23), (25) it is possible to
rewrite Eq. (13) exactly as

F (ρ, T ) < Fv(ρ, T ) = Ev(ρ, T ) − T Sv(ρ, T ). (26)

In the above equation Sv can be obtained trivially from
Eq. (18) once the single particle spectrum is known and Ev

is calculated using variational chain summation generalized
to finite temperature as outlined above. For further details the
reader is referred to I.

Before we end this summary we would briefly comment
on the general applicability of this method. The applicability
of the method described above is limited to nuclear matter. In
principle it can be applied to any quantum liquid, including
liquid Helium. In fact, the basic approach has similarities with
the so called correlated density matrix approach [49]. In some
sense, both methods are attempts to generalize the highly
successful chain summation techniques to finite temperature.
The correlated density matrix method has thus far been applied
mostly to bosonic systems [50]. However, in principle, it can
be applied to fermionic systems as well [49]. In future, it will
be interesting to study the structural similarities between the
two methods.

B. The optimization procedure and the pair
correlation functions

The variational free energy Fv is optimized by varying both
the single particle spectrum ε(k, x; ρ, T ) and the correlation
operator Fij at all densities and temperatures. This should be
contrasted with the calculations of FP where for densities ρ >

0.04 fm−3 the zero temperature correlation operator was used
at all temperatures. We find that the temperature dependence of
the correlation operator is weak but non-negligible (see later).

We parametrize the single particle spectrum ε(k, x; ρ, T )
by a simple effective mass approximation

ε(k, x; ρ, T ) = h̄2k2

2m�(ρ, T )
. (27)

In general it is possible for ε(k, x; ρ, T ) to have higher order
terms in k. However, in our calculations Fv was found to
be insensitive to any such dependence. It is also possible for
ε(k, x; ρ, T ) to contain a momentum independent term which
depends on ρ and T only, u(ρ, T ), but such a term will be
absorbed in the definition of µ̃ [51]

µ̃(ρ, T ) = µ(ρ, T ) − u(ρ, T ), (28)

where µ is the true chemical potential of the system.
As mentioned earlier, in variational chain summation the

expectation values of various operators are calculated by
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expanding the matrix elements in powers of F2
ij − 1 and then

resumming large classes of terms. The correlation operatorFij

is itself calculated by solving the Euler-Lagrange equations
which are obtained by minimizing the lowest order terms
(viz., the sum of the kinetic energy term and the two body
cluster term) in this expansion for the Hamiltonian, with the
nucleon-nucleon interaction vij replaced by v̄ij − λij , where

v̄ij =
∑

p=1,14

αpvp(rij )Op

ij , (29)

λij =
∑

p=1,8

λp(rij )Op

ij . (30)

The variational parameters αp are meant to simulate the
quenching of the spin-isospin interaction between particles
i and j , due to flipping of the spin and/or isospin of particle i

or j via interaction with other particles in matter. We use

αp = 1 for p = 1 and 9, (31)

αp = α otherwise. (32)

The correlation functions f p(r) are made to satisfy the
additional healing conditions

f p(r > dp) = δp1, (33)

df p

dr

∣∣∣∣
r=dp

= 0, (34)

where

dp = dt for p = 5, 6, (35)

dp = dc for p �= 5, 6. (36)

The above constraints completely determine the λp(r).
The Euler-Lagrange equations are solved in the spin S and

isospin T channels. As an example, in the S = 0 channel the

Euler-Lagrange equations become

− h̄2

2m
[φT ,S=0∇2fT ,S=0 + 2∇φT ,S=0 · ∇fT ,S=0]

+ (vT ,S=0 − λT ,S=0)fT ,S=0φT ,S=0 = 0, (37)

where

φT ,S = [
1 − (−1)(T +S)l2

T (r; ρ, T )
]1/2

. (38)

The relationship between the potential and the correlation
functions in the T , S channels and those in the operator chan-
nels p = 1–8 are given in [28]. The Euler-Lagrange equations
in the S = 1 channels are considerably more complicated
because the contribution of the tensor and the spin-orbit
terms give rise to three coupled differential equations for the
correlation functions in each isospin channel. For more details
the reader is referred to [28].

To illustrate the relative effect of density and temperature on
the pair correlation functions we show in Figs. 1 and 2 the pair
correlation functions in the central (f c) and the tensor-isospin
(f tτ ) channels for ρ = ρ0 and 1.5ρ0 and T = 0 and 10 MeV.
As we mentioned in the beginning of this section, thermal
effects (at least in the range of temperatures we are interested
in) are not negligible but they do not change the behavior of
the f p’s qualitatively.

The variational free energy Fv(ρ, T ) thus becomes a
function of the four variational parameters m�, dc, dt and
α. The optimal values for these parameters and hence the
best value Fv at each density and temperature is found by
minimizing the constrained free energy defined as [30]

Fcon = Fv + A�
[
(Ic − 1)2 + (

1
3Iτ + 1

)2 ]
, (39)

where

Ic = ρ

∫
d3r(1 − gc(r)), (40)

Iτ = 1

N
〈0|

∑
i,j=1,N

τ i · τ j |0〉, (41)

0 0.2 0.4 0.6 0.8 1

r (fm
-3

)

0.2

0.4

0.6

0.8

1

f c

ρ = 1.0 ρ
0
, T =   0 MeV

ρ = 1.5 ρ
0
, T =   0 MeV

ρ = 1.0 ρ
0
, T = 10 MeV

ρ = 1.5 ρ
0
, T = 10 MeV

FIG. 1. (Color online) The pair correlation
function in the central channel of symmetric nu-
clear matter various densities and temperatures.
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0 1 2 3 4 5

r (fm
-3

)

-0.04

-0.03

-0.02

-0.01

0

f tτ

ρ = 1.0 ρ
0
, T =   0 MeV

ρ = 1.5 ρ
0
, T =   0 MeV

ρ = 1.0 ρ
0
, T = 10 MeV

ρ = 1.5 ρ
0
, T = 10 MeV

FIG. 2. (Color online) The pair correla-
tion function in the tensor-isospin channel
of symmetric nuclear matter various densities
and temperatures.

and gc(r) is the pair distribution function. Laws of conservation
of mass and charge demand that

Ic = 1, (42)

Iτ = −3. (43)

Of course, for pure neutron matter only Eq. (42) is applicable
and hence, only the first term within square brackets in
Eq. (39) is kept.

In the right hand side of Eq. (39) penalty term is added to Fv

to make sure that these laws of conservation of mass and charge
are approximately satisfied in the variational calculations. In
our calculations we choose � to be 1000 MeV [29]. This keeps
Ic and Iτ to within about 5% of their exact values for all values
of ρ and T . For most values of ρ and T the conservation laws
are satisfied at the level of 1% or less.

The temperature dependence of the correlation operator is
important in satisfying the sum rules Eqs. (42) and (43) to
a reasonable degree of accuracy. For example, at ρ = ρ0 and
T = 10 MeV, the deviation of Ic and Iτ in our calculations from
their true values [Eqs. (42) and (43)] is ≈0.04% and ≈0.3%,
respectively. For comparison, employ the methodology used
by FP, the so called ‘frozen correlation’ method, where
the correlation operator is taken from the zero temperature
calculations, only m� is varied at finite temperature, and the
minimization is carried out with Fv only. At the same values
of ρ and T the deviation of Ic and Iτ from their correct values
is ≈13% and ≈20%, respectively, in this case.

In practice we varied m�/m, dt/r0, dc/r0, and α during the
search. Here r0, is the unit radius, defined such that

4
3πr3

0 ρ = 1. (44)

Due to technical reasons involving the spacing on the grid
on which the integrations are done in our computer program,
dc/r0 is varied in fixed steps while the other three parameters
are allowed to vary continuously. In particular,

lc = lt
dc

dt

(45)

could only take integer values where 2lt is the size of the
grid on which most of the integrations are carried out. In
our calculations we set lt to be 64 while this was 32 in the
calculations due to APR. We also made improvements in
the way the integrations are done while calculating the chain
functions. While in APR a simple midpoint Euler method was
used, we employed Gaussian quadrature for the same purpose.

The actual variational search for each value of lc is carried
out using a downhill simplex routine [52]. Within the context
of variational chain summation the simplex search algorithm
for the search parameters was first implemented in Ref. [30].
Finally, the best parameters and Fcon are found from a quadratic
fit to the corresponding values at the three best values of lc.
This is an improvement over APR where a simple grid search
was done in the parameter space.

Typically the changes in energy due to these improved
numerics are small (≈0.5 MeV per particle at ρ = ρ0 and
T = 0), but the short range parts of the chain functions become
much more well behaved as a result of these improvements,
i.e., the quality of the final wave functions obtained is much
improved.2

IV. RESULTS

A. Two body densities and spin-isospin correlations

The effect of nuclear interactions on two particle correla-
tions in medium can be inferred from the two body densities
ρ

p

2 (r), defined such that,〈 ∑
i �=j=1,A

B(rij )Op

ij

〉
T ,ρ

= A

∫
d3rB(r)ρp

2 (r), (46)

2Some of the corresponding improvements for the zero temperature
version of the computer program were first carried out by Jaime
Morales [53].
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FIG. 3. (Color online) The two body den-
sities in symmetric nuclear matter at saturation
density and different temperatures.

where 〈· · ·〉T ,ρ denotes the thermal average at temperature
T and density ρ. We show the static two body densities in
Fig. 3 for T = 0, 10 and 20 MeV at saturation density ρ = ρ0

in symmetric nuclear matter. Unsurprisingly, they have the
expected asymptotic behavior

ρ
p

2 (r → ∞) = ρδ1p. (47)

The central two body density ρc
2 is particularly interesting

because it is ρ times the probability of finding two particles
separated by a distance r . In a non-interacting gas all
noncentral (p > 1) two body densities vanish; their large
magnitude in nuclear matter is due to strong spin-isospin
correlations introduced by the nuclear interaction.

The effect of increasing temperature on the two body
densities, within the context of our calculations, is twofold.
Firstly, increasing temperature weakens the effects of Pauli
blocking in the Euler-Lagrange equations [such as Eq. (37)]

for the pair correlation functions. This, tends to enhance short
range correlations among nucleons. On the other hand, when a
nonzero temperature is introduced the integral equations used
in variational chain summation to calculate the two body densi-
ties from the pair correlation functions, it tends to suppress the
spin-isospin correlations. In the regime of temperatures and
densities discussed in this work, the magnitudes of the two
effects are comparable and the net temperature dependence of
the two body densities is a combination of the two.

Generally particles are correlated over the longest range due
to tensor interactions. In our calculations dt is one measure
of this range. In Figs. 4 and 5 we show dt for symmetric
nuclear matter and pure neutron matter, respectively, for
various temperatures. In Fig. 4 we see a dramatic decrease
in the value of dt/r0 below ρ ∼ 0.06 fm−3 for T = 4 MeV
in symmetric nuclear matter. This is a precursor to cluster
formation. We will discuss this topic briefly in Sec. V.
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FIG. 4. (Color online) The tensor correlation
length in symmetric nuclear matter. The numbers
alongside the curves denote the temperature in
MeV.
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FIG. 5. (Color online) The tensor correlation
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One of the most interesting features of these plots is the
sharp change in magnitude of dt/r0 at ρ ∼ 2ρ0 for symmetric
nuclear matter and at ρ ∼ ρ0 for pure neutron matter. A similar
feature was obtained in the zero temperature calculations of
APR. In APR it was argued that this feature resulted from a first
order phase transition due to neutral pion condensation [54,55].
Their argument was based on the fact that the energy per
particle as a function of density showed a kink indicating a first
order phase transition, and that the isovector spin longitudinal
response showed an enhancement and softening in the high
density phase compared to the low density phase indicating
enhanced pion exchange interactions between nucleons in the
high density phase. Recently there has been some indication of
experimental evidence supporting the enhancement of pionic
modes in nuclei (see [56] for a review).

The isovector spin longitudinal static structure function is
defined as

SL(q) = 1

A

(〈
O2

L

〉
T ,ρ

− |〈OL〉T ,ρ |2
)
, (48)

where

OL(q) =
A∑

i=1

σ i · q̂τ i · t̂eiq·ri . (49)

Here ri are the positions of the nucleons and t̂ is a unit vector in
the isospin space. This quantity is also the sum of the isovector
spin longitudinal dynamic response function RL(q, ω),

SL(q) = 1

A

∫ ∞

0
RL(q, ω)dω, (50)

RL(q, ω) =
∑
I,J

pI |〈J |OL(q)|I 〉|2δ(ωJ − ωI − ω), (51)

where I and J are eigenstates of the Hamiltonian with
eigenvalues ωI and ωJ , respectively, and pI is the probability
of the state I occurring in the thermal ensemble.

It is also possible to define a mean energy ĒL(q) of the
isovector spin longitudinal response by

WL(q) = 1

A

∫ ∞

0
ωRL(q, ω)dω, (52)

ĒL(q) = WL(q)

SL(q)
. (53)

Both SL(q) and WL(q) and hence ĒL(q) can be calculated
from the two body densities ρ

p

2 (r).
In Fig. 6 we plot SL and ĒL in symmetric nuclear matter

at T = 4, 10, and 16 MeV for various densities. For all three
temperatures we see a big enhancement of SL at q ∼ 1.3 fm−1

due to stronger spin-isospin correlations at higher densities.
However, for T = 4 MeV the enhancement develops quite
suddenly at ρ = 2ρ0 while at T = 10 MeV and 16 MeV there
is a smoother evolution of the enhancement as the density is
increased. Similarly the mean energy ĒL develops a dip at
q ∼ 1.3 fm−1 for all three temperatures, but quite sharply at
T = 4 MeV and relatively smoothly at 10 and 16 MeV as
functions of density.

The same quantities for pure neutron matter at T = 14, 22,
and 30 MeV are plotted in Fig. 7. Again, we see a large
enhancement in the value SL for ρ � ρ0 at q ∼ 1.3 fm−1 at
all three temperatures. However the enhancement develops
suddenly in the case of T = 14 MeV, and relatively smoothly
for T = 22 and 30 MeV. Also, the mean energy ĒL shows
a dip for densities ρ � ρ0 at all temperatures, but this effect
develops more smoothly at higher temperatures.

Our calculations thus show that the isovector spin longi-
tudinal response for symmetric nuclear matter is enhanced
and softened at densities ρ >∼ 2ρ0 at finite temperatures. But
whereas for T < 10 MeV this enhancement and softening
develops quite suddenly, there is a smoother evolution for
T � 10 MeV. For pure neutron matter there is enhancement
and softening of the isovector spin longitudinal response at
densities ρ >∼ ρ0, but it develops quite suddenly for T <

22 MeV and quite smoothly for T � 22 MeV.
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FIG. 6. (Color online) The isovector spin lon-
gitudinal static structure function and mean energy
in symmetric nuclear matter.

The difference between the expectation values of the pion
number operator in a system of A interacting nucleons and in
a system of A isolated nucleons is called the pion excess. The
part 〈δ(1)

π (q)〉 of the pion excess at a momentum q, exclusively
due to one pion exchange interactions, can be calculated
from SL(q) [29,57]. In Figs. 8 and 9 we show 〈δ(1)

π (q)〉 for
symmetric nuclear matter and pure neutron matter. As with
SL(q), 〈δ(1)

π (q)〉 shows an enhancement at higher densities.
For symmetric nuclear matter this enhancement develops
suddenly for T < 10 MeV and smoothly for T >∼ 10 MeV.
In pure neutron matter T ≈ 22 MeV marks the temperature
below which the enhancement is sudden and above which the
enhancement is smooth.

The above observations along with the results for the
equation of state (described in Sec. IV C below) leads us to
conclude that the first order phase transition due to neutral pion

condensation has a critical temperature of Tc ≈ 10 MeV for
symmetric nuclear matter and Tc ≈ 22 MeV for pure neutron
matter. Above the critical temperature the enhancement in the
spin-isospin correlations still persists at higher densities, but
now there is a smooth crossover between the low density phase
and the high density phase.

B. The nucleon effective mass

The effective mass m� is not only a variational parameter
in our calculations, but also a quantity of considerable
physical importance in determining the thermal properties of
nuclear matter. Our results for m� as a function of density in
symmetric nuclear matter and pure neutron matter for various
temperatures is shown in Figs. 10 and 11. We wish to point
out that the variational minimization in pure neutron matter
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FIG. 7. (Color online) The isovector spin lon-
gitudinal static structure function and mean energy
in pure neutron matter.
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FIG. 8. (Color online) The pion excess due
to one pion exchange interactions in symmetric
nuclear matter.

is not very sensitive to variations of m�, especially at low
temperatures and the high density phase. In particular the
uncertainty in our estimate of m� for the high density phase in
pure neutron matter for the three lowest temperatures reported
(4, 8, and 12 MeV) is comparable to the total temperature
dependence of m� at these temperatures.

The curves of m� vs ρ show sharp changes at ρ ∼ 2ρ0

in symmetric nuclear matter and at ρ ∼ ρ0 in pure neutron
matter. The origin of these changes is the enhancement of the
spin-isospin correlations discussed earlier.

Our calculations also show an enhancement of m� at low
temperatures in symmetric nuclear matter and to a much lesser
extent in pure neutron matter. This is clearer from Fig. 12
where m� has been plotted as a function of temperature for ρ =
0.5ρ0, ρ0 and 1.5ρ0 in symmetric nuclear matter. For example,
for ρ ∼ ρ0,m

� at T = 2 MeV is 0.85m and at T = 4 MeV is
0.81m while at T = 20 MeV it is 0.69m which is very close
to the value 0.7m obtained from optical potential models of
nucleon-nucleus scattering [58,59].

It is important to realize that the effective mass, defined as

m�(k) = k
dk

dε(k)
, (54)

can in general depend on the momentum k. The momentum
independent effective mass m�(ρ, T ) that is used in the varia-
tional calculations is an weighted average of this momentum
dependentm�(k). It is difficult to establish the actual weighting
given to each single particle state. However it is not difficult to
convince oneself that at any given temperature and density the
maximum contribution comes from states with single particle

energies ε(k) such that

|ε(k) − ε(kF )| <∼ πT, (55)

where kF is the Fermi momentum.
At very low temperatures only those single particle states

which are very close to the Fermi surface can contribute.
Theoretical calculations and experimental evidence suggests
that the (momentum dependent) m�(k) in symmetric nuclear
matter has a big enhancement at and near the Fermi surface
[59–63]. In our calculations enhancement in m� at low
temperatures is probably due to this effect.

In FP no such enhancement was seen. For comparison, in
Fig. 12 we have also plotted the m� at ρ = ρ0 obtained by
simply minimizing Fv and using correlation operator from the
T = 0 calculations, i.e., the frozen correlation method. This
method is closest to the one used in FP albeit with different
nucleon-nucleon interaction and three nucleon interaction.
And indeed, we do not see any significant variation of m�

with temperature. In fact, the values of m�/m so obtained
are 0.66, 0.68, 0.71, 0.73 at T = 5, 10, 15, and 20 MeV,
respectively. These are very close to the corresponding values
0.65, 0.67, 0.70, and 0.73 obtained by FP where the Urbana
v14 model of the nucleon-nucleon interaction was used along
with a density dependent term to simulate the effects of the
three body forces.

It appears that we are able to capture some of the subtle
correlations which influence the low energy quasiparticle
excitations better because of the improvements introduced in
our calculations. These improvements include the fact that in
the variational search all the parameters were varied and the
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FIG. 9. (Color online) The pion excess due to
one pion exchange interactions in pure neutron
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FIG. 10. (Color online) The effective mass in
symmetric nuclear matter. The numbers alongside
the curves denote the temperature in MeV.

pair correlation functions were calculated at all temperatures,
and the fact that we insist on satisfying the laws of conservation
of mass and charge at the level of a few percents. However, this
is simply one possibility since in general the free energy is not
very sensitive to the variations in the effective mass and it is
difficult to delineate the effect that each individual component
in our method has on the effective mass. This topic deserves
further investigation, and we hope to address it in more detail
in future work [64].

C. The equation of state

As we discussed earlier the variational minimization for
the optimal parameters dt , dc, α, and m� is carried out with
v18 + VUIX only. Following APR some additional corrections
were added to the energy.

(i) The relativistic boost corrections δvb + (V �
UIX − VUIX)

which were discussed earlier.

(ii) An estimate for the second order perturbative corrections
�E2 is given by δE2B the difference between the
two body cluster energy obtained by minimizing the
contributions in each partial wave and the two body
cluster energy obtained from the Fij defined above.

(iii) An additional ad hoc correction term −γ2ρ
2e−γ3ρ , with

γ2 = 1996 MeV fm6 and γ3 = 15.24 fm3 is added
to the symmetric nuclear matter energy to get the
correct saturation energy at zero temperature. These
values are slightly different from those in APR (γ2 =
2822 MeV fm6 and γ3 = 18.34 fm3) because our
variational energies and variational parameters at zero
temperature are slightly different from those in APR
owing to the improvements in the method described
earlier.

Of the above only the relativistic boost corrections have a
temperature dependence. The temperature dependence of the
perturbative corrections was found to be negligible and was
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neglected. Thus our best estimate for the free energy is given
by

Ftot = Ev − T Sv + Ec, (56)

= Fv + Ec, (57)

where Ec is the sum of the correction terms mentioned above.
The free energy Ftot calculated using the method outlined

in the last section is shown in Figs. 13 and 14 for symmetric
nuclear matter and pure neutron matter, respectively, for
temperatures T = 4–30 MeV. The most striking feature in
these figures is the sharp change in the slope of the free
energy at low temperatures for both symmetric nuclear matter
(T < 12 MeV, ρ ∼ 0.30 fm−3) and pure neutron matter (T <

24 MeV and ρ ∼ 0.18 fm−3) (see inset in Figs. 13 and 14).

During the variational search the global minimum of the
free energy as a function of the variational parameters jumps
from one local minimum to another. In Fig. 15 we show the
density at which this transition from the low density phase to
high density phase occurs in our calculations. This results in
a first order phase transition. In light of our discussion in
Sec. IV A, we identify this phase transition with the phe-
nomenon of the neutral pion condensation. As we mentioned
in the earlier the critical temperature for this transition is Tc ≈
10 MeV for symmetric nuclear matter and Tc ≈ 22 MeV for
pure neutron matter.

At subsaturation densities and low temperatures symmetric
nuclear matter undergoes another first order phase transition,
the liquid-gas transition. In our calculations the critical
temperature for the liquid-gas phase transition is Tc ≈ 21 MeV
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FIG. 13. (Color online) The free energy
in symmetric nuclear matter. The numbers
alongside the curves denote the temperature
in MeV. The inset shows in more detail the
region of transition from the low density
phase to the high density phase.
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and the critical density is about ρc ∼ 0.3ρ0. If the calculations
are done using the variational free energy Fv only, then the
critical temperature for the liquid gas phase transition comes
out to be about 16 MeV. In the calculation due to FP the critical
temperature is about 17.5 MeV.

The pressure can be calculated from

P (ρ, T ) = ρ2 ∂F/A

∂ρ

∣∣∣∣
T

. (58)

Our estimates for the free energy F (ρ, T ) [Ftot of Eq. (57)]
and the pressure P (ρ, T ) of symmetric nuclear matter at T =
10 MeV from the variational chain summation calculations
have been plotted in Figs. 16 and 17 along with the same from
some of the other popular equations of state viz. the equation of
state due to FP, the Lattimer-Swesty (LS) liquid droplet model
calculations with incompressibility K = 180 and 220 MeV [9]

and the equation of state due to Shen et al. (STOS) [10,11]
which is based on relativistic mean field theory. The inset
shows the pressure in the low density region in greater detail.
We have kept the thermodynamically unstable region in the P

vs ρ curve to facilitate comparison with the other equations
of state. Due to the enhanced spin-isospin correlations our
equation of state is relatively soft at ρ ∼ 2ρ0 fm−3 but hardens
at higher densities.

Various astrophysical phenomena depend sensitively on the
symmetry energy Esym [1] and the symmetry free energy Fsym

[65] which are defined as

Esym = 1

2

d2E

dδ2

∣∣∣∣
δ=0

, (59)

Fsym = 1

2

d2F

dδ2

∣∣∣∣
δ=0

. (60)
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FIG. 15. The transition density for neutral
pion condensation for symmetric nuclear matter
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Here δ is the asymmetry parameter given by

δ = ρn − ρp

ρ
, (61)

where ρn is the neutron density and ρp is the proton density. To
the leading order in δ, Esym is given by the difference between
the energy in pure neutron matter EPNM and the energy in
symmetric nuclear matter ESNM. Similarly Fsym is given by
the difference between the free energy in pure neutron matter
FPNM and symmetric nuclear matter FSNM:

Esym = EPNM − ESNM + O(δ2), (62)

Fsym = FPNM − FSNM + O(δ2). (63)

In Figs. 18 and 19 we show EPNM − ESNM and FPNM − FSNM

as functions of density at various temperatures.

V. DISCUSSION

In this section we will discuss the limitations of our calcu-
lations. First, let us consider the validity of the quasiparticle
picture at finite temperature. This assumption is motivated by
Landau’s theory of Fermi liquids. However Landau’s theory
in its original formulation applies only to systems at zero
or very low temperatures. It is justified on the basis of the
fact that low lying quasiparticle excitations (as defined by the
poles in the single particle propagator) are long lived at low
temperatures [66,67]. At higher temperatures this is not true
and one cannot associate well defined quasiparticle excitations
to the system.

It is, however, important to recognize that there are two
separate issues involved here. On the one hand, we have the
thermodynamical statement that the free energy of the system
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FIG. 17. (Color online) A compari-
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FIG. 18. (Color online) A comparison of
EPNM − ESNM at various temperatures.

can be written as a functional of quasiparticle occupation
numbers and that in particular the entropy is given by Eq. (18).
On the other hand, we have one particular microscopic
justification of the previous statement in terms of the long
lived nature of the quasiparticle excitations. It has been shown
in the past that although the latter is true only for very low
temperatures, the former, under very general conditions, is
true for arbitrary temperatures [68–72]. With this in mind we
think that our final estimate for the free energy is more reliable
than the individual components that entered the calculations,
e.g., the assumption of an one-to-one mapping between the
states of a noninteracting system and an interacting one is not
exactly true at for the states relevant at any finite temperature.
However, even with this caveat in mind, we believe that our
predictions about the microscopic structure of the system are

useful in accounting for at least the gross features if not the
details in the many body system.

Our description of the high density phase is clearly
incomplete. Our wave function does not include any true long
range order. It has been shown from very general arguments
by Landau and Peierls that long range order where the order
parameter varies only in one dimension is unstable at finite
temperatures [73]. However, condensates that vary in two or
three dimensions can exist at any temperature. If the high
density phase is indeed a state with broken symmetry then
it is possible that the first order transition changes into a
second order transition beyond critical temperature (instead
of a smooth crossover from the low density phase to the high
density phase seen in our calculations). From our calculations
we cannot make any prediction about this possibility.
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FIG. 19. (Color online) A comparison of
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FIG. 20. (Color online) The normalized pair
distribution function at T = 4 MeV and ρ =
0.02 fm−3 shows the effects of deuteron clus-
tering. The same function has been plotted for
T = 20 and ρ = 0.02 fm−3 and T = 4 MeV, and
ρ = 0.16 fm−3 for comparison.

In the low density and low temperature region for symmetric
nuclear matter the uniform fluid is no longer the optimal
configuration and few body clusters are expected to emerge
(see, e.g., [74]). We see the precursor to deuteron clustering in
our calculations, e.g., in Fig. 20 we see that the pair distribution
function for symmetric nuclear matter at ρ = 0.02 fm−3 and
T = 2 MeV shows a pronounced bump at r ∼ 1 fm. Genuine
clustering of three or more particles, however, is not possible
in our variational chain summation calculations because our
wave functions are too simple to describe such phenomena.

Another phenomenon which occurs at very low densities
and temperatures in nuclear matter is superfluidity due to the
formation of Cooper pairs [75,76]. Pairing, especially in very
low density pure neutron matter and neutron star matter, has
been the subject of extensive research in the recent past [77]
(and references therein). The wave functions that we have
used do not include the effects of pairing in the long range
part. However we would like to point out that it is possible to
develop a variational theory based on correlated basis states
for superfluid systems at zero temperatures [78,79]. It is quite
possible that this theory can be extended to finite temperatures
in a manner very similar to the one used here for normal
systems.

At very high temperatures (T >∼ 50 MeV for symmetric
nuclear matter) thermal excitations of the pionic degrees
of freedom, the ‘thermal pions’ [80] become important and
should be explicitly included in the equation of state [81]. Our
present calculations do not have any explicit non-nucleonic
degrees of freedom, thus they cannot be extended to very
high temperatures without the explicit inclusion of the thermal
pions. The calculation of the pionic spectrum in nuclear
matter is a challenging task. However, as the first step, the
simplified quasiparticle treatment of the pions along with the
full variational chain summation calculation for the nucleons
as done in Ref. [81] might prove useful.

Finally, we would briefly discuss the case of arbitrary proton
fraction. Pure variational chain summation can only be used to
calculate the equation of state of symmetric nuclear matter

and pure neutron matter, and not for asymmetric nuclear
matter. This problem can be circumvented by using the so
called quadratic approximation, where one assumes that the
interaction energy at an arbitrary asymmetry δ has a purely
quadratic dependence on δ. Using this fact the energy for any
δ can be found from the results at δ = 0 (symmetric nuclear
matter) and δ = 1 (pure neutron matter) [31,51].

It has been shown in Ref. [82] that within the scheme
of variational calculations (although with a lower order
approximation for the noncentral correlations as compared
to the variational chain summation method) the quadratic
approximation is quite accurate, at least up to the leading order
terms in the interaction energy. This calculation was done for
the zero temperature low density phase, with the Urbana v14

model for nucleon-nucleon interaction and a density dependent
model for three nucleon interaction. Thus far, the calculation
has not been repeated for finite temperatures, the high density
phase or for the modern sets of nucleon-nucleon interaction
and three nucleon interaction. It is, however, plausible that the
result is true for the aforementioned conditions as well.

VI. CONCLUSION

The calculation of the properties of nuclear matter in
supernovae, neutron stars, and heavy ion collisions starting
from the properties of nucleons in vacuum and light nuclei
is an outstanding problem in nuclear many body theory. In
a preceding paper (I) we showed that when the variational
theory is extended to finite temperatures, the free energy and
the single particle energies do not have any corrections due
to the non-orthogonality of the correlated basis states used in
these variational theories. In this paper we showed how this
formalism can be used for practical calculations in hot dense
nucleon matter.

We calculated the equation of state of symmetric nuclear
matter and pure neutron matter and discussed the fate of the
neutral pion condensation at finite temperature. The first order
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phase transition was seen to have a critical temperature of about
10 MeV for symmetric nuclear matter and about 22 MeV for
pure neutron matter. However, the the enhancement of the
spin-isospin correlations and as a result the softening of the
equation of state, near ρ ∼ 2ρ0 for symmetric nuclear matter
and near ρ ∼ ρ0 for pure neutron matter, persists even beyond
the critical temperature. We also discussed the behavior of
the nucleon effective mass and saw an enhancement at lower
temperatures. We proposed one possible explanation for this
effect.

The pair correlation functions Fij generated during our
variational minimizations can be used to calculate the equation
of state of asymmetric nuclear matter within the quadratic
approximation [51], the single particle energies in dense

nuclear matter [83,84], effective interactions [85,86] and
transport properties [87]. Some of these topics will be explored
in our future work [64].
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