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Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter
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We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing
nucleons and hyperons interacting via mean fields of σ, ω, and ρ mesons in the recently improved quark-meson
coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed
phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using
the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used
to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with
recent experimental data, and the validity of each case is discussed with consequences for determining the species
content of the interior of neutron stars.
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I. INTRODUCTION

The use of hadronic models to describe high-density matter
enables us to investigate both the microscopic world of atomic
nuclei and the macroscopic world of compact stellar objects,
encompassing an enormous range of scales. The results of
these investigations provide deep fundamental insight into the
way the world around us is constructed.

Experimental data from both extremes of scale aid in
constraining such models, from the saturation properties of
nuclear matter to the observed properties of neutron stars [1–3].
The literature [4–9] provides a plethora of models for the
EOS of hadronic matter, at least some of which have been
successfully applied to calculate the properties of finite nuclei.
There are also important constraints from data involving
heavy-ion collisions [10,11]. Many of these EOSs have also
been applied to neutron star features. However, the amount
of data available for neutron stars (or compact stellar objects)
is very limited, with only a single measurement containing
simultaneously both mass and radius bounds [12], and even
that has been recently disputed [13].

With such a lack of constraining data, our focus shifts
to finding models that better reflect the physics that is
expected to be important under the conditions that we are
investigating. For example, at the densities considered to be
interesting for this investigation (1–10 times nuclear density,
ρ0 = 0.16 fm−3), it is possible that either hyperonic matter
(in which strangeness carrying baryons become energetically
favorable as the Fermi sea fills), quark matter (in which it
becomes energetically favorable that the quarks inside the
baryons become deconfined), or a mixed phase of these is
present, rather than the more traditional treatment of nucleons
alone.
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We construct a model of high-density matter that is globally
charge neutral, color neutral, rotationally symmetric, and in a
state that is energetically favorable. For this purpose, we con-
sider hadronic matter modeled by the quark-meson coupling
(QMC) model [14,15], which was recently improved through
the self-consistent inclusion of color hyperfine interactions
[16]. While this improvement had no significant effect on
the binding of nucleons, it led to impressive results for finite
hypernuclei [17]. We follow the method of Glendenning [18]
to produce a mixed phase of hyperonic matter and deconfined
quark matter under total mechanical stability, then a pure
deconfined quark matter phase with relativistic noninteracting
quarks.

We begin with a brief presentation of relativistic mean-field
theory in Sec. II to establish a foundation upon which to discuss
the general formalism for the QMC model, including new
additions, in Sec. III. Deconfined quark matter is discussed in
Sec. IV. This is followed by Sec. V providing a summary of
the requirements for and method to construct a phase transition
from a hadronic phase to a mixed phase and from a mixed phase
to a quark phase. Stellar solutions are calculated in Sec. VI,
and a summary of our results is presented in Sec. VII, with
conclusions in Sec. VIII.

II. RELATIVISTIC MEAN-FIELD THEORY

We introduce the mean-field description of nuclear matter
using the classic example of quantum hadrodynamics (QHD)
[9,19,20]. Although the quark-meson coupling (QMC) model
has a fundamentally different starting point, namely, the self-
consistent modification of the structure of a hadron immersed
in the nuclear medium [21–23], in practice the equations for
nuclear matter involve only a few key differences. We sum-
marize those in the next section. The original formulation of
QHD included only nucleons interacting with scalar-isoscalar,
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σ , and vector-isoscalar, ω, mesons. This was later expanded
to include the vector-isovector, ρ, and subsequently the entire
octet of baryons, B ∈ {p, n,�,�+, �0, �−, �0, �−}, with
global charge neutrality upheld via leptons, � ∈ {e−, µ−}.

The Lagrangian density for QHD is

L =
∑

k

ψ̄k[γµ(i∂µ − gωkω
µ − gρ �τ(k) · �ρµ)

− (Mk − gσkσ )]ψk + 1

2

(
∂µσ∂µσ − m2

σ σ 2
)

− 1

4
FµνF

µν − 1

4
Ra

µνR
µν
a + 1

2
m2

ωωµωµ

+ 1

2
m2

ρρ
a
µρµ

a + ψ̄�[γµi∂µ − m�]ψ� + δL, (1)

where the index k ∈ {N,�,�,�} represents each isospin
group of the baryon states, and ψk corresponds to the Dirac
spinors for these:

ψN =
(

ψp

ψn

)
, ψ� = (ψ�),

(2)

ψ� =

⎛
⎜⎝

ψ�+

ψ�0

ψ�−

⎞
⎟⎠ , ψ� =

(
ψ�0

ψ�−

)
.

The vector field tensors are

Fµν = ∂µων − ∂νωµ,
(3)

Rµν
a = ∂µρν

a − ∂νρµ
a − gρε

abcρ
µ

b ρν
c ,

The third components of the isospin matrices are

τ(N)3 = τ(�)3 = 1

2

[
1 0

0 −1

]
, τ(�)3 = [0],

(4)

τ(�)3 =

⎡
⎢⎣

1 0 0

0 0 0

0 0 −1

⎤
⎥⎦ .

ψ� is a spinor for the lepton states, and δL are renormalization
terms. We do not include pions here, as they provide no
contribution to the mean field, because the ground state of
nuclear matter is parity-even. We have neglected nonlinear
meson terms in this description for comparison purposes,
though it has been shown that the inclusion of nonlinear scalar
meson terms produces a framework consistent with the QMC
model without the added hyperfine interaction [24]. The values
of the baryon and meson masses in vacuum are summarized
in Table I.

Assuming that the baryon density is sufficiently large,
we use a mean-field approximation (MFA) with physical

parameters (breaking charge symmetry) in which the meson
fields are replaced by their classical vacuum expectation
values. With this condition, the renormalization terms can be
neglected.

By enforcing rotational symmetry and working in the
frame where the matter as a whole is at rest, we set all of
the three-vector components of the vector meson fields to
zero, leaving only the temporal components. Furthermore, by
enforcing isospin symmetry, we remove all charged meson
states. Consequently, because the mean fields are constant, all
meson derivative terms vanish, and thus so do the vector field
tensors. The only nonzero components of the vector meson
mean fields are then the time components, 〈ωµ〉 = 〈ω〉δµ0 and
〈ρµ〉 = 〈ρ〉δµ0. Similarly, only the third component of the ρ

meson mean field in isospace is nonzero, corresponding to the
uncharged ρ meson.

The couplings of the mesons to the baryons are found
via SU(6) flavor symmetry [26]. This produces the following
relations for the σ and ω couplings to each isospin group (and
hence each baryon B in that isospin group):

1
3 gσN = 1

2 gσ� = 1
2 gσ� = gσ�,

(5)
1
3 gωN = 1

2 gω� = 1
2 gω� = gω�.

Using the formalism as above with isospin expressed explicitly
in the Lagrangian density, the couplings of the ρ meson to the
octet baryons are unified; thus by specifying gσN, gωN , and
gρ, we are therefore able to determine the couplings to the
remaining baryons.

By evaluating the equations of motion from the Euler-
Lagrange equations

∂L
∂φi

− ∂µ

∂L
∂(∂µφi)

= 0, (6)

we find the mean-field equations for each of the mesons as
well as the baryons. The equations for the meson fields are

〈σ 〉 =
∑
B

gσB

m2
σ

〈ψ̄BψB〉, (7)

〈ω〉 =
∑
B

gωB

m2
ω

〈ψ̄Bγ 0ψB〉 =
∑
B

gωB

m2
ω

〈ψ†
BψB〉, (8)

〈ρ〉 =
∑

k

gρ

m2
ρ

〈ψ̄kγ
0τ(k)3ψk〉

=
∑

k

gρ

m2
ρ

〈ψ†
k τ(k)3ψk〉 =

∑
B

gρ

m2
ρ

〈ψ†
BI3BψB〉, (9)

where the sum over B corresponds to the sum over the octet
baryon states, and the sum over k corresponds to the sum
over isospin groups. I3B is the third component of isospin of
baryon B, as found in the diagonal elements of τ(k)3. 〈ω〉, 〈ρ〉,

TABLE I. Vacuum (physical) baryon and meson masses (in MeV) as used here [25].

Mp Mn M� M�− M�0 M�+ M�− M�0

938.27 939.57 1115.68 1197.45 1192.64 1189.37 1321.31 1314.83

mσ mω mρ

550.0 782.6 775.8
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and 〈σ 〉 are proportional to the conserved baryon density,
isospin density, and scalar density, respectively, where the
scalar density is calculated self-consistently.

The Euler-Lagrange equations also provide a Dirac equa-
tion for the baryons∑

B

[i �∂ − gωBγ 0〈ω〉 − gργ
0I3B〈ρ〉

−MB + gσB〈σ 〉]ψB = 0. (10)

At this point, we can define the baryon effective mass as

M∗
B = MB − gσB〈σ 〉, (11)

and the baryon chemical potential (also known as the Fermi
energy, the energy associated with the Dirac equation) as

µB = εFB
=

√
k2
FB

+ (M∗
B)2 + gωB〈ω〉 + gρI3B〈ρ〉. (12)

The chemical potentials for the leptons are found via

µ� =
√

k2
F�

+ m2
�. (13)

The energy density E and pressure P for the EOS can be
obtained using the relations for the energy-momentum tensor
(where uµ is the four-velocity)

〈T µν〉 = (E + P )uµuν + Pgµν,⇒ P = 1
3 〈T ii〉,

(14)
E = 〈T 00〉,

since ui = 0 and u0u
0 = −1, where gµν here is the inverse

metric tensor having a negative temporal component, and T µν

is the energy-momentum tensor. In accordance with Noether’s
theorem, the relation between the energy-momentum tensor
and the Lagrangian density is

T µν = −gµνL + ∂µψ
∂L

∂(∂νψ)
, (15)

and we find the Hartree-level energy density and pressure for
the system as a sum of contributions from baryons B, leptons
�, and mesons m to be

E =
∑

j=B,�,m

Ej =
∑
i=B,�

(2Ji + 1)

(2π )3

∫
θ (kFi

− |�k|)

×
√

k2 + (M∗
i )2 d3k +

∑
α=σ,ω,ρ

1

2
m2

α〈α〉2, (16)

P =
∑

j=B,�,m

Pj =
∑
i=B,�

(2Ji + 1)

3(2π )3

∫
k2 θ (kFi

− |�k|)√
k2 + (M∗

i )2
d3k

+
∑

α=ω,ρ

1

2
m2

α〈α〉2 − 1

2
m2

σ 〈σ 〉2, (17)

where Ji is the spin of particle i (Ji = 1
2∀i ∈ {B, �}), which

in this case accounts for the availability of both up and down
spin states. θ (x) is the Heaviside step function. Note that the
pressure arising from the vector mesons is positive, while it is
negative for the scalar meson.

TABLE II. Couplings for QHD with the
octet of baryons, fit to saturation of nuclear
matter.

gσN gωN gρ

10.644 13.179 6.976

The total baryon density ρ can be calculated via

ρ =
∑
B

ρB =
∑
B

(2JB + 1)

(2π )3

∫
θ
(
kFB

− |�k|)d3k, (18)

where in symmetric matter, the Fermi momenta are related
via kF = kFn

= kFp
, and the binding energy per baryon E is

determined via

E =
[

1

ρ

(
E −

∑
B

MBρB

)]
. (19)

The couplings gσN and gωN are determined such that symmet-
ric nuclear matter (in which ρp = ρn = 0.5ρ) saturates with
the appropriate minimum in the binding energy per baryon of
E0 = −15.86 MeV at a nuclear density of ρ0 = 0.16 fm−3.
The couplings for QHD that provide a fit to saturated nuclear
matter are shown in Table II.

The coupling gρ is fixed such that the nucleon symmetry
energy, given by

asym = g2
ρ

12π2m2
ρ

k3
F + 1

12

k2
F√

k2
F + (M∗

p)2
+ 1

12

k2
F√

k2
F + (M∗

n)2
,

(20)

is reproduced at saturation as (asym)0 = 32.5 MeV.
The chemical potential for any particle, µi , can be related to

two independent chemical potentials—we choose that of the
neutron (µn) and the electron (µe)—and thus we use a general
relation

µi = Biµn − Qiµe;
(21)

i ∈ {p, n,�,�+, �0, �−, �0, �−, �},
where Bi and Qi are the baryon (unitless) and electric (in units
of the proton charge) charges, respectively. For example, the
proton has Bp = +1 and Qp = +1, so it must satisfy µp =
µn − µe, which is familiar as β equilibrium. Since neutrinos
are able to escape the star, we consider µν = 0. Leptons have
B� = 0, and all baryons have BB = +1.

The relations between the chemical potentials are therefore
derived to be

µ� = µ�0 = µ�0 = µn,

µ�− = µ�− = µn + µe,
(22)

µp = µ�+ = µn − µe,

µµ = µe.

The EOS for QHD can be obtained by finding solutions to
Eqs. (7)–(9) subject to charge neutrality, conservation of a
chosen total baryon number, and equivalence of chemical
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potentials. These conditions can be summarized as

0 = ∑
i Qiρi,

ρ = ∑
i Biρi,

µi = Biµn − Qiµe,

⎫⎬
⎭

(23)
i ∈ {p, n,�,�+, �0, �−, �0, �−, �}.

With these conditions, we are able to find the EOS for QHD.
It should be noted that, as with many relativistic models for
baryonic matter, once we include more than one species of
baryon this model eventually produces baryons with negative
effective masses at sufficiently high densities (ρ > 1 fm−3).
This is a direct result of the linear nature of the effective mass
as shown in Eq. (11). As the Fermi energy [see Eq. (12)]
approaches zero, the cost associated with producing baryon-
antibaryon pairs is reduced, and at this point the model breaks
down. From a more physical point of view, as the density rises,
one would expect that the internal structure of the baryons
should play a role in the dynamics. Indeed, within the QMC
model, the response of the internal structure of the baryons
to the applied mean scalar field ensures that no baryon mass
ever becomes negative. We now describe the essential changes
associated with the QMC model.

III. QMC MODEL

Like QHD, QMC is a relativistic quantum field theory
formulated in terms of the exchange of scalar and vector
mesons. However, in contrast with QHD these mesons couple
not to structureless baryons but to clusters of confined quarks.
As the density of the medium grows and the mean scalar and
vector fields grow, the structure of the clusters adjusts self-
consistently in response to the mean-field coupling. While such
a model would be extremely complicated to solve in general,
it has been shown by Guichon et al. [27] that in finite nuclei
one should expect the Born-Oppenheimer approximation to be
good at the 3% level. Of course, in nuclear matter it is exact at
mean-field level.

Within the Born-Oppenheimer approximation, the major
effect of including the structure of the baryon is that the
internal quark wave functions respond in a way that opposes
the applied scalar field. To a very good approximation, this
physics is described through the “scalar polarizability,” d,
which in analogy with the electric polarizability describes the
term in the baryon effective mass quadratic in the applied scalar
field [21,28–31]. Recent explicit calculations of the equivalent
energy functional for the QMC model have demonstrated the
very natural link between the existence of the scalar polariz-
ability and the many-body forces, or equivalently the density
dependence, associated with successful, phenomenological
forces of the Skyrme type [14,15]. In nuclear matter, the scalar
polarizability is the only effect of the internal structure in
mean-field approximation. On the other hand, in finite nuclei,
the variation of the vector field across the hadronic volume
also leads to a spin-orbit term in the nucleon energy [27].

Once one chooses a quark model for the baryons and
specifies the quark-level meson couplings, there are no
new parameters associated with introducing any species of

baryon into the nuclear matter. Given the well-known lack
of experimental constraints on the forces between nucleons
and hyperons, let alone hyperons and hyperons, which will
be of great practical importance as the nuclear density rises
above (2–3)ρ0, this is a particularly attractive feature of the
QMC approach, and it is crucial to our current investigation.
Indeed, we point to the very exciting recent results of the QMC
model, modified to include the effect of the scalar field on the
hyperfine interaction, which led to � hypernuclei being bound
in quite good agreement with experiment and � hypernuclei
being unbound because of the modification of the hyperfine
interaction [17], thus yielding a very natural explanation of
this observed fact. We note the success that this description
has found for finite nuclei, as noted in Ref. [15].

While we focus on the MIT bag model [32] as our
approximation to baryon structure, we note that there has been
a parallel development [33] based upon the covariant, chiral
symmetric Nambu-Jona-Lasinio (NJL) model [34], with quark
confinement modeled using the proper time regularization
proposed by the Tübingen group [35,36]. The latter model
has many advantages for the computation of the medium
modification of form factors and structure functions, with the
results for spin structure functions [37,38] offering a unique
opportunity to experimentally test the fundamental idea of the
QMC model. However, in both models, it is the effect of quark
confinement that leads to a positive polarizability and a natural
saturation mechanism.

Although the underlying physics of QHD and QMC is rather
different, the equations to be solved are very similar at the
hadronic level. We therefore focus on the changes that are
required.

1. Because of the scalar polarizability of the hadrons, which
accounts for the self-consistent response of the internal quark
structure of the baryon to the applied scalar field [15], the
effective masses appearing in QMC are nonlinear in the mean
σ field. We write them in the general form

M∗
B = MB − wσ

B gσN 〈σ 〉 + d

2
w̃σ

B (gσN 〈σ 〉)2, (24)

where the weightings wσ
B and w̃σ

B and the scalar polarizability
of the nucleon, d, must be calculated from the underlying
quark model. Note now that only the coupling to the nucleons,
gσN , is required to determine all the effective masses.

The most recent calculation of these effective masses,
including the in-medium dependence of the spin-dependent
hyperfine interaction [17], yields the explicit expressions:

MN (〈σ 〉) = MN − gσN 〈σ 〉 + [
0.0022 + 0.1055Rfree

N

− 0.0178
(
Rfree

N

)2]
(gσN 〈σ 〉)2 ,

M�(〈σ 〉) = M� − [
0.6672 + 0.0462Rfree

N

− 0.0021
(
Rfree

N

)2]
gσN 〈σ 〉 + [

0.0016

+ 0.0686Rfree
N − 0.0084

(
Rfree

N

)2](
gσN 〈σ 〉)2

,

M�(〈σ 〉) = M� − [
0.6706 − 0.0638Rfree

N

− 0.008
(
Rfree

N

)2]
gσN 〈σ 〉 + [−0.0007

+ 0.0786Rfree
N − 0.0181

(
Rfree

N

)2](
gσN 〈σ 〉)2

,
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〉〈

FIG. 1. (Color online) Baryon effective masses within the QMC
model, parametrized as a function of the mean scalar field 〈σ 〉. The
values at 〈σ 〉 = 0 are the vacuum masses found in Table I. We show
the effective masses only up to 〈σ 〉 = 100 MeV, which corresponds
to about 2 fm−3 [(6–8)ρ0], beyond which higher order terms not
shown in Eq. (24) become significant.

M�(〈σ 〉) = M� − [
0.3395 + 0.02822Rfree

N

− 0.0128
(
Rfree

N

)2]
gσN 〈σ 〉 + [−0.0014

+ 0.0416Rfree
N − 0.0061

(
Rfree

N

)2](
gσN 〈σ 〉)2

.

(25)

We take Rfree
N = 0.8 fm as the preferred value of the free

nucleon radius, although in practice the numerical results
depend only very weakly on this parameter [15].

Given the parameters in Eq. (25), all the effective masses
for the baryon octet are entirely determined. They are plotted
as functions of 〈σ 〉 in Fig. 1, and we see clearly that they never
become negative. [Note that the range of 〈σ 〉 covered here
corresponds to densities up to (6–8)ρ0].

2. Since the mean scalar field 〈σ 〉 is derived self-consistently
by taking the derivative of the energy density with respect to
〈σ 〉, the scalar field equation

〈σ 〉 =
∑
B

gσN

m2
σ

C(〈σ 〉) (2JB + 1)

(2π )3

∫
M∗

B θ
(
kFB

− |�k|)√
k2 + (M∗

B)2
d3k,

(26)

has an extra factor, denoted by

C(〈σ 〉) = [
wσ

B − w̃σ
BdgσN 〈σ 〉]. (27)

Note that the d term (the scalar polarizability) in C(〈σ 〉) does
not have the factor of 1

2 that is found Eq. (24), because of the
differentiation.

Given this new term in the equation for the mean scalar field,
we can see that this allows feedback of the scalar field which is
modeling the internal degrees of freedom of the baryons. This
feedback prevents certain values of 〈σ 〉 from being accessed.

3. The couplings to the proton are redetermined by the fit
to saturation properties (minimum binding energy per baryon
and saturation density) with the new effective masses for the
proton and neutron. The couplings for QMC that provide a fit
to saturated nuclear matter are shown in Table III.

Given these changes alone, QHD is transformed into QMC.
When we compare the results of Sec. VII with those of

TABLE III. Couplings for QMC with the
octet of baryons, fit to saturation of nuclear
matter.

gσN gωN gρ

8.278 8.417 8.333

Ref. [16], minor differences arise because the QMC calcu-
lations in Ref. [16] are performed at the Hartree-Fock level,
whereas here they have been performed at the Hartree level
(mean-field) only.

IV. DECONFINED QUARK MATTER

We consider two models for a deconfined quark matter
phase, both of which model free quarks in β equilibrium. The
first model, the MIT bag model [32], is commonly used to
describe the quark matter phase because of its simplicity.

In this model, we consider three quarks with fixed masses
to possess chemical potentials related to the independent
chemical potentials of Eq. (21) via

µu = 1
3µn − 2

3µe, µd = 1
3µn + 1

3µe, µs = µd, (28)

where quarks have a baryon charge of 1
3 since baryons contain

three quarks. Because the quarks are taken to be free, the
chemical potential has no vector interaction terms, and thus

µq =
√

k2
Fq

+ m2
q ; q ∈ {u, d, s}. (29)

The EOS can therefore be solved under the conditions of
Eq. (23).

As an alternative model for deconfined quark matter, we
consider a simplified NJL model [34], in which the quarks
have dynamically generated masses, ranging from constituent
quark masses at low densities to current quark masses at high
densities. The equation for a quark condensate at a given
density (and hence, kF ) in NJL is similar to the scalar field
in QHD/QMC and is written as

〈ψ̄ψ〉 = −4Nc

∫
1

(2π3)

M∗
q θ (kF − |�k|) θ (� − kF )√

k2 + (M∗
q )2

d3k,

(30)

where M∗
q denotes the kF -dependent (hence, density-

dependent) quark mass; Nc is the number of color degrees
of freedom of quarks; and � is the momentum cutoff. This is
self-consistently calculated via

M∗
q = Mcurrent − G〈ψ̄ψ〉, (31)

where G is the coupling and Mcurrent the current quark mass.
To solve for the quark mass at each density, we must first

find the coupling G that yields the required constituent quark
mass in free space (kF = 0). The coupling is assumed to remain
constant as the density rises. In free space, we can solve the
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FIG. 2. (Color online) Density-dependent (dynamic) masses for
quarks using NJL. The mass at kF = 0 is the constituent quark mass,
and the mass at the cutoff of kF = � is roughly the current quark
mass. This model successfully reproduces the behavior found within
the Schwinger-Dyson formalism, and we consider the model to be
more sophisticated than the constant quark mass MIT bag model.

above equations to find the coupling:

G = (M∗
q − Mcurrent)

4Nc

⎡
⎣∫

1

(2π )3

× M∗
q θ (|�k| − kF ) θ (� − kF )√

k2 + (M∗
q )2

d3k

⎤
⎦

−1 ∣∣∣∣∣
kF =0

. (32)

We solve Eqs. (30)–(32) for Nc = 3 to obtain constituent
quark masses of Mu,d = 350 MeV using current quark masses
of Mcurrent = 10 MeV for the light quarks, and to obtain a
constituent quark mass of Ms = 450 MeV using a current
quark mass of Mcurrent = 160 MeV for the strange quark, with
a momentum cutoff of � = 1GeV. At kF = 0, we find the
couplings to be

Gu,d = 0.148 fm2, Gs = 0.105 fm2. (33)

We can now use these parameters to evaluate the dynamic
quark mass M∗

q , for varying values of kF , by solving Eqs. (30)
and (31) self-consistently. The resulting density dependence
of M∗

q is illustrated in Fig. 2. This shows that the quark masses
eventually saturate and are somewhat constant above a certain
density. We can then construct the EOS in the same way as we
did for the MIT bag model, but with density-dependent masses
rather than fixed masses.

V. PHASE TRANSITIONS

A. Equilibrium conditions

We now have a description of hadronic matter with quark
degrees of freedom, but we are still faced with the issue that
the baryons are very densely packed. We wish to know if it is
more energetically favorable for deconfined quark matter to be
the dominant phase at a certain density. To do this, we need to

find a point (if it exists) at which stability is achieved between
the hadronic phase and the quark phase.

The condition for stability is that chemical, thermal, and
mechanical equilibrium between the hadronic (H ) and quark
(Q) phases is achieved, and thus that the independent quantities
in each phase are separately equal. Thus the two independent
chemical potentials (µn,µe) are each separately equal to their
counterparts in the other phase, i.e., (µn)H = (µn)Q, and
(µe)H = (µe)Q (chemical equilibrium); the temperatures are
equal (TH = TQ) (thermal equilibrium); and the pressures are
equal (PH = PQ) (mechanical equilibrium). For a discussion
of this condition, see Ref. [39]. We consider both phases
to be cold on the nuclear scale, and assume T = 0, so the
temperatures are by construction equal. We must therefore find
the point at which, for a given pair of independent chemical
potentials, the pressures in both the hadronic phase and the
quark phase are the same.

To find the partial pressure of any baryon, quark, or lepton
species, i, we use

Pi = (2JB + 1)Nc

3(2π )3

∫
k2 θ

(
kFi

− |�k|)√
k2 + (M∗

i )2
d3k, (34)

whereNc = 3 for quarks, andNc = 1 for baryons and leptons.
To find the total pressure in each phase, we use

PH =
∑
B

PB +
∑

�

P� +
∑

α=ω,ρ

1

2
m2

α〈α〉2 − 1

2
m2

σ 〈σ 〉2, (35)

which is equivalent to Eq. (17), and

PQ =
∑

q

Pq +
∑

�

P� − B, (36)

where B in the quark pressure is the bag energy density. For the
QMC model described in Sec. III, and a Fermi gas of quarks,
both with interactions with leptons for charge neutrality, a
point exists at which the condition of stability, as described
above, is satisfied.

At this point, it is equally favorable that hadronic matter
and quark matter are the dominant phase. Beyond this point,
the quark pressure is greater than the hadronic pressure, and
so the quark phase has a lower thermodynamic potential
(through the relation P = −�) and the quark phase will be
more energetically favorable. To determine the EOS beyond
this point, we need to consider a mixed phase.

B. Mixed phase

We can model a mixed phase of hadronic and quark
matter—as opposed to modeling a simple direct phase
transition between the two, a Maxwell construction, which
would have a discontinuity in the density while retaining a
constant pressure between the two phases—using the method
of Glendenning. A detailed description of this appears in
Ref. [18].

We solve for the hadronic EOS using the independent
chemical potentials as inputs for the quark matter EOS with
increasing order parameter ρ (the conserved baryon density)
until we find a point (if it exists) at which the pressure in the
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FIG. 3. (Color online) Illustra-
tive locus of values for µe, µn, P

for phases of hadronic matter and
deconfined quark matter. Note that
pressure increases with density, and
a projection onto the µnµe plane
is a single line, as ensured by the
chemical equilibrium condition.

quark phase is equal to that in the hadronic phase. Once we
have the density and pressure at which the phase transition
occurs, we change the order parameter from the conserved
baryon density to the quark fraction χ . If we consider the
mixed phase to be a fraction of the hadronic matter and a
fraction of the quark matter, then the mixed phase (MP) of
matter will have the following properties: the total density will
be

ρMP = (1 − χ ) ρHP + χ ρQP, (37)

where ρHP and ρQP are the densities in the hadronic and quark
phases, respectively. The equivalent baryon density in the
quark phase,

ρQP =
∑

q

ρq = 3(ρu + ρd + ρs), (38)

arises because of the restriction that a bag must contain three
quarks.

According to the condition of mechanical equilibrium, the
pressure in the mixed phase will be

PMP = PHP = PQP. (39)

We can step through values 0 < χ < 1 and find the density
at which equilibrium is achieved, keeping the mechanical
stability conditions as they were above. In the mixed phase,
we need to alter our definition of charge neutrality; it becomes
possible now that one phase is (locally) charged, while the
other phase carries the opposite charge, making the system
globally charge neutral. This is achieved by enforcing

0 = (1 − χ ) ρc
HP + χ ρc

QP + ρc
� , (40)

where this time we are considering charge densities, which
are simply charge proportions of density, and ρc

� is the lepton
charge density. For example, the charge density in the quark
phase is given by

ρc
QP =

∑
q

Qqρq = 2

3
ρu − 1

3
ρd − 1

3
ρs. (41)

We continue to calculate the densities until we reach χ = 1,
at which point the mixed phase is now entirely charge-neutral
quark matter. After this point, we continue with the EOS
for pure charge-neutral quark matter, using ρ as the order
parameter.

VI. STELLAR SOLUTIONS

To test the predictions of these models, we find solutions of
the Tolman-Oppenheimer-Volkoff (TOV) [40] equation

dP

dR
= −G (P + E)

(
M(R) + 4πR3P

)
R(R − 2GM(R))

, (42)

where the mass M(R) contained within a radius R is found by
integrating the energy density

M(R) =
∫ R

0
4πr2Edr, (43)

and E and P are the energy density and pressure in the EOS,
respectively.

Given an EOS and a choice for the central density of the
star, this provides static, spherically symmetric, nonrotating,
gravitationally stable stellar solutions for the total mass and
radius of a star. For studies of the effect of rapid rotation
in general relativity, we refer to Refs. [41,42]. This becomes
important for comparison with experimental data; as only data
for stellar masses exist (with the single, disputed exception
from Ref. [12]), we can use the model to predict the radii of
the observed stars.

VII. RESULTS

To obtain numerical results, we solve the meson field equa-
tions (7)–(9), with the conditions of charge neutrality, fixed
baryon density, and the equivalence of chemical potentials
given by Eq. (23), for various models. Having found the
EOS by evaluating the energy density, Eq. (16), and pressure,
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FIG. 4. (Color online) Equations of state for nucleonic ‘N’ matter
modeled with octet QMC but where hyperons are explicitly forbidden;
nucleonic matter where a phase transition to NJL modeled quark
matter is permitted; baryonic ‘N+Y’ matter modeled with octet QMC
including hyperons; and baryonic matter where a phase transition
to MIT bag modeled quark matter is permitted. The line P = E
represents the causal limit, vsound = c. The bends in these curves
indicate a change in the composition of the EOS, such as the creation
of hyperons or a transition to a mixed or quark phase. Note that at low
energies (densities) the curves are identical, where only nucleonic
matter in β-equilibrium is present.

Eq. (17), we can solve for stellar solutions for an EOS using
the TOV equation. The radius of the star is defined as the
radius at which the pressure is zero and is calculated using a
fourth-order Runge-Kutta integration method.

The EOS for octet QMC hadronic matter is shown in
Fig. 4 alongside the same model when including a phase
transition to three-flavor quark matter modeled with the MIT
bag model, and the results do not appear to differ much at this
scale. The theoretical causality limit of P = E is also shown
(corresponding to the limit vsound = c), and we can see that
these models do not approach this limit at the scale displayed.
This is because of the softening of the EOS that occurs with
the introduction of hyperons, enlarging the Fermi sea to be
filled and reducing the overall pressure.

The species fraction for each particle, Yi , is simply the
density fraction of that particle and is calculated via

Yi = ρi

ρ
, i ∈ {p, n,�,�+, �0, �−, �0, �−, �, q}, (44)

where ρ is the total baryon density. The species fractions for
octet QMC when a phase transition is neglected are shown in
Fig. 5, where we note that the � species fraction is enhanced
and the � species fractions are suppressed with increasing
density. From the investigations by Rikovska-Stone et al. [16],
we expect that the � would disappear entirely if we were to
include Fock terms.

The values of the compression modulus and effective
nucleon mass at saturation are frequently used as a comparison
with experimental evidence. Models that neglect quark-level
interactions, such as QHD, typically predict much higher
values for the compression modulus than experiments suggest.
In the symmetric (nuclear) matter QHD model described in
this paper, we find values of (M∗/M)sat = 0.56 and K =

FIG. 5. Species fractions Yi for octet QMC where a transition
to a mixed phase is explicitly forbidden. Note that in this case, all
of the octet baryons contribute at some density, and with increasing
density the species fractions of � hyperons are suppressed, while the
� species fraction is enhanced. Parameters used here are shown in
Table III.

525 MeV, which are in agreement with those stated in
Ref. [19], but as noted by those authors, not with experi-
ment. For QMC, we find a significant improvement in the
compression modulus, K = 280 MeV which lies at the upper
end of the experimental range. The nucleon effective mass
at saturation for QMC is found to be (M∗)sat = 735 MeV,
producing (M∗/M)sat = 0.78.

When we calculate the EOS including a mixed phase and
subsequent pure quark phase, we find that small changes in the
parameters can sometimes lead to very significant changes. In
particular, the bag energy density B and the quark masses
in the MIT bag model have the ability to both move the
phase transition points and vary the constituents of the mixed
phase. We have investigated the range of parameters that yield
a transition to a mixed phase, and these are summarized in
Table IV. For illustrative purposes, we show an example of
species fractions for a reasonable set of parameters (B1/4 =
180 MeV and mu,d,s = 3, 7, 95 MeV) in Fig. 6. Note that in
this case the � hyperon enters the mixed phase briefly (and at
a low species fraction).

Note that the transition density of ρMP ∼ 0.12 fm−3

produced by the combination of the octet QMC and MIT bag
models (as shown in Fig. 6) is clearly not physical, as it implies
the presence of deconfined quarks at densities less than ρ0.

With small changes to parameters, such as those used to
produce Fig. 7 in which the bag energy density is given a
slightly higher value from that used in Fig. 6 (B1/4 increases
from 180 to 195 MeV, but the quark masses remain the same),
it becomes possible for the � hyperons to also enter the
mixed phase, albeit in that case with small species fractions,
Y�, Y� � 0.02.

The TOV solutions for octet QMC with and without a phase
transition to a mixed phase are shown in Fig. 8. The stellar
masses produced using these methods are similar to observed
neutron star masses. Once we have solved the TOV equations,
we can examine individual solutions and determine the species
content for specific stars. If we examine the solutions with a
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TABLE IV. Species content (N = nucleons, Y = hyperons, � = leptons, q = quarks), inputs (B1/4, mq ), and
results for octet QMC and quark models presented in this paper. ρY, ρMP, and ρQP represent, respectively, the
density at which hyperons first appear (� is invariably the first to enter in these calculations), the density at which
the mixed phase begins, and the density at which the quark phase begins. Figures for selected parameter sets are
referenced in the final column. Dynamic NJL quark masses are determined by Eqs. (30)–(32).

Particles B1/4 (MeV) {mu, md,ms} (MeV) ρY (fm−3) ρMP (fm−3) ρQP (fm−3) Fig.

N, Y, � – – 0.27 – – 5
N, Y, �, q 180 {3, 7, 95} 0.55 0.12 0.95 6
N, Y, �, q 195 {3, 7, 95} 0.35 0.24 1.46 7
N, Y, �, q 170 {30, 70, 150} 0.56 0.10 0.87 –
N, Y, �, q 175 {100, 100, 150} 0.44 0.16 1.41 –
N, �, q 180 Dynamic (NJL) – 0.47 1.67 13

stellar mass of M = 1.2M
, where M
 is the solar mass, for
the set of parameters used to produce Figs. 5 and 6, we can
find the species fraction as a function of stellar radius to obtain
a cross section of the star. This is shown in Fig. 9 for the case
of no phase transition and in Fig. 10 for the case where we
allow a transition to a mixed phase and subsequently to a quark
matter phase.

If we now examine the stellar solution with mass M =
1.2M
 of the set of parameters (B1/4 = 195 MeV and mu,d,s =
3, 7, 95 MeV used to produce Fig. 7) as shown in Fig. 11, we
note that the quark content of this 10.5 km star reaches out
to around 8 km, and that the core of the star contains roughly
equal proportions of protons, neutrons, and � hyperons, with
Yi � 10%.

Within a mixed phase, we require that for a given pair of
µn and µe at any value of the mixing parameter χ , the quark
density is greater than the hadronic density. This condition
ensures that the total baryon density increases monotonically

FIG. 6. Same as Fig. 5, but now we allow the phase transition
to a mixed phase involving quark matter modeled with the MIT
bag model, and subsequently to a pure deconfined quark matter
phase. Parameters used here are summarized in Table IV. Note that
with these parameters, the � is the only hyperon to appear in the
mixed phase, and it does so at a much higher density than when the
transition to a mixed phase is forbidden. We also note that with these
parameters, the transition to a mixed phase occurs below the saturation
density ρ0.

within the range ρQP > ρMP > ρHP, as can be seen in Eq. (37).
An example of this is illustrated in Fig. 12 for a mixed phase
of octet QMC and three-flavor quark matter modeled with the
MIT bag model.

The use of quark masses corresponding to the NJL model
results in a quark density that is lower than the hadronic density,
and as a result there are no solutions for a mixed phase in which
the proportion of quarks increases with fraction χ , while at
the same time the total baryon density increases. It may be
possible that with smaller constituent quark masses at low
density, the Fermi momenta would provide sufficiently high
quark densities, but we feel that it would be unphysical to
use any smaller constituent quark masses. This result implies
that, at least for the model we have investigated, dynamical
chiral symmetry breaking (in the production of constituent
quark masses at low density) prevents a phase transition from
a hadronic phase to a mixed phase involving quarks.

We do note, however, that if we restrict consideration
to nucleons only within the QMC model (with the same
parameters as octet QMC) and represent quark matter with the
NJL model, we do in fact find a possible mixed phase. More
surprisingly, the phase transition density for this combination

FIG. 7. Same as Fig. 6, but now the bag energy density has been
increased to B1/4 = 195 MeV. Note that now the appearance of
hyperons occurs at a smaller density than in Fig. 6, the transition
to a mixed phase occurs at a slightly larger density, and � hyperons
are present in the mixed phase.
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FIG. 8. (Color online) Solutions of the TOV equations for the
total stellar mass and radius for octet QMC, where a phase transition
to mixed phase is explicitly forbidden (as shown in Fig. 5) and the
same model with an allowed phase transition to three-flavor quark
matter modeled with the MIT bag model (as in Fig. 6). Also shown is
the data point from Ref. [12]. The points on the vertical axis are the
maximum masses in the respective models. The causal and general
relativistic limits on mass and radius are also shown.

is significantly larger than the case where hyperons are present.
An example of this is shown in Fig. 13 with parameters
found in Table IV. This produces a mixed phase at about
3ρ0(ρ = 0.47 fm−3) and a pure quark matter phase above
about 10.5ρ0(ρ = 1.67 fm−3). We note the coincidence of
this phase transition density with the density corresponding
to one nucleon per nucleon volume, with the aforementioned
assumption of Rfree

N = 0.8 fm, though we do not draw any
conclusions from this. Performing this calculation with quark
matter modeled with the MIT bag model produces results
similar to those of Fig. 6, except of course lacking the
� hyperon contribution. Although this example does show
a phase transition, the omission of hyperons is certainly

FIG. 9. Species fractions for octet QMC in β equilibrium, where
the phase transition to a mixed phase is explicitly forbidden, as a
function of stellar radius for a stellar solution with a total mass of
1.2M
. The parameters used here are the same as those used to
produce Fig. 5.

FIG. 10. Species fractions for octet QMC with a phase transition
to three-flavor quark matter modeled with the MIT bag model, as
a function of stellar radius for a stellar solution with a total mass
of 1.2M
. The parameters used here are the same as those used to
produce Fig. 6. Note that in this case, one finds pure deconfined
three-flavor quark matter at the core (all of some 3.5 km) of this star,
and still a small proportion of � in the mixed phase.

unrealistic. This does, however, illustrate the importance and
significance of including hyperons, in that their inclusion alters
the chemical potentials that satisfy the equilibrium conditions
in such a way that the mixed phase is no longer produced.

For each of the cases where we find a phase transition
from baryonic matter to quark matter, the solution consists of
negatively charged quark matter, positively charged hadronic
matter, and a small proportion of leptons, to produce globally
charge-neutral matter. The proportions of hadronic, leptonic,
and quark matter throughout the mixed phase (for example,
during a transition from octet QMC matter to three-flavor quark
matter modeled with the MIT bag model) are displayed in

FIG. 11. Example of the interior of a star of total stellar mass M =
1.2M
 where the bag energy density is given a slightly higher value
than that used in Fig. 10 (increased from B1/4 = 180 to 195 MeV), but
the quark masses remain the same. This illustrates that with relatively
minor adjustments to the parameters, large changes can be introduced
to the final solution. In this case, � hyperons can provide a nonzero
contribution to the composition of a star. Note that in this case, quark
matter appears at 8 km, and at the core there exists a mixed phase
containing nucleons, quarks, and �, �0, and �− hyperons.
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FIG. 12. (Color online) Densities in the mixed phase for octet
QMC mixed with three-flavor quark matter modeled with the MIT bag
model. Note that at all values of χ [the mixing parameter according
to Eq. (37)], the equivalent quark baryon density is greater than the
hadronic baryon density, allowing the total baryon density to increase
monotonically. The total density is found via Eq. (37).

Fig. 14. A summary of the results of interest is given in
Table IV.

Results for larger quark masses are not shown, as they
require a much lower bag energy density to satisfy the
equilibrium conditions. For constituent quark masses, we find
that no phase transition is possible for any value of the bag
energy density, as the quark pressure does not rise sufficiently
fast to overcome the hadronic pressure. This is merely because
the mass of the quarks does not allow a sufficiently large
Fermi momentum at a given chemical potential, according to
Eq. (29).

FIG. 13. Species fractions for a phase transition from QMC
nuclear matter to three-flavor quark matter modeled with NJL.
Note that in this unphysical case, a phase transition is possible and
occurs at a value of about ρ = 0.47 fm−3. We note the coincidence
with the density of one baryon per baryon volume, but draw no
conclusions from this. A similar transition from QMC nuclear matter
to three-flavor quark matter modeled with the MIT bag model
produces results almost identical to those of Fig. 6, except that in
that case there is no contribution from the � hyperon.

FIG. 14. (Color online) Charge densities (in units of the proton
charge per cubic fm) in the mixed phase for a transition from octet
QMC to three-flavor quark matter modeled with the MIT bag model.
Note that following the mixed phase, the quarks are able to satisfy
charge neutrality with no leptons. χ is the mixing parameter within
the mixed phase according to Eq. (37).

VIII. CONCLUSIONS

We have produced several EOSs that simulate a phase
transition from octet QMC modeled hadronic matter, via
a continuous Glendenning style mixed phase, to a pure,
deconfined quark matter phase. This should correspond to a
reasonable description of the relevant degrees of freedom in
each density region. The models used here for quark matter
provide a framework for exploring the way that this form of
matter may behave, in particular under extreme conditions.
The success of the QMC model in reproducing a broad range
of experimental data gives us considerable confidence in
this aspect of these calculations and provides a reasonable
hadronic sector and calculation framework, which then awaits
improvement in the quark sector to produce realistic stellar
solutions.

We have presented EOSs and stellar solutions for octet
QMC matter at the Hartree level. We have explored several
possible phase transitions from this hadronic sector to a mixed
phase involving three-flavor quark matter. The corresponding
EOSs demonstrate the complexity and intricacy of the solu-
tions as well as the dependence on small changes in parameters.
The stellar solutions provide overlap with the lower end of the
experimentally acceptable range.

Several investigations were made of the response of the
model to a more sophisticated treatment of the quark masses
in-medium, namely, the NJL model. In that model the quark
masses arise from dynamical chiral symmetry breaking and
thus take values typical of constituent quarks at low density
and drop to current quark masses at higher densities. The result
is that no transition to a mixed phase is possible in this case.

The omission of hyperons in the QMC model yields a
transition to a mixed phase of either NJL or MIT bag model
quark matter, as the hadronic EOS is no longer as soft. This
observation makes it clear that hyperons can play a significant
role in the EOS. However, we acknowledge that their presence
in neutron stars remains speculative.
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The models considered here reveal some important things
about the possible nature of the dense nuclear matter in a
neutron star. It seems that if dynamical chiral symmetry does
indeed result in typical constituent quark masses in low-
density quark matter, then a phase transition from hadronic
matter to quark matter is unlikely. This result invites further
investigation.

The results presented in Fig. 8 indicate that the model in
its current form is unable to reproduce sufficiently massive
neutron stars to account for all observations, notably the
observed stellar masses of 1.45M
 and larger. This is a direct
result of the softness of the EOS. This issue will be explored
in a future publication via the inclusion of Fock terms, which
have been shown to have an effect on the scalar and vector
potentials [43].

Many open questions remain to be investigated in further
work, including the effects of Fock terms, and the density
dependence of the bag energy density in the quark phase, which
can be calculated explicitly within the NJL model. The quark
matter models used here are still not the most sophisticated
models available, and future work may involve an investigation
of the effects of color-superconducting quark matter [44,45].
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